
ADSP-21161 SHARC® Processor
Hardware Reference

 Revision 4.0, February 2005

Part Number
82-001944-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, EZ–Kit Lite, SHARC, the SHARC logo and
VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
INTRODUCTION

Design Advantages .. 1-1

Architecture Overview ... 1-5

Processor Core ... 1-5

Processing Elements .. 1-6

Program Sequence Control .. 1-7

Processor Internal Buses .. 1-10

Processor Peripherals .. 1-11

Dual-Ported Internal Memory (SRAM) 1-11

External Port ... 1-12

I/O Processor .. 1-14

JTAG Port ... 1-16

Differences From Previous SHARC Processors 1-16

Processor Core Enhancements .. 1-17

Processor Internal Bus Enhancements 1-17

Memory Organization Enhancements 1-18

External Port Enhancements .. 1-18

Host Interface Enhancements .. 1-18

Multiprocessor Interface Enhancements 1-19
ADSP-21161 SHARC Processor Hardware Reference iii

CONTENTS
IO Architecture Enhancements .. 1-19

DMA Controller Enhancements .. 1-19

Link Port Enhancements ... 1-19

Instruction Set Enhancements ... 1-20

For More Information About Analog Products 1-21

For Technical or Customer Support ... 1-22

What’s New in This Manual ... 1-22

Related Documents .. 1-23

Conventions ... 1-24

PROCESSING ELEMENTS

Setting Computational Modes .. 2-4

32-Bit (Normal Word) Floating-Point Format 2-4

40-Bit Floating-Point Format .. 2-5

16-Bit (Short Word) Floating-Point Format 2-6

32-Bit Fixed-Point Format ... 2-6

Rounding Mode .. 2-7

Using Computational Status ... 2-8

Arithmetic Logic Unit (ALU) .. 2-9

ALU Operation ... 2-9

ALU Saturation ... 2-10

ALU Status Flags ... 2-11

ALU Instruction Summary .. 2-12

Multiply—Accumulator (Multiplier) ... 2-15

Multiplier Operation ... 2-15
iv ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Multiplier (Fixed-Point) Result Register 2-16

Multiplier Status Flags ... 2-19

Multiplier Instruction Summary .. 2-20

Barrel-Shifter (Shifter) ... 2-23

Shifter Operation .. 2-23

Shifter Status Flags .. 2-27

Shifter Instruction Summary .. 2-28

Data Register File .. 2-30

Alternate (Secondary) Data Registers ... 2-32

Multifunction Computations .. 2-34

Secondary Processing Element (PEy) .. 2-37

Dual Compute Units Sets .. 2-39

Dual Register Files ... 2-42

Dual Alternate Registers .. 2-43

SIMD (Computational) Operations 2-43

SIMD And Status Flags ... 2-46

PROGRAM SEQUENCER

Instruction Pipeline .. 3-7

Instruction Cache ... 3-8

Using the Cache .. 3-11

Optimizing Cache Usage ... 3-11

Branches and Sequencing .. 3-13

Conditional Branches .. 3-15

Delayed Branches .. 3-15
ADSP-21161 SHARC Processor Hardware Reference v

CONTENTS
Restrictions and Limitations When Using
Delayed Branches .. 3-19

Loops and Sequencing .. 3-22

Restrictions on Ending Loops .. 3-25

Restrictions on Short Loops .. 3-26

Loop Address Stack ... 3-29

Loop Counter Stack .. 3-30

Interrupts and Sequencing .. 3-34

Sensing Interrupts ... 3-40

Masking Interrupts ... 3-41

Latching Interrupts ... 3-42

Stacking Status During Interrupts .. 3-44

Nesting Interrupts ... 3-45

Reusing Interrupts .. 3-47

Interrupting IDLE .. 3-48

Multiprocessing Interrupts .. 3-49

Timer and Sequencing .. 3-50

Stacks and Sequencing .. 3-52

Conditional Sequencing .. 3-53

SIMD Mode and Sequencing .. 3-57

Conditional Compute Operations ... 3-58

Conditional Branches and Loops ... 3-59

Conditional Data Moves ... 3-59

Case 1: Complementary Register Pair Data Move 3-60
vi ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Case 2: Uncomplemented–to–Complementary
Register Move .. 3-63

Case 3: Complementary Register => Uncomplimentary
Register .. 3-64

Case 4: Data Move Involves External Memory or
IOP Memory Space .. 3-65

Conditional DAG Operations .. 3-66

DATA ADDRESS GENERATOR

Setting DAG Modes .. 4-2

Circular Buffering Mode .. 4-4

Broadcast Loading Mode ... 4-5

Alternate (Secondary) DAG Registers 4-6

Bit-reverse Addressing Mode .. 4-8

Using DAG Status .. 4-8

DAG Operations ... 4-9

Addressing With DAGs ... 4-10

Addressing Circular Buffers ... 4-12

Modifying DAG Registers .. 4-17

Addressing in SISD and SIMD Modes 4-18

DAGs, Registers, and Memory .. 4-18

DAG Register-to-Bus Alignment .. 4-19

DAG Register Transfer Restrictions .. 4-21

DAG Instruction Summary ... 4-23
ADSP-21161 SHARC Processor Hardware Reference vii

CONTENTS
MEMORY

Internal Memory .. 5-2

External Memory .. 5-2

Processor Architecture .. 5-4

Off-Chip Memory and Peripherals Interface 5-6

Buses .. 5-7

Internal Address and Data Buses .. 5-7

Internal Data Bus Exchange .. 5-10

ADSP-21161 Memory Map .. 5-16

Internal Memory ... 5-16

Multiprocessor Memory .. 5-19

External Memory .. 5-22

Shadow Write FIFO .. 5-24

Memory Organization and Word Size 5-25

Placing 32-Bit Words and 48-Bit Words 5-25

Mixing 32-Bit and 48-Bit Words 5-26

Restrictions on Mixing 32-Bit and 48-Bit Words 5-28

48-Bit Word Allocation .. 5-31

Setting Data Access Modes .. 5-32

SYSCON Register Control Bits ... 5-32

Mode 1 Register Control Bits .. 5-34

Mode 2 Register Control Bits .. 5-34

Wait Register Control Bits ... 5-34

Using Boot Memory .. 5-35
viii ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Reading From Boot Memory ... 5-35

Writing to Boot Memory ... 5-36

Internal Interrupt Vector Table .. 5-37

Internal Memory Data Width .. 5-37

Memory Bank Size .. 5-38

External Bus Priority ... 5-39

Secondary Processor Element (PEy) .. 5-39

Broadcast Register Loads ... 5-40

Illegal I/O Processor Register Access 5-41

Unaligned 64-Bit Memory Access .. 5-41

External Bank X Access Mode .. 5-42

External Bank X Waitstates .. 5-45

Using Memory Access Status ... 5-46

Accessing Memory .. 5-46

Access Word Size ... 5-47

Long Word (64-Bit) Accesses ... 5-48

Instruction Word (48-Bit) and Extended-Precision
Normal Word (40-Bit) Accesses 5-50

Normal Word (32-Bit) Accesses ... 5-50

Short Word (16-Bit) Accesses .. 5-51

SISD, SIMD, and Broadcast Load Modes 5-51

Single and Dual Data Accesses ... 5-52

Data Access Options .. 5-52

Short Word Addressing of Single Data in SISD Mode 5-54

Short Word Addressing of Single Data in SIMD Mode 5-56
ADSP-21161 SHARC Processor Hardware Reference ix

CONTENTS
Short Word Addressing of Dual-Data in SISD Mode 5-58

Short Word Addressing of Dual-Data in SIMD Mode 5-60

32-Bit Normal Word Addressing of Single Data in
SISD Mode ... 5-62

32-Bit Normal Word Addressing of Single Data in
SIMD Mode .. 5-64

32-Bit Normal Word Addressing of Dual Data in
SISD Mode ... 5-66

32-Bit Normal Word Addressing of Dual Data in
SIMD Mode .. 5-68

Extended Precision Normal Word Addressing of
Single Data .. 5-70

Extended Precision Normal Word Addressing of Dual
Data in SISD Mode ... 5-72

Extended-Precision Normal Word Addressing of Dual
Data in SIMD Mode ... 5-74

Long Word Addressing of Single Data 5-76

Long Word Addressing of Dual Data in SISD Mode 5-78

Long Word Addressing of Dual Data in SIMD Mode 5-80

Mixed Word Width Addressing of Dual Data in
SISD Mode ... 5-82

Mixed Word Width Addressing of Dual Data in
SIMD Mode .. 5-84

Broadcast Load Access .. 5-86

Shadow Write FIFO Considerations in SIMD Mode 5-95

Arranging Data in Memory ... 5-100

Executing Instructions From External Memory 5-101
x ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
32- to 48-Bit Packing Address Generation Scheme 5-109

Total Program Size (32- to 48-Bit Packing) 5-110

16- to 48-Bit Packing Address Generation Scheme 5-111

Total Program Size (16- to 48-Bit Packing) 5-111

8- to 48-Bit Packing Address Generation Scheme 5-112

Total Program Size (8- to 48-Bit Packing) 5-113

No Packing (48- to 48-Bit) Address Generation Scheme 5-113

I/O PROCESSOR

DMA Channel Allocation and Priorities 6-16

DMA Interrupt Vector Locations ... 6-18

Booting Modes ... 6-20

DMA Controller Operation .. 6-20

Managing DMA Channel Priority .. 6-22

Chaining DMA Processes .. 6-25

Transfer Control Block (TCB) Chain Loading 6-26

Setting Up and Starting the Chain 6-28

Inserting a TCB in an Active Chain 6-28

External Port DMA ... 6-29

External Port Registers ... 6-30

External Port FIFO Buffers .. 6-33

External Port DMA Data Packing .. 6-34

32-Bit Bus Downloading ... 6-37

16-Bit Bus Downloading ... 6-38

8-Bit Bus Downloading ... 6-39
ADSP-21161 SHARC Processor Hardware Reference xi

CONTENTS
Boot Memory DMA Mode .. 6-42

External Port Buffer Modes ... 6-42

External Port Channel Priority Modes 6-43

External Port Channel Transfer Modes 6-46

External Port Channel Handshake Modes 6-47

Master Mode .. 6-50

Paced Master Mode .. 6-54

Slave Mode ... 6-55

Handshake Mode ... 6-57

DMA Handshake Idle Cycle .. 6-64

External-Handshake Mode .. 6-66

Setting Up External Port DMA .. 6-68

Bootloading Through The External Port 6-70

Host Processor Booting ... 6-72

PROM Booting .. 6-74

External Port DMA Programming Examples 6-76

Link Port DMA .. 6-81

Link Port Registers .. 6-81

Link Port Buffer Modes ... 6-83

Link Port Channel Priority Modes ... 6-83

Link Port Channel Transfer Modes .. 6-85

Setting Up Link Port DMA ... 6-86

Bootloading Through The Link Port 6-88

Link Port DMA Programming Examples 6-90
xii ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Serial Port DMA ... 6-95

Serial Port Registers ... 6-96

Serial Port Buffer Modes .. 6-97

Serial Port Channel Priority Modes .. 6-99

Serial Port Channel Transfer Modes 6-99

Setting Up Serial Port DMA .. 6-100

SPORT DMA Programming Examples 6-102

SPI Port DMA .. 6-108

SPI Port Registers .. 6-108

SPI Port Buffer .. 6-109

SPI DMA Channel Priority .. 6-112

Setting up SPl Port DMA .. 6-112

Bootloading Through the SPI Port 6-113

SPI Port DMA Programming Examples 6-116

Using I/O Processor Status .. 6-121

External Port Status ... 6-127

Link Port Status .. 6-131

Serial Port Status ... 6-135

SPI Port Status .. 6-137

Optimizing DMA Throughput .. 6-139

Internal Memory DMA ... 6-139

External Memory DMA ... 6-140

System-Level Considerations .. 6-144
ADSP-21161 SHARC Processor Hardware Reference xiii

CONTENTS
EXTERNAL PORT

Setting External Port Modes .. 7-3

External Memory Interface ... 7-3

Banked External Memory .. 7-9

Boot Memory ... 7-10

Idle Cycle ... 7-10

Data Hold Cycle ... 7-12

Multiprocessor Memory Space Waitstates and
Acknowledge ... 7-12

Timing External Memory Accesses ... 7-13

Asynchronous Mode Interface Timing 7-14

Synchronous Mode Interface Timing 7-18

Synchronous Burst Mode Interface Timing 7-26

Using External SBSRAM ... 7-36

SBSRAM Restrictions ... 7-41

Host Processor Interface ... 7-42

Acquiring the Bus ... 7-44

Asynchronous Transfers ... 7-48

Host Transfer Timing .. 7-51

Host Interface Deadlock Resolution With SBTS 7-54

Slave Reads and Writes .. 7-55

IOP Shadow Registers ... 7-55

Instruction Transfers ... 7-56

Slave Write Latency .. 7-56
xiv ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Slave Reads ... 7-57

Broadcast Writes .. 7-57

Data Transfers Through the EPBx Buffers 7-58

DMA Transfers .. 7-58

Host Data Packing ... 7-59

Packing Mode Variations For Host Accesses 7-61

IOP Register Host Accesses ... 7-62

LINK Port Buffer Access ... 7-63

EPBx Buffer Accesses .. 7-64

8- to 32-Bit Data Packing .. 7-66

16- to 32-Bit Packing .. 7-69

48-Bit Instruction Packing .. 7-74

Host Interface Status ... 7-76

Interprocessor Messages and Vector Interrupts 7-76

Message Passing (MSGRx) .. 7-77

Host Vector Interrupts (VIRPT) .. 7-78

System Bus Interfacing .. 7-78

Access to the Processor Bus – Slave Processor 7-79

Access to the System Bus – Master Processor 7-79

Processor Core Access to System Bus 7-82

Deadlock Resolution ... 7-82

DMA Access to System Bus ... 7-84

Multiprocessing With Local Memory 7-85

ADSP-21161 to Microprocessor Interface 7-85
ADSP-21161 SHARC Processor Hardware Reference xv

CONTENTS
Multiprocessor (MP) Interface .. 7-87

Multiprocessing System Architectures 7-90

Data Flow Multiprocessing ... 7-90

Cluster Multiprocessing .. 7-91

Multiprocessor Bus Arbitration .. 7-93

Bus Arbitration Protocol ... 7-95

Bus Arbitration Priority (RPBA) 7-98

Bus Mastership Timeout ... 7-101

Priority Access .. 7-103

Bus Synchronization After Reset .. 7-105

Booting Another processor .. 7-108

Multiprocessor Writes and Reads ... 7-109

Instruction Transfers ... 7-110

Bus Lock and Semaphores ... 7-110

Multiprocessor Interface Status 7-112

SDRAM INTERFACE

SDRAM Pin Connections ... 8-7

SDRAM Timing Specifications ... 8-8

SDRAM Control Register (SDCTL) ... 8-9

SDRAM Configuration for Runtime ... 8-10

Setting the Refresh Counter Value (SDRDIV) 8-13

Setting the SDRAM Clock Enables .. 8-14

Setting the Number of SDRAM Banks (SDBN) 8-15

Setting the External Memory Bank (SDEMx) 8-16
xvi ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Setting the SDRAM Buffering Option (SDBUF) 8-16

Selecting the CAS Latency Value (SDCL) 8-17

Selecting the SDRAM Page Size (SDPGS) 8-18

Setting the SDRAM Power-Up Mode (SDPM) 8-19

Starting the SDRAM Power-Up Sequence (SDPSS) 8-19

Starting Self-Refresh Mode (SDSRF) 8-20

Selecting the Active Command Delay (SDTRAS) 8-20

Selecting the Precharge Delay (SDTRP) 8-21

Selecting the RAS-to-CAS Delay (SDTRCD) 8-21

SDRAM Controller Standard Operation 8-22

Understanding DAG and DMA Operation 8-22

Multiprocessing Operation .. 8-24

Accessing SDRAM .. 8-25

Address Mapping for SDRAM ... 8-27

Understanding DQM Operation .. 8-29

Executing a Parallel Refresh Command During
Host Control .. 8-29

Powering Up After Reset .. 8-30

Entering and Exiting Self-Refresh Mode 8-31

SDRAM Controller Commands .. 8-31

Bank Activate (ACT) Command .. 8-32

Mode Register Set (MRS) .. 8-32

Precharge Command (PRE) ... 8-33

Read/Write Command ... 8-34

Read Commands ... 8-34
ADSP-21161 SHARC Processor Hardware Reference xvii

CONTENTS
Write Commands ... 8-36

DMA Transfers ... 8-37

Refresh (REF) Command .. 8-37

Setting the Delay Between Refresh Commands 8-37

Understanding Multiprocessing Operation 8-38

Self Refresh Command (SREF) .. 8-39

Programming Example .. 8-40

LINK PORTS

Link Port to Link Buffer Assignment ... 9-3

Link Port DMA Channels ... 9-4

Link Port Booting ... 9-5

Setting Link Port Modes ... 9-5

Link Port Control Register (LCTL) Bit Descriptions 9-7

Link Data Path and Compatibility Modes 9-9

Using Link Port Handshake Signals ... 9-10

Using Link Buffers .. 9-12

Core Processor Access To Link Buffers 9-13

Host Processor Access To Link Buffers 9-14

Using Link Port DMA .. 9-16

Using Link Port Interrupts .. 9-17

Link Port Interrupts With DMA Enabled 9-18

Link Port Interrupts With DMA Disabled 9-19

Link Port Service Request Interrupts (LSRQ) 9-19

Detecting Errors on Link Transmissions 9-22
xviii ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Link Port Programming Examples .. 9-23

Using Token Passing With Link Ports .. 9-27

Designing Link Port Systems ... 9-30

Terminations for Link Transmission Lines 9-30

Peripheral I/O Using Link Ports ... 9-31

Data Flow Multiprocessing With Link Ports 9-33

SERIAL PORTS

Serial Port Pins ... 10-3

SPORT Interrupts .. 10-7

SPORT Reset .. 10-8

SPORT Control Registers and Data Buffers 10-9

Serial Port Control Registers (SPCTLx) 10-14

Register Writes and Effect Latency 10-30

Transmit and Receive Data Buffers 10-30

Clock and Frame Sync Frequencies (DIV) 10-33

Data Word Formats ... 10-35

Word Length ... 10-36

Endian Format .. 10-36

Data Packing and Unpacking ... 10-37

Data Type ... 10-37

Companding ... 10-39

Clock Signal Options .. 10-40

Frame Sync Options .. 10-41

Framed Versus Unframed ... 10-41
ADSP-21161 SHARC Processor Hardware Reference xix

CONTENTS
Internal Versus External Frame Syncs 10-42

Active Low Versus Active High Frame Syncs 10-43

Sampling Edge for Data and Frame Syncs 10-43

Early Versus Late Frame Syncs ... 10-44

Data-Independent Transmit Frame Sync 10-45

SPORT Loopback .. 10-46

SPORT Operation Modes ... 10-47

I2S Mode .. 10-48

Setting Internal Serial Clock and Frame Sync Rates 10-49

I2S Control Bits ... 10-49

Setting Word Length (SLEN) .. 10-49

Selecting Transmit Receive Channel Order (L_FIRST) 10-49

Selecting the Frame Sync Options (FS_BOTH) 10-50

Enabling SPORT Master Mode (MSTR) 10-50

Enabling SPORT DMA (SDEN) 10-51

Multichannel Operation .. 10-52

Frame Syncs in Multichannel Mode 10-54

Multichannel Control Bits in SPCTL 10-55

Channel Selection Registers .. 10-57

Transferring Data to Memory ... 10-58

DMA Block Transfers .. 10-59

Setting Up DMA on SPORT Channels 10-60

SPORT DMA Parameter Registers 10-61

SPORT DMA Chaining ... 10-65
xx ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Single-Word Transfers .. 10-65

SPORT Pin/Line Terminations .. 10-66

SPORT Programming Examples .. 10-67

SERIAL PERIPHERAL INTERFACE (SPI)

Functional Description ... 11-2

SPI Interface Signals ... 11-3

SPICLK .. 11-3

SPIDS ... 11-4

FLAG ... 11-5

MOSI ... 11-6

MISO ... 11-6

SPI Interrupts ... 11-8

SPI IOP Registers ... 11-9

SPI Control Register (SPICTL) .. 11-9

Baud Rate Example ... 11-14

Seamless Operation ... 11-15

SPI Status Register (SPISTAT) ... 11-15

SPI Transmit Data Buffer (SPITX) 11-20

SPI Receive Data Buffer (SPIRX) ... 11-20

SPI Shift Registers ... 11-21

SPI Data Word Formats .. 11-21

SPI Word Packing ... 11-24

SPI Operation Modes .. 11-24

Master Mode Operation .. 11-25
ADSP-21161 SHARC Processor Hardware Reference xxi

CONTENTS
Interrupt and DMA Driven Transfers 11-26

Core Driven Transfers ... 11-26

Automatic Slave Selection ... 11-26

User Controlled Slave Selection 11-27

Slave Mode Operation ... 11-28

Error Signals and Flags ... 11-29

Multi-Master Error (MME) ... 11-30

Transmission Error (TXE) ... 11-30

Reception Error (RBSY) .. 11-31

SPI/Link Port DMA ... 11-32

DMA Operation in SPI Master Mode 11-32

DMA Operation in Slave Mode ... 11-33

SPI Booting .. 11-34

32-Bit SPI Host Boot .. 11-38

16-Bit SPI Host Boot .. 11-39

8-Bit SPI Host Boot .. 11-41

Multiprocessor SPI Port Booting 11-42

SPI Programming Example ... 11-44

JTAG TEST-EMULATION PORT

JTAG Test Access Port .. 12-3

Instruction Register .. 12-4

EMUPMD Shift Register .. 12-5

EMUPX Shift Register .. 12-6

EMU64PX Shift Register .. 12-7
xxii ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
EMUPC Shift Register .. 12-7

EMUCTL Shift Register .. 12-8

EMUSTAT Shift Register .. 12-11

BRKSTAT Shift Register ... 12-12

MEMTST Shift Register .. 12-13

PSx, DMx, IOx, and EPx (Breakpoint) Registers 12-13

EMUN Register .. 12-16

EMUCLK and EMUCLK2 Registers 12-16

EMUIDLE Instruction .. 12-17

In Circuit Signal Analyzer (ICSA) Function 12-17

Boundary Register ... 12-17

Device Identification Register .. 12-28

Built-In Self-Test Operation (BIST) .. 12-28

Private Instructions ... 12-28

References ... 12-29

SYSTEM DESIGN

Pin Descriptions ... 13-2

Input Synchronization Delay ... 13-18

Pin States At Reset ... 13-19

Pull-Up and Pull-Down Resistors ... 13-22

Clock Derivation ... 13-24

Timing Specifications .. 13-25

RESET and CLKIN .. 13-28

Reset Generators ... 13-31
ADSP-21161 SHARC Processor Hardware Reference xxiii

CONTENTS
Interrupt and Timer Pins .. 13-33

Core-Based Flag Pins ... 13-34

Flag Inputs ... 13-34

Flag Outputs .. 13-34

Programmable I/O Flags ... 13-35

Example #1: Configuring FLGx as Output Flags 13-37

Example #2: Configuring FLGx as Input Flags 13-38

System Design Considerations for Flags 13-38

Example #3: Programming 2:1 Clock Ratio 13-40

Example #4: Programming 3:1 Clock Ratio 13-40

Example #5: Programming 4:1 Clock Ratio 13-40

JTAG Interface Pins .. 13-41

Dual-Voltage Power-up Sequencing ... 13-41

PLL Start-Up (Revisions 1.0/1.1) .. 13-44

Power On Reset (POR) Circuit 13-44

PLL CLKIN Enable Circuit .. 13-46

PLL Start-Up (Revision 1.2) .. 13-48

Designing For JTAG Emulation .. 13-49

Target Board Connector .. 13-50

Layout Requirements .. 13-54

Power Sequence for Emulation .. 13-56

Additional JTAG Emulator References 13-56

Pod Specifications ... 13-56

JTAG Pod Connector .. 13-57
xxiv ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
3.3 V Pod Logic .. 13-58

2.5 V Pod Logic .. 13-59

Conditioning Input Signals ... 13-60

Link Port Input Filter Circuits ... 13-60

RESET Input Hysteresis .. 13-61

Designing For High Frequency Operation 13-62

Clock Specifications and Jitter ... 13-63

Clock Distribution .. 13-63

Point-to-Point Connections ... 13-65

Signal Integrity .. 13-67

Other Recommendations and Suggestions 13-68

Decoupling Capacitors and Ground Planes 13-69

Oscilloscope Probes ... 13-70

Recommended Reading ... 13-71

Booting Single and Multiple Processors 13-71

Multiprocessor Host Booting ... 13-73

Multiprocessor EPROM Booting ... 13-73

Booting From a Single EPROM 13-73

Sequential Booting .. 13-74

Multiprocessor Link Port Booting .. 13-75

Multiprocessor Booting From External Memory 13-75

Data Delays, Latencies, and Throughput 13-76

Execution Stalls ... 13-77

DAG Stalls .. 13-77
ADSP-21161 SHARC Processor Hardware Reference xxv

CONTENTS
Memory Stalls ... 13-77

IOP Register Stalls .. 13-78

DMA Stalls ... 13-78

Link Port and Serial Port Stalls .. 13-78

REGISTERS

Control and Status System Registers .. A-2

Mode Control 1 Register (MODE1) .. A-3

Mode Mask Register (MMASK) .. A-8

Mode Control 2 Register (MODE2) A-10

Arithmetic Status Registers (ASTATx and ASTATy) A-13

Sticky Status Registers (STKYx and STKYy) A-18

User-Defined Status Registers (USTATx) A-22

Processing Element Registers ... A-23

Data File Data Registers (Rx, Fx, Sx) A-23

Multiplier Results Registers (MRFx, MRBx) A-24

Program Memory Bus Exchange Register (PX) A-25

Program Sequencer Registers ... A-25

Interrupt Latch Register (IRPTL) .. A-27

Interrupt Mask Register (IMASK) ... A-31

Interrupt Mask Pointer Register (IMASKP) A-32

Link Port Interrupt Register (LIRPTL) A-34

Flag Value Register (FLAGS) ... A-37

IOFLAG Value Register .. A-38

Program Counter Register (PC) ... A-41
xxvi ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
Program Counter Stack Register (PCSTK) A-44

Program Counter Stack Pointer Register (PCSTKP) A-44

Fetch Address Register (FADDR) .. A-44

Decode Address Register (DADDR) A-44

Loop Address Stack Register (LADDR) A-45

Current Loop Counter Register (CURLCNTR) A-45

Loop Counter Register (LCNTR) ... A-45

Timer Period Register (TPERIOD) A-46

Timer Count Register (TCOUNT) A-46

Data Address Generator Registers ... A-46

Index Registers (Ix) ... A-47

Modify Registers (Mx) .. A-47

Length and Base Registers (Lx,Bx) .. A-47

I/O Processor Registers ... A-47

System Configuration Register (SYSCON) A-60

Vector Interrupt Address Register (VIRPT) A-63

External Memory Waitstate and Access Mode Register
(WAIT) ... A-65

System Status Register (SYSTAT) .. A-69

SDRDIV Register (SDRDIV) ... A-72

SDRAM Control Register (SDCTL) A-73

External Port DMA Buffer Registers (EPBx) A-76

Message Registers (MSGRx) ... A-77

PC Shadow Register (PC_SHDW) .. A-77

MODE2 Shadow Register (MODE2_SHDW) A-78
ADSP-21161 SHARC Processor Hardware Reference xxvii

CONTENTS
Bus Time-Out Maximum Register (BMAX) A-79

Bus (Time-Out) Counter Register (BCNT) A-79

External Port DMA Control Registers (DMACx) A-80

Internal Memory DMA Index Registers (IIx) A-87

Internal Memory DMA Modifier Registers (IMx) A-87

Internal Memory DMA Count Registers (Cx) A-87

Chain Pointer For Next DMA TCB Registers (CPx) A-88

General Purpose DMA Registers (GPx) A-89

External Memory DMA Index Registers (EIEPx) A-89

External Memory DMA Modifier Registers (EMEPx) A-89

External Memory DMA Count Registers (ECEPx) A-90

DMA Channel Status Register (DMASTAT) A-90

Link Port Buffer Registers (LBUFx) A-92

Link Port Buffer Control Register (LCTL) A-92

Link Port Service Request & Mask Register (LSRQ) A-98

Serial Port Registers ... A-100

SPORT Serial Control Registers (SPCTLx) A-100

SPORT Multichannel Control Registers (SPxyMCTL) A-109

SPORT Transmit Buffer Registers (TXx) A-111

SPORT Receive Buffer Registers (RXx) A-111

SPORT Divisor Registers (DIVx) A-112

SPORT Count Registers (CNTx) A-113

SPORT Transmit Select Registers (MT2CSx and
MT3CSx) .. A-113
xxviii ADSP-21161 SHARC Processor Hardware Reference

CONTENTS
SPORT Transmit Compand Registers (MT2CCSx and
MT3CCSx) ... A-113

SPORT Receive Select Registers A-114

SPORT Receive Compand Registers A-114

Serial Peripheral Interface Registers ... A-114

SPI Port Status Register .. A-115

SPI Control Register (SPICTL) ... A-117

SPI Receive Buffer Register (SPIRX) A-120

SPI Transmit Buffer Register (SPITX) A-121

Register and Bit #Defines (def21161.h) A-121

INTERRUPT VECTOR ADDRESSES

NUMERIC FORMATS

IEEE Single-Precision Floating-Point Data C-1

Extended-Precision Floating-Point .. C-3

Short Word Floating-Point Format ... C-4

Packing for Floating-Point Data ... C-4

Fixed-Point Formats ... C-6

GLOSSARY

INDEX
ADSP-21161 SHARC Processor Hardware Reference xxix

CONTENTS
xxx ADSP-21161 SHARC Processor Hardware Reference

1 INTRODUCTION

Thank you for purchasing the Analog Devices SHARC® digital signal

processor (DSP).

Design Advantages
The ADSP-21161 processor is a high-performance 32-bit processor used
for medical imaging, communications, military, audio, test equipment,
3D graphics, speech recognition, motor control, imaging, and other appli-
cations. This processor builds on the ADSP-21000 Family processor core
to form a complete system-on-a-chip, adding a dual-ported on-chip
SRAM, integrated I/O peripherals, and an additional processing element
for Single-Instruction-Multiple-Data (SIMD) support.

The SHARC architecture balances a high performance processor core with
high performance buses (PM, DM, IO). In the core, every instruction can
execute in a single cycle. The buses and instruction cache provide rapid,
unimpeded data flow to the core to maintain the execution rate.

Figure 1-1 shows a detailed block diagram of the processor, which illus-
trates the following architectural features.

• Two processing elements (PEx and PEy), each containing 32-Bit
IEEE floating-point computation unit—multiplier, ALU, Shifter,
and data register file

• Program sequencer with related instruction cache, interval timer,
and Data Address Generators (DAG1 and DAG2)
ADSP-21161 SHARC Processor Hardware Reference 1-1

Design Advantages

4

6

6

60

N

6

64

32
• Dual-ported SRAM

• External port for interfacing to off-chip memory such as SDRAM,
peripherals, hosts, and multiprocessor systems

• Input/Output (IO) processor with integrated DMA controller,
SPI-compatible port, serial ports, and link ports for point-to-point
multiprocessor communications

• JTAG Test Access Port for emulation

Figure 1-1 also shows the three on-chip buses of the ADSP-21161 proces-
sor: the Program Memory (PM) bus, Data Memory (DM) bus, and
Input/Output (IO) bus. The PM bus provides access to either instructions

Figure 1-1. ADSP-21161 SHARC Block Diagram

MULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEy)

16 x 40-BITMULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEx)

16 x 40-BIT

SERIAL PORTS
(2)

LINK PORTS
(6)

IOP
REGISTERS

(MEMORY MAPPED)

CONTROL,
STATUS, &

DATA BUFFERS

I/O PROCESSOR

DMA
CONTROLLER

TIMER INSTRUCTION
CACHE

32 x 48-BIT

ADDR DAT A DAT A

DATA

ADDR

ADDR DATA ADDR

TWO INDEPENDENT
DUAL-PORTED BLOCKS

PROCESSOR PORT I/O PORT B
L

O
C

K
0

B
L

O
C

K
1

DUAL-PORTED SRAM

JTAG

TEST &
EMULATIO

HOST PORT

ADDR BUS
MUX

IOA
32

IOD
64

MULTIPROCESSOR
INTERFACE

EXTERNAL
PORT

DATA BUS
MUX

32PM ADDRESS BUS

DM ADDRESS BUS

PM DATA BUS

DM DATA BUS
BUS

CONNECT
(PX)

DAG1
8x4x32

32

48/64

32/40/64

CORE PROCESSOR

PROGRAM
SEQUENCER

DAG2
8x4x 32
1-2 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
or data. During a single cycle, these buses let the processor access two data
operands from memory, access an instruction (from the cache), and per-
form a DMA transfer.

The buses connect to the ADSP-21161 processor external port, which
provides the processor interface to external memory, memory-mapped
I/O, a host processor, and additional multiprocessing ADSP-21161 pro-
cessors. The external port performs bus arbitration and supplies control
signals to shared, global memory and I/O devices.

Figure 1-2 illustrates a typical single-processor system.

The ADSP-21161 processor includes extensive support for multiprocessor
systems as well. For more information, see “Multiprocessor (MP) Inter-
face” on page 7-87.

Further, the ADSP-21161 processor addresses the five central require-
ments for DSPs:

• Fast, flexible arithmetic computation units

• Unconstrained data flow to and from the computation units

• Extended precision and dynamic range in the computation units

• Dual address generators with circular buffering support

• Efficient program sequencing

Fast, Flexible Arithmetic. The ADSP-21000 Family processors execute all
instructions in a single cycle. They provide fast cycle times and a complete
set of arithmetic operations. The processor is IEEE floating-point compat-
ible and allows either interrupt on arithmetic exception or latched status
exception handling.

Unconstrained Data Flow. The ADSP-21161 processor has a Super Har-
vard Architecture combined with a 10-port data register file. In every
cycle, the processor can write or read two operands to or from the register
ADSP-21161 SHARC Processor Hardware Reference 1-3

Design Advantages
file, supply two operands to the ALU, supply two operands to the multi-
plier, and receive three results from the ALU and multiplier. The
processor’s 48-bit orthogonal instruction word supports parallel data
transfers and arithmetic operations in the same instruction.

Figure 1-2. Typical Single Processor System

DMA DEVICE
(OPTIONAL)

DATA

CLKOUT
DMAR1-2

DMAG1-2

REDY
ADDR

DATA

HOST
PROCESSOR
INTERFACE
(OPTIONAL)

3

12

CLOCK CLKIN
XTAL

IRQ2-0

2 CLK_CFG1-0

EBOOT
LBOOT

FLAG11-0
TIMEXP

CLKDBL

RESET JTAG

7

SBTS

ADSP-21161

BMS

LINK
DEVICES
(2 MAX)

(OPTIONAL)

LXCLK

LXACK

LXDAT7-0

SCLK0

D0B
D0A
FS0SERIAL

DEVICE
(OPTIONAL)

CS
BOOT

EPROM
(OPTIONAL)

ADDR
MEMORY

AND
PERIPHERALS

(OPTIONAL)

OE
DATA

CS

RD

RAS

ACK

BR1-6

RPBA
ID2-0

PA

HBG

HBR

SDWE

MS3-0

WR

DATA47-16

DATA

ADDR

CS
ACK

WE

ADDR23-0

D
A

T
A

C
O

N
T

R
O

L

A
D

D
R

E
S

S

BRST

SDRAM
(OPTIONAL)

SCLK1

D1B
D1A
FS1SERIAL

DEVICE
(OPTIONAL)

SCLK2

D2B
D2A
FS2SERIAL

DEVICE
(OPTIONAL)

SCLK3

D3B
D3A
FS3SERIAL

DEVICE
(OPTIONAL)

SPICLK

MISO
MOSI
SPDS

SPI
COMPATIBLE

DEVICE
(HOST OR

SLAVE)
(OPTIONAL)

DATA

CAS

RAS

DQM

WE

ADDR

CS
A10
CKE
CLK

DQM

CAS

RSTOUT

SDCLK1-0
SDCKE
SDA10
1-4 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
40-Bit Extended Precision. The processor handles 32-bit IEEE float-
ing-point format, 32-bit integer and fractional formats (twos-complement
and unsigned), and extended-precision 40-bit floating-point format. The
processors carry extended precision throughout their computation units,
limiting intermediate data truncation errors.

Dual Address Generators. The processor has two Data Address Genera-
tors (DAGs) that provide immediate or indirect (pre- and post-modify)
addressing. Modulus, bit-reverse, and broadcast operations are supported
with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
processor supports single-cycle setup and exit for loops. Loops are both
nestable (six levels in hardware) and interruptable. The processors support
both delayed and non-delayed branches.

Architecture Overview
The ADSP-21161 processor forms a complete system-on-a-chip, integrat-
ing a large, high-speed SRAM and I/O peripherals supported by a
dedicated I/O bus. The following sections summarize the features of each
functional block in the ADSP-21161 processor SHARC architecture,
which appears in Figure 1-1 on page 1-2. With each summary, a cross ref-
erence points to the sections where the features are described in greater
detail.

Processor Core
The processor core of the ADSP-21161 processor consists of two process-
ing elements (each with three computation units and data register file), a
program sequencer, two data address generators, a timer, and an instruc-
tion cache. All digital signal processing occurs in the processor core.
ADSP-21161 SHARC Processor Hardware Reference 1-5

Architecture Overview
Processing Elements

The processor core contains two processing elements (PEx and PEy). Each
element contains a data register file and three independent computation
units: an ALU, a multiplier with a fixed-point accumulator, and a shifter.
For meeting a wide variety of processing needs, the computation units
process data in three formats: 32-bit fixed-point, 32-bit floating-point and
40-bit floating-point.

The floating-point operations are single-precision IEEE-compatible. The
32-bit floating-point format is the standard IEEE format, whereas the
40-bit extended-precision format has eight additional Least Significant
Bits (LSBs) of mantissa for greater accuracy.

The ALU performs a set of arithmetic and logic operations on both
fixed-point and floating-point formats. The multiplier performs float-
ing-point or fixed-point multiplication and fixed-point multiply/add or
multiply/subtract operations. The shifter performs logical and arithmetic
shifts, bit manipulation, field deposit and extraction, and exponent deriva-
tion operations on 32-bit operands. These computation units perform
single-cycle operations; there is no computation pipeline. All units are
connected in parallel, rather than serially. The output of any unit may
serve as the input of any unit on the next cycle. In a multifunction compu-
tation, the ALU and multiplier perform independent, simultaneous
operations.

Each processing element has a general-purpose data register file that trans-
fers data between the computation units and the data buses and stores
intermediate results. A register file has two sets (primary and secondary) of
sixteen registers each, for fast context switching. All of the registers are 40
bits wide. The register file, combined with the core processor’s Super Har-
vard architecture, allows unconstrained data flow between computation
units and internal memory.
1-6 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Primary Processing Element (PEx). PEx processes all computational
instructions whether the processor is in Single-Instruction, Single-Data
(SISD) or Single-Instruction, Multiple-Data (SIMD) mode. This element
corresponds to the computational units and register file in previous
ADSP-21000 family DSPs.

Secondary Processing Element (PEy). PEy processes each computational
instruction in lock-step with PEx, but only processes these instructions
when the processor is in SIMD mode. Because many operations are influ-
enced by this mode, more information on SIMD is available in multiple
locations:

• For information on PEy operations, see “Processing Elements” on
page 2-1

• For information on data addressing in SIMD mode, see “Address-
ing in SISD and SIMD Modes” on page 4-18

• For information on data accesses in SIMD mode, see “SISD,
SIMD, and Broadcast Load Modes” on page 5-51

• For information on multiprocessing in SIMD mode, see “Multi-
processor (MP) Interface” on page 7-87

• For information on SIMD programming, see the ADSP-21160
SHARC DSP Instruction Set Reference

Program Sequence Control

Internal controls for ADSP-21161 processor program execution come
from four functional blocks: program sequencer, data address generators,
timer, and instruction cache. Two dedicated address generators and a pro-
gram sequencer supply addresses for memory accesses. Together the
sequencer and data address generators allow computational operations to
execute with maximum efficiency since the computation units can be
devoted exclusively to processing data. With its instruction cache, the
ADSP-21161 SHARC Processor Hardware Reference 1-7

Architecture Overview
ADSP-21161 processor can simultaneously fetch an instruction from the
cache and access two data operands from memory. The data address gener-
ators implement circular data buffers in hardware.

Program Sequencer. The program sequencer supplies instruction
addresses to program memory. It controls loop iterations and evaluates
conditional instructions. With an internal loop counter and loop stack,
the ADSP-21161 processor executes looped code with zero overhead. No
explicit jump instructions are required to loop or to decrement and test
the counter.

The ADSP-21161 processor achieves its fast execution rate by means of
pipelined fetch, decode, and execute cycles. If external memories are used,
they are allowed more time to complete an access than if there were no
decode cycle.

Data Address Generators. The Data Address Generators (DAGs) provide
memory addresses when data is transferred between memory and registers.
Dual data address generators enable the processor to output simultaneous
addresses for two operand reads or writes. DAG1 supplies 32-bit addresses
to data memory. DAG2 supplies 32-bit addresses to program memory for
program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers and
eight length values. A pointer used for indirect addressing can be modified
by a value in a specified register, either before (pre-modify) or after
(post-modify) the access. A length value may be associated with each
pointer to perform automatic modulo addressing for circular data buffers;
the circular buffers can be located at arbitrary boundaries in memory.
Each DAG register has a secondary register that can be activated for fast
context switching.
1-8 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing, and are commonly
used in digital filters and Fourier transforms. The DAGs automatically
handle address pointer wraparound, reducing overhead, increasing perfor-
mance, and simplifying implementation.

Interrupts. The ADSP-21161 processor has four external hardware inter-
rupts: three general-purpose interrupts, IRQ2-0, and a special interrupt for
reset. The processor also has internally generated interrupts for the timer,
DMA controller operations, circular buffer overflow, stack overflows,
arithmetic exceptions, multiprocessor vector interrupts, and user-defined
software interrupts.

For the general-purpose external interrupts and the internal timer inter-
rupt, the ADSP-21161 processor automatically stacks the arithmetic status
and mode (MODE1) registers in parallel with the interrupt servicing, allow-
ing fifteen nesting levels of very fast service for these interrupts.

Context Switch. Many of the processor’s registers have secondary registers
that can be activated during interrupt servicing for a fast context switch.
The data registers in the register file, the DAG registers, and the multiplier
result register all have secondary registers. The primary registers are active
at reset, while the secondary registers are activated by control bits in a
mode control register.

Timer. The programmable interval timer provides periodic interrupt gen-
eration. When enabled, the timer decrements a 32-bit count register every
cycle. When this count register reaches zero, the ADSP-21161 processor
generates an interrupt and asserts its timer expired output. The count reg-
ister is automatically reloaded from a 32-bit period register and the count
resumes immediately.

Instruction Cache. The program sequencer includes a 32-word instruc-
tion cache that enables three-bus operation for fetching an instruction and
two data values. The cache is selective; only instructions whose fetches
ADSP-21161 SHARC Processor Hardware Reference 1-9

Architecture Overview
conflict with program memory data accesses are cached. This caching
allows full-speed execution of core, looped operations such as digital filter
multiply-accumulates and FFT butterfly processing.

Processor Internal Buses

The processor core has six buses: PM address, PM data, DM address, DM
data, IO address, and IO data. Due to processor’s Super Harvard Archi-
tecture, data memory stores data operands, while program memory can
store both instructions and data. This architecture allows dual data
fetches, when the instruction is supplied by the cache.

Bus Capacities. The PM address bus and DM address bus transfer the
addresses for instructions and data. The PM data bus and DM data bus
transfer the data or instructions from each type of memory. the PM
address bus is 32 bits wide, allowing access of up to 62 Mwords for
non-SDRAM and 254 Mwords for SDRAM banks of mixed instructions
and data. The PM data bus is 64 bits wide from (8-, 16-, and 32-bits) to
accommodate the 48-bit instructions and 32-bit data.

The DM address bus is 32 bits wide allowing direct access of up to 4G
words of data. The DM data bus is 64 bits wide. The DM data bus pro-
vides a path for the contents of any register in the processor to be
transferred to any other register or to any data memory location in a single
cycle. The data memory address comes from one of two sources: an abso-
lute value specified in the instruction code (direct addressing) or the
output of a data address generator (indirect addressing).

The IO address and IO data buses let the IO processor access internal
memory for DMA without delaying the processor core. The IO address
bus is 18 bits wide, and the IO data bus is 64 bits wide.

Data Transfers. Nearly every register in the processor core is classified as a
Universal Register (UREG). Instructions allow transferring data between
any two universal registers or between a universal register and memory.
This support includes transfers between control registers, status registers,
1-10 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
and data registers in the register file. The PM bus connect (PX) registers
permit data to be passed between the 64-bit PM data bus and the 64-bit
DM data bus, or between the 40-bit register file and the PM data bus.
These registers contain hardware to handle the data width difference. For
more information, see For more information, see “Processing Element
Registers” on page A-23.

Processor Peripherals
The term processor peripherals refers to everything outside the processor
core. The ADSP-21161 processor peripherals include internal memory,
external port, I/O processor, JTAG port, and any external devices that
connect to the processor.

Dual-Ported Internal Memory (SRAM)

The ADSP-21161 processor contains 1 megabit of on-chip SRAM, orga-
nized as two blocks of 0.5 Mbits. Each block can be configured for
different combinations of code and data storage. Each memory block is
dual-ported for single-cycle, independent accesses by the core processor
and I/O processor or DMA controller. The dual-ported memory and sepa-
rate on-chip buses allow two data transfers from the core and one from
I/O, all in a single cycle.

All of the memory can be accessed as 16-, 32-, 48-, or 64-bit words. On
the ADSP-21161 processor, the memory can be configured as a maximum
of 32K words of 32-bit data, 64K words of 16-bit data, 21.25K words of
48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 1.0 Mbit.

The processor supports a 16-bit floating-point storage format, which
effectively doubles the amount of data that may be stored on chip. Con-
version between the 32-bit floating-point and 16-bit floating-point
formats completes in a single instruction.
ADSP-21161 SHARC Processor Hardware Reference 1-11

Architecture Overview
While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, using the DM bus
for transfers, and the other block stores instructions and data, using the
PM bus for transfers. Using the DM bus and PM bus in this way, with one
dedicated to each memory block, assures single-cycle execution with two
data transfers. In this case, the instruction must be available in the cache.
The processor uses its external port to maintain single-cycle execution
when one of the data operands is transferred to or from off-chip.

External Port

The ADSP-21161 processor external port provides the processor interface
to off-chip memory and peripherals. The 254 Mword off-chip address
space is included in the unified address space of the ADSP-21161 proces-
sor. The separate on-chip buses—for PM address, PM data, DM address,
DM data, IO address, and IO data—multiplex at the external port to cre-
ate an external system bus with a single 24-bit address bus and a single
32-bit data bus. The ADSP-21161 processor on-chip DMA controller
automatically packs external data into the appropriate word width during
transfers.

The ADSP-21161 processor supports instruction packing modes to exe-
cute from 48-, 32-, 16-, and 8-bit wide memories. With the link ports
disabled, the additional link port pins can be used to execute 48-bit wide
instructions. The ADSP-21161 processor also includes 32- to 48-bit, 16-
to 48-bit, 8- to 48-bit execution packing for executing instruction directly
from 32-bit, 16-bit, or 8-bit wide external memories. External SDRAM,
SRAM, or SBSRAM can be 8-, 16-, or 32-bits wide for DMA transfers to
or from external memory.

On-chip decoding of high-order address lines generates memory bank
select signals for addressing external memory devices. The ADSP-21161
processor provides programmable memory waitstates and external memory
acknowledge controls for interfacing to peripherals with variable access,
hold, and disable time requirements.
1-12 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
SDRAM Interface. The ADSP-21161 processor integrated on-chip
SDRAM controller transfers data to and from synchronous DRAM
(SDRAM) at the core clock frequency or one-half the core clock fre-
quency. The synchronous approach, coupled with the core clock
frequency, supports data transfer at a high throughput—up to 400
Mbytes/second for 32-bit transfers and 600 Mbytes/second for 48-bit
transfers.

The SDRAM interface provides a glueless interface with standard
SDRAMs—16 Mbits, 64 Mbits, 128 Mbits, and 256 Mbits—and
includes options to support additional buffers between the ADSP-21161
processor and SDRAM. The SDRAM interface is extremely flexible and
provides capability for connecting SDRAMs to any one of the
ADSP-21161 processor four external memory banks, with up to all four
banks mapped to SDRAM.

Systems with several SDRAM devices connected in parallel may require
buffering to meet overall system timing requirements. The ADSP-21161
processor supports pipelining of the address and control signals to enable
such buffering between itself and multiple SDRAM devices.

Host Processor Interface. The ADSP-21161 processor host interface
allows easy connection to standard microprocessor buses, 8-bit, 16-bit and
32-bit, with little additional hardware required. The interface supports
asynchronous and synchronous transfers at speeds up to the half the inter-
nal core clock rate of the ADSP-21161 processor. The host interface
operates through the ADSP-21161 processor external port and maps into
the unified address space. Four channels of DMA are available for the host
interface; code and data transfers occur with low software overhead. The
host can directly read and write the IOP register space of the ADSP-21161
processor and can access the DMA channel setup and mailbox registers.
The host can also perform DMA transfers to and from the internal mem-
ory of the processor. Vector interrupt support provides for efficient
execution of host commands.
ADSP-21161 SHARC Processor Hardware Reference 1-13

Architecture Overview
Multiprocessor System Interface. The ADSP-21161 processor offers
powerful features tailored to multiprocessing systems. The unified address
space allows direct interprocessor accesses of each ADSP-21161 processor
internal IOP registers. Distributed bus arbitration logic on the processor
allows simple, glueless connection of systems containing up to six
ADSP-21161 processor and a host processor. Master processor changeover
incurs only one cycle of overhead. Bus arbitration handles either fixed or
rotating priority. Processor bus lock allows indivisible read-modify-write
sequences for semaphores. A vector interrupt capability is provided for
interprocessor commands.

I/O Processor

The ADSP-21161 processor Input/Output Processor (IOP) includes four
serial ports, two link ports, a SPI-compatible port, and a DMA controller.
One of the processes that the IO processor automates is booting. The pro-
cessor can boot from the external port (with data from an 8-bit EPROM
or a host processor) or a link port. Alternatively, a no-boot mode lets the
processor start by executing instructions from external memory without
booting.

Serial Ports. The ADSP-21161 processor features four synchronous serial
ports that provide an inexpensive interface to a wide variety of digital and
mixed-signal peripheral devices. The serial ports can operate at up to half
the processor core clock rate. Programmable data direction provides
greater flexibility for serial communications. Serial port data can automat-
ically transfer to and from on-chip memory using DMA. Each of the serial
ports offers a TDM multichannel mode (up to 128 channels) and supports
m-law or A-law companding. I2S support is also provided with the
ADSP-21161 processor.

The serial ports can operate with little-endian or big-endian transmission
formats, with word lengths from 3 to 32 bits. The serial ports offer select-
able synchronization and transmit modes. Serial port clocks and frame
syncs can be internally or externally generated.
1-14 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Link Ports. The ADSP-21161 processor features two 8-bit link ports that
provide additional I/O capabilities. Link port I/O is especially useful for
point-to-point interprocessor communication in multiprocessing systems.
The link ports can operate independently and simultaneously. The data
packs into 32-bit or 48-bit words, which the processor core can directly
read or the IO processor can DMA-transfer to on-chip memory. Clock
and acknowledge handshaking signals control link port transfers. Trans-
fers are programmable as either transmit or receive.

Serial Peripheral (Compatible) Interface. The ADSP-21161 processor
Serial Peripheral Interface (SPI) is an industry standard synchronous serial
link that enables the ADSP-21161 processor SPI-compatible port to com-
municate with other SPI-compatible devices. SPI is a 4-wire interface
consisting of two data pins, one device select pin, and one clock pin. It is a
full-duplex synchronous serial interface, supporting both master and slave
modes. It can operate in a multi-master environment by interfacing with
up to four other SPI-compatible devices, either acting as a master or slave
device. The ADSP-21161 processor SPI-compatible peripheral implemen-
tation also supports programmable baud rate and clock phase/polarities,
and the use of open drain drivers to support the multi-master scenario to
avoid data contention.

DMA Controller. The ADSP-21161 processor on-chip DMA controller
allows zero-overhead data transfers without processor intervention. The
DMA controller operates independently and invisibly to the processor
core, allowing DMA operations to occur while the core is simultaneously
executing its program. Both code and data can be downloaded to the
ADSP-21161 processor using DMA transfers.

DMA transfers can occur between the ADSP-21161 processor internal
memory and external memory, external peripherals, or a host processor.
DMA transfers between external memory and external peripheral devices
are another option. External bus packing to 8-, 16-, 32-, 48-, or 64-bit
words is automatically performed during DMA transfers.
ADSP-21161 SHARC Processor Hardware Reference 1-15

Differences From Previous SHARC Processors
Fourteen channels of DMA are available on the ADSP-21161 processor—
two over the link ports (shared with SPI), eight over the serial ports, and
four over the processor’s external port. The external port DMA channels
serve for host processor, other ADSP-21161 processor DSPs, memory, or
I/O transfers.

JTAG Port
The JTAG port on the ADSP-21161 processor supports the IEEE stan-
dard 1149.1 Joint Test Action Group (JTAG) standard for system test.
This standard defines a method for serially scanning the I/O status of each
component in a system. Emulators use the JTAG port to monitor and
control the processor during emulation. Emulators using this port provide
full-speed emulation with access to inspect and modify memory, registers,
and processor stacks. JTAG-based emulation is non-intrusive and does not
effect target system loading or timing.

Differences From Previous SHARC
Processors

This section identifies differences between the ADSP-21161 processor and
previous SHARC processors: ADSP-21160, ADSP-21060, ADSP-21061,
ADSP-21062, and ADSP-21065. The ADSP-21161 processor preserves
much of the ADSP-2106x architecture and is comparable to the
ADSP-21160 with extended performance and functionality. For back-
ground information on SHARC and the ADSP-2106x Family processors,
see the ADSP-2106x SHARC User’s Manual or the ADSP-21065L SHARC
Technical Reference.
1-16 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Processor Core Enhancements
Computational bandwidth on the ADSP-21161 processor is significantly
greater than that on the ADSP-2106x DSPs. The increase comes from
raising the operational frequency and adding another processing element:
ALU, shifter, multiplier, and register file. The new processing element lets
the processor to process multiple data streams in parallel (SIMD mode).

Like the ADSP-21160, the program sequencer on the ADSP-21161 pro-
cessor differs from the ADSP-2106x family, having several enhancements:
new interrupt vector table definitions, SIMD mode stack and conditional
execution model, and instruction decodes associated with new instruc-
tions. Interrupt vectors have been added that detect illegal memory
accesses. Link port interrupt control has moved to a new register to sup-
port the additional DMA channels. Also, mode stack and mode mask
support has been added to improve context switch time.

As with the ADSP-21160, the data address generators on the
ADSP-21161 processor differ from the ADSP-2106x in that DAG2 (for
the PM bus) has the same addressing capability as DAG1 (for the DM
bus). The DAG registers move 64-bits per cycle. Additionally, the DAGs
support the new memory map and Long Word transfer capability. Circu-
lar buffering on the ADSP-21161 processor can be quickly disabled on
interrupts and restored on the return. Data “broadcast”, from one memory
location to both data register files, is determined by appropriate index reg-
ister usage.

Processor Internal Bus Enhancements
The PM, DM, and IO data buses on the ADSP-21161 processor have
increased on the ADSP-2106x processors to 64 bits. Additional multiplex-
ing and control logic on the ADSP-21161 processor enable 16-, 32-, or
64-bit wide moves between both register files and memory. The
ADSP-21161 processor is capable of broadcasting a single memory loca-
ADSP-21161 SHARC Processor Hardware Reference 1-17

Differences From Previous SHARC Processors
tion to each of the register files in parallel. Also, the ADSP-21161
processor permits register contents to be exchanged between the two pro-
cessing elements’ register files in a single cycle.

Memory Organization Enhancements
The ADSP-21161 processor memory map differs from the ADSP-2106x’s
and is similar in organization to the ADSP-21160. The system memory
map on the ADSP-21161 processor supports double-word transfers each
cycle, reflects extended internal memory capacity for derivative designs,
and works with updated control register for SIMD support.

External Port Enhancements
The ADSP-21161 processor external port differs from the ADSP-2106x
DSPs. The data bus on the ADSP-21160 is 32-bits wide. A new packing
mode permits DMA for instructions and data to and from 8-bit external
memory. The ADSP-21161 processor has a new synchronous interface
that improves local bus switching frequency. Also, burst support on the
ADSP-21161 processor improves bus usage.

Host Interface Enhancements

The ADSP-21161 processor host interface differs from the ADSP-2106x
DSPs. It is 32-bit wide and supports 8-bit, 16- and 32-bit hosts. Although
the ADSP-21161 processor supports the ADSP-2106x asynchronous host
interface protocols, the ADSP-21161 processor also provides new syn-
chronous interface protocols for maximum throughput.

The host/local bus deadlock resolution function on the ADSP-21161 pro-
cessor is extended to the DMA controller. With this function the host (or
bridge) logic forces the local bus to wait until the host completes it’s
operation.
1-18 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Multiprocessor Interface Enhancements

The ADSP-21161 processor multiprocessor system interface supports
greater throughput than the ADSP-2106x DSPs. The throughput between
ADSP-21161 processors in a multiprocessing application increases due to
new shared bus transfer protocols, shared bus cycle time improvements
due to synchronous interface, and improvements in link port throughput.
The external port supports glueless multiprocessing, with distributed arbi-
tration for up to six ADSP-21161 processors.

IO Architecture Enhancements
The IO processor on the ADSP-21161 processor provides much greater
throughput than the ADSP-2106x DSPs. This section describes how the
link ports and DMA controller differ on the ADSP-21161 processor.

DMA Controller Enhancements

The ADSP-21161 processor DMA controller supports 14 channels com-
pared to 10 on the ADSP-2106x DSPs. New packing modes support the
64-bit internal busing. To resolve potential deadlock scenarios, the
ADSP-21161 processor DMA controller relinquishes the local bus in a
similar fashion to the processor core when host logic asserts both HBR and
SBTS.

Link Port Enhancements

The ADSP-21161 processor two link ports provide greater throughput
than the ADSP-2106x DSPs. The link port data bus width on the
ADSP-21161 processor is 8 bits wide (versus 4 bits on the ADSP-2106x
DSPs). Link port clock control on the ADSP-21161 processor supports a
wider frequency range.
ADSP-21161 SHARC Processor Hardware Reference 1-19

Differences From Previous SHARC Processors
Instruction Set Enhancements
ADSP-21161 processor provides source code compatibility with the previ-
ous SHARC family members, to the application assembly source code
level. All instructions, control registers, and system resources available in
the ADSP-2106x core programming model are available in ADSP-21161
processor. Instructions, control registers, or other facilities, required to
support the new feature set of ADSP-2116x core include the following.

• Code compatible to the ADSP-21160 SIMD core

• Supersets of the ADSP-2106x programming model

• Reserved facilities in the ADSP-2106x programming model

• Symbol name changes from the ADSP-2106x and ADSP-21161
processor programming models

These name changes can be managed through re-assembly using the
ADSP-21161 processor development tools to apply the ADSP-21161 pro-
cessor symbol definitions header file and linker description file. While
these changes have no direct impact on existing core applications, system
and I/O processor initialization code and control code do require
modifications.

Although the porting of source code written for the ADSP-2106x family
to ADSP-21161 processor has been simplified, code changes are required
to take full advantage of the new ADSP-21161 processor features. For
more information, see the ADSP-21160 SHARC DSP Instruction Set
Reference.
1-20 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
For More Information About Analog
Products

Analog Devices is online on the internet at http://www.analog.com. Our
web pages provide information on the company and products, including
access to technical information and documentation, product overviews,
and product announcements.

Additional information may be obtained about Analog Devices and its
products in any of the following ways:

• Visit our World Wide Web site at www.analog.com

• FAX questions or requests for information to 1(781)461-3010.

• Access the Computer Products Division File Transfer Protocol
(FTP) site at ftp ftp.analog.com or ftp 137.71.23.21 or
ftp://ftp.analog.com
ADSP-21161 SHARC Processor Hardware Reference 1-21

For Technical or Customer Support
For Technical or Customer Support
Our Customer Support group can be reached in the following ways:

• E-mail questions to dsp.support@analog.com (hardware support),
dsptools.support@analog.com (software support) or
dsp.europe@analog.com (European customer support).

• Contact your local ADI sales office or an authorized ADI
distributor

• Send questions by mail to:

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

What’s New in This Manual
The fourth edition of the ADSP-21161 SHARC Processor Hardware Refer-
ence is revised based on the published document errata.
1-22 ADSP-21161 SHARC Processor Hardware Reference

INTRODUCTION
Related Documents
For more information about Analog Devices DSPs and development
products, see the following documents:

• ADSP-21161 SHARC DSP Microcomputer Data Sheet

• ADSP-21160 SHARC DSP Instruction Set Reference

• Getting Started Guide for VisualDSP++ & ADSP-21xxx Family
DSPs

• VisualDSP++ User's Guide for ADSP-21xxx Family DSPs

• C/C++ Compiler & Library Manual for ADSP-21xxx Family DSPs

• Assembler Manual for ADSP-21xxx Family DSPs

• Linker & Utilities Manual for ADSP-21xxx Family DSPs

All the manuals are included in the software distribution CD-ROM. To
access these manuals, use the Help Topics command in the VisualDSP++
environment’s Help menu and select the Online Manuals book. From this
Help topic, you can open any of the manuals, which are in Adobe Acrobat
PDF format.
ADSP-21161 SHARC Processor Hardware Reference 1-23

Conventions
Conventions
The following are conventions that apply to all chapters. Note that addi-
tional conventions, which apply only to specific chapters, appear
throughout this document.

Table 1-1. Notation Conventions

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.
1-24 ADSP-21161 SHARC Processor Hardware Reference

2 PROCESSING ELEMENTS

The processor’s Processing Elements (PEx and PEy) perform numeric pro-

cessing for digital signal processing algorithms. Each processing element
contains a data register file and three computation units: an arith-
metic/logic unit (ALU), a multiplier, and a shifter. Computational
instructions for these elements include both fixed-point and floating-point
operations, and each computational instruction can execute in a single
cycle.

The computational units in a processing element handle different types of
operations. The ALU performs arithmetic and logic operations on
fixed-point and floating-point data. The multiplier does floating-point
and fixed-point multiplication and executes fixed-point multiply/add and
multiply/subtract operations. The shifter completes logical shifts, arith-
metic shifts, bit manipulation, field deposit, and field extraction
operations on 32-bit operands. Also, the Shifter can derive exponents.

Data flow paths through the computational units are arranged in parallel,
as shown in Figure 2-1. The output of any computation unit may serve as
the input of any computation unit on the next instruction cycle. Data
moving in and out of the computational units goes through a 10-port reg-
ister file, consisting of sixteen primary registers and sixteen alternate
registers. Two ports on the register file connect to the PM and DM data
buses, allowing data transfer between the computational units and mem-
ory (and anything else) connected to these buses.
ADSP-21161 SHARC Processor Hardware Reference 2-1

The processor’s assembly language provides access to the data register files
in both processing elements. The syntax lets programs move data to and
from these registers and specify a computation’s data format at the same
time with naming conventions for the registers. For information on the
data register names, see “Data Register File” on page 2-30.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
First, a description of the MODE1 register shows how to set rounding, data
format, and other modes for the processing elements. Next, an examina-
tion of each computational unit provides details on operation and a
summary of computational instructions. Outside the computational units,
details on register files and data buses identify how to flow data for com-
putations. Finally, details on the processor’s advanced parallelism reveal
how to take advantage of multifunction instructions and SIMD mode.
2-2 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Figure 2-1. Computation Units

REGISTER FILE
(16 × 40-BIT)
R0
R1
R2
R3
R4
R5
R6
R7

R12
R13
R14
R15

R8
R9

R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATx STKYx

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY
ADSP-21161 SHARC Processor Hardware Reference 2-3

Setting Computational Modes
Setting Computational Modes
The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-3 lists all the bits in MODE1. The following bits
in MODE1 control computational modes.

• Floating-point data format. Bit 16 (RND32) directs the computa-
tional units to round floating-point data to 32 bits (if 1) or round
to 40 bits (if 0).

• Rounding mode. Bit 15 (TRUNC) directs the computational units to
round results with round-to-zero (if 1) or round-to-nearest (if 0).

• ALU saturation. Bit 13 (ALUSAT) directs the computational units to
saturate results on positive or negative fixed-point overflows (if 1)
or return unsaturated results (if 0).

• Short word sign extension. Bit 14 (SSE) directs the computational
units to sign extend short-word, 16-bit data (if 1) or zero-fill the
upper 16 bits (if 0).

• Secondary processor element (PEy). Bit 21 (PEYEN) enables com-
putations in PEy—SIMD mode—(if 1) or disables PEy—SISD
mode—(if 0).

32-Bit (Normal Word) Floating-Point Format
In the default mode of the processor (RND32 bit=1), the multiplier and
ALU support a single-precision floating-point format, which is specified
in the IEEE 754/854 standard. For more information on this standard, see
2-4 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
For more information, see “Numeric Formats” on page C-1. This format
is IEEE 754/854 compatible for single-precision floating-point operations
in all respects except that:

• The processor does not provide inexact flags.

• NAN (“Not-A-Number”) inputs generate an invalid exception and
return a quiet NAN (all 1s).

• Denormal operands flush to zero when input to a computation
unit and do not generate an underflow exception. Any denormal or
underflow result from an arithmetic operation flushes to zero and
generates an underflow exception.

• The processor supports round to nearest and round toward zero
modes, but does not support round to +Infinity and round to
-Infinity.

IEEE Single-precision floating-point data uses a 23-bit mantissa with an
8-bit exponent plus sign bit. In this case, the computation unit sets the
eight LSBs of floating-point inputs to zeros before performing the opera-
tion. The mantissa of a result rounds to 23 bits (not including the hidden
bit), and the 8 LSBs of the 40-bit result clear to zeros to form a 32-bit
number, which is equivalent to the IEEE standard result.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

40-Bit Floating-Point Format
When in extended precision mode (RND32 bit=0), the processor supports a
40-bit extended precision floating-point mode, which has eight additional
LSBs of the mantissa and is compliant with the 754/854 standards; how-
ever, results in this format are more precise than the IEEE single-precision
standard specifies. Extended-precision floating-point data uses a 31-bit
mantissa with a 8-bit exponent plus sign bit.
ADSP-21161 SHARC Processor Hardware Reference 2-5

Setting Computational Modes
16-Bit (Short Word) Floating-Point Format
The processor supports a 16-bit floating-point storage format and pro-
vides instructions that convert the data for 40-bit computations. The
16-bit floating-point format uses an 11-bit mantissa with a 4-bit exponent
plus sign bit. The 16-bit data goes into bits 23 through 8 of a data register.
Two shifter instructions, Fpack and Funpack, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The Fpack instruction converts a 32-bit IEEE float-
ing-point number in a data register into a 16-bit floating-point number.
Funpack converts a 16-bit floating-point number in a data register into a
32-bit IEEE floating-point number. Each instruction executes in a single
cycle.

When 16-bit data is written to bits 23 through 8 of a data register, the
processor automatically extends the data into a 32-bit integer (bits 39
through 8). If the SSE bit in MODE1 is set (1), the processor sign extends the
upper 16 bits. If the SSE bit is cleared (0), the processor zeros the upper 16
bits.

The 16-bit floating-point format supports gradual underflow. This
method sacrifices precision for dynamic range. When packing a number
that would have underflowed, the exponent clears to zero and the mantissa
(including “hidden” 1) right-shifts the appropriate amount. The packed
result is a denormal, which can be unpacked into a normal IEEE float-
ing-point number.

32-Bit Fixed-Point Format
The processor always represents fixed-point numbers in 32 bits, occupying
the 32 MSBs in 40-bit data registers. Fixed-point data may be fractional
or integer numbers and unsigned or twos-complement. Each computa-
tional unit has its own limitations on how these formats may be mixed for
2-6 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
a given operation. All computational units read the upper 32 bits of data
(inputs, operands) from the 40-bit registers (ignoring the 8 LSBs) and
write results to the upper 32 bits (zeroing the 8 LSBs).

Rounding Mode
The TRUNC bit in the MODE1 register determines the rounding mode for all
ALU operations, all floating-point multiplies, and fixed-point multiplies
of fractional data. The processor supports two modes of rounding:
round-toward-zero and round-toward-nearest. The rounding modes com-
ply with the IEEE 754 standard and have the following definitions.

• Round-Toward-Zero (TRUNC bit=1). If the result before rounding
is not exactly representable in the destination format, the rounded
result is the number that is nearer to zero. This definition is equiv-
alent to truncation.

• Round-Toward-Nearest (TRUNC bit=0). If the result before round-
ing is not exactly representable in the destination format, the
rounded result is the number that is nearer to the result before
rounding. If the result before rounding is exactly halfway between
two numbers in the destination format (differing by an LSB), the
rounded result is the number that has an LSB equal to zero.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents Infinity, a result that is halfway between
the maximum floating-point value and Infinity rounds to Infinity in this
mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
ADSP-21161 SHARC Processor Hardware Reference 2-7

Using Computational Status
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Using Computational Status
The multiplier and ALU each provide exception information when exe-
cuting floating-point operations. Each unit updates overflow, underflow,
and invalid operation flags in the processing element’s arithmetic status
(ASTATx and ASTATy) register and sticky status (STKYx and STKYy) register.
An underflow, overflow, or invalid operation from any unit also generates
a maskable interrupt. There are three ways to use floating-point excep-
tions from computations in program sequencing:

• Interrupts. Enable interrupts and use an interrupt service routine
to handle the exception condition immediately. This method is
appropriate if it is important to correct all exceptions as they occur.

• ASTATx and ASTATy registers. Use conditional instructions to test
the exception flags in the ASTATx or ASTATy register after the
instruction executes. This method permits monitoring each
instruction’s outcome.

• STKYx and STKYy registers. Use the Bit Tst instruction to examine
exception flags in the STKY register after a series of operations. If
any flags are set, some of the results are incorrect. This method is
useful when exception handling is not critical.

More information on ASTAT and STKY status appears in the sections that
describe the computational units. For summaries relating instructions and
status bits, see Table 2-1, Table 2-2, Table 2-4, Table 2-6, and Table 2-7.
2-8 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Arithmetic Logic Unit (ALU)
The ALU performs arithmetic operations on fixed-point or floating-point
data and logical operations on fixed-point data. ALU fixed-point instruc-
tions operate on 32-bit fixed-point operands and output 32-bit
fixed-point results. ALU floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results. ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average

• Fixed-point addition, subtraction, add/subtract, average

• Floating-point manipulation: binary log, scale, mantissa

• Fixed-point add with carry, subtract with borrow, increment,
decrement

• Logical And, Or, Xor, Not

• Functions: Abs, pass, min, max, clip, compare

• Format conversion

• Reciprocal and reciprocal square root primitives

ALU Operation
ALU instructions take one or two inputs: X input and Y input. These
inputs (also known as operands) can be any data registers in the register
file. Most ALU operations return one result; in add/subtract operations,
the ALU operation returns two results, and in compare operations, the
ALU operation returns no result (only flags are updated). ALU results can
be returned to any location in the register file.
ADSP-21161 SHARC Processor Hardware Reference 2-9

Arithmetic Logic Unit (ALU)
The processor transfers input operands from the register file during the
first half of the cycle and transfers results to the register file during the sec-
ond half of the cycle. With this arrangement, the ALU can read and write
the same register file location in a single cycle. If the ALU operation is
fixed-point, the inputs are treated as 32-bit fixed-point operands. The
ALU transfers the upper 32 bits from the source location in the register
file. For fixed-point operations, the result(s) are always 32-bit fixed-point
values. Some floating-point operations (Logb, Mant and Fix) can also
yield fixed-point results.

The processor transfers fixed-point results to the upper 32 bits of the data
register and clears the lower eight bits of the register. The format of
fixed-point operands and results depends on the operation. In most arith-
metic operations, there is no need to distinguish between integer and
fractional formats. Fixed-point inputs to operations such as scaling a float-
ing-point value are treated as integers. For purposes of determining status
such as overflow, fixed-point arithmetic operands and results are treated as
twos-complement numbers.

ALU Saturation
When the ALUSAT bit is set (1) in the MODE1 register, the ALU is in satura-
tion mode. In this mode, all positive fixed-point overflows return the
maximum positive fixed-point number (0x7FFF FFFF), and all negative
overflows return the maximum negative number (0x8000 0000).

When the ALUSAT bit is cleared (0) in the MODE1 register, fixed-point results
that overflow are not saturated; the upper 32 bits of the result are returned
unaltered.

The ALU overflow flag reflects the ALU result before saturation.
2-10 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
ALU Status Flags
ALU operations update seven status flags in the processing element’s
Arithmetic Status (ASTATx and ASTATy) register. Table A-4 on page A-18
lists all the bits in these registers. The following bits in ASTATx or ASTATy
flag ALU status (a 1 indicates the condition) for the most recent ALU
operation:

• ALU result zero or floating-point underflow. Bit 0 (AZ)

• ALU overflow. Bit 1 (AV)

• ALU result negative. Bit 2 (AN)

• ALU fixed-point carry. Bit 3 (AC)

• ALU X input sign for Abs, Mant operations. Bit 4 (AS)

• ALU floating-point invalid operation. Bit 5 (AI)

• Last ALU operation was a floating-point operation. Bit 10 (AF)

• Compare Accumulation register results of last 8 compare opera-
tions. Bits 31-24 (CACC)

ALU operations also update four “sticky” status flags in the processing ele-
ment’s Sticky status (STKYx and STKYy) register. “Sticky Status Registers
(STKYx and STKYy)” on page A-18 lists all the bits in these registers. The
following bits in STKYx or STKYy flag ALU status (a 1 indicates the condi-
tion). Once set, a sticky flag remains high until explicitly cleared:

• ALU floating-point underflow. Bit 0 (AUS)

• ALU floating-point overflow. Bit 1 (AVS)

• ALU fixed-point overflow. Bit 2 (AOS)

• ALU floating-point invalid operation. Bit 5 (AIS)
ADSP-21161 SHARC Processor Hardware Reference 2-11

Arithmetic Logic Unit (ALU)
Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky status register explicitly in the same cycle that the ALU is
performing an operation, the explicit write to the status register supersedes
any flag update from the ALU operation.

ALU Instruction Summary
Table 2-1 and Table 2-2 list the ALU instructions and how they relate to
ASTATx,y and STKYx,y flags. For more information on assembly language
syntax, see the ADSP-21160 SHARC DSP Instruction Set Reference. In
these tables, note the meaning of the following symbols.

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag may be set (but not cleared), depending on
results of instruction

• – indicates no effect
2-12 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Table 2-1. Fixed-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Fixed-Point: A
Z

AV A
N

A
C

AS AI AF C
A
C
C

A
US

AV
S

A
O
S

AI
S

Rn = Rx + Ry * * * * 0 0 0 – – – ** –

Rn = Rx – Ry * * * * 0 0 0 – – – ** –

Rn = Rx + Ry + CI * * * * 0 0 0 – – – ** –

Rn = Rx – Ry + CI – 1 * * * * 0 0 0 – – – ** –

Rn = (Rx + Ry)/2 * 0 * * 0 0 0 – – – – –

COMP(Rx, Ry) * 0 * 0 0 0 0 * – – – –

COMPU(Rx,Ry) * 0 * 0 0 0 0 * -- -- -- --

Rn = Rx + CI * * * * 0 0 0 – – – ** –

Rn = Rx + CI – 1 * * * * 0 0 0 – – – ** –

Rn = Rx + 1 * * * * 0 0 0 – – – ** –

Rn = Rx – 1 * * * * 0 0 0 – – – ** –

Rn = –Rx * * * * 0 0 0 – – – ** –

Rn = ABS Rx * * 0 0 * 0 0 – – – ** –

Rn = PASS Rx * 0 * 0 0 0 0 – – – – –

Rn = Rx AND Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx OR Ry * 0 * 0 0 0 0 – – – – –

Rn = Rx XOR Ry * 0 * 0 0 0 0 – – – – –

Rn = NOT Rx * 0 * 0 0 0 0 – – – – –

Rn = MIN(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = MAX(Rx, Ry) * 0 * 0 0 0 0 – – – – –

Rn = CLIP Rx BY Ry * 0 * 0 0 0 0 – – – – –
ADSP-21161 SHARC Processor Hardware Reference 2-13

Arithmetic Logic Unit (ALU)
Table 2-2. Floating-Point ALU Instruction Summary

Instruction ASTATx,y Status Flags STKYx,y Status Flags

Floating–Point: AZ AV AN AC AS AI AF CA
CC

AU
S

AV
S

AO
S

AIS

Fn = Fx + Fy * * * 0 0 * 1 – ** ** – **

Fn = Fx – Fy * * * 0 0 * 1 – ** ** – **

Fn = ABS (Fx + Fy) * * 0 0 0 * 1 – ** ** – **

Fn = ABS (Fx – Fy) * * 0 0 0 * 1 – ** ** – **

Fn = (Fx + Fy)/2 * 0 * 0 0 * 1 – ** – – **

COMP(Fx, Fy) * 0 * 0 0 * 1 * – – – **

Fn = –Fx * * * 0 0 * 1 – – ** – **

Fn = ABS Fx * * 0 0 * * 1 – – ** – **

Fn = PASS Fx * 0 * 0 0 * 1 – – – – **

Fn = RND Fx * * * 0 0 * 1 – – ** – **

Fn = SCALB Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = MANT Fx * * 0 0 * * 1 – – ** – **

Rn = LOGB Fx * * * 0 0 * 1 – – ** – **

Rn = FIX Fx BY Ry * * * 0 0 * 1 – ** ** – **

Rn = FIX Fx * * * 0 0 * 1 – ** ** – **

Fn = FLOAT Rx BY Ry * * * 0 0 0 1 – ** ** – –

Fn = FLOAT Rx * 0 * 0 0 0 1 – – – – –

Fn = RECIPS Fx * * * 0 0 * 1 – ** ** – **

Fn = RSQRTS Fx * * * 0 0 * 1 – – ** – **

Fn = Fx COPYSIGN Fy * 0 * 0 0 * 1 – – – – **

Fn = MIN(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Fn = MAX(Fx, Fy) * 0 * 0 0 * 1 – – – – **

Fn = CLIP Fx BY Fy * 0 * 0 0 * 1 – – – – **
2-14 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Multiply—Accumulator (Multiplier)
The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. Fixed-point multiply/accu-
mulates are available with either cumulative addition or cumulative
subtraction. Multiplier floating-point instructions operate on 32-bit or
40-bit floating-point operands and output 32-bit or 40-bit floating-point
results. Multiplier fixed-point instructions operate on 32-bit fixed-point
data and produce 80-bit results. Inputs are treated as fractional or integer,
unsigned or twos-complement. Multiplier instructions include:

• Floating-point multiplication

• Fixed-point multiplication

• Fixed-point multiply/accumulate with addition, rounding optional

• Fixed-point multiply/accumulate with subtraction, rounding
optional

• Rounding result register

• Saturating result register

• Clearing result register

Multiplier Operation
The multiplier takes two inputs: X input and Y input. These inputs (also
known as operands) can be any data registers in the register file. The
multiplier can accumulate fixed-point results in the local Multiplier Result
(MRF) registers or write results back to the register file. The results in MRF
can also be rounded or saturated in separate operations. Floating-point
multiplies yield floating-point results, which the multiplier always writes
directly to the register file.
ADSP-21161 SHARC Processor Hardware Reference 2-15

Multiply—Accumulator (Multiplier)
The multiplier transfers input operands during the first half of the cycle
and transfers results during the second half of the cycle. With this arrange-
ment, the multiplier can read and write the same register file location in a
single cycle.

For fixed-point multiplies, the multiplier reads the inputs from the upper
32 bits of the data registers. Fixed-point operands may be either both in
integer format or both in fractional format. The format of the result
matches the format of the inputs. Each fixed-point operand may be either
an unsigned or a twos-complement number. If both inputs are fractional
and signed, the multiplier automatically shifts the result left one bit to
remove the redundant sign bit. The register name(s) within the multiplier
instruction specify input data type(s)—Fx for floating-point and Rx for
fixed-point.

Multiplier (Fixed-Point) Result Register
Fixed-point operations place 80-bit results in the multiplier’s foreground
MRF register or background MRB register, depending on which is active. For
more information on selecting the result register, see “Alternate (Second-
ary) Data Registers” on page 2-32.

The location of a result in the MRF register’s 80-bit field depends on
whether the result is in fractional or integer format, as shown in
Figure 2-2. If the result is sent directly to a data register, the 32-bit result
with the same format as the input data is transferred, using bits 63-32 for
a fractional result or bits 31-0 for an integer result. The eight LSBs of the
40-bit register file location are zero-filled.
2-16 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Fractional results can be rounded-to-nearest before being sent to the regis-
ter file. If rounding is not specified, discarding bits 31-0 effectively
truncates a fractional result (rounds to zero). For more information on
rounding, see “Rounding Mode” on page 2-7.

The MRF register is divided into MRF2, MRF1, and MRF0 registers, which can
be individually read from or written to the register file. Each of these reg-
isters has the same format. When data is read from MRF2, it is
sign-extended to 32 bits as shown in Figure 2-3. The processor zero fills
the eight LSBs of the 40-bit register file location when data is read from
MRF2, MRF1, or MRF0 to the register file. When the processor writes data into
MRF2, MRF1, or MRF0 from the 32 MSBs of a register file location, the eight
LSBs are ignored. Data written to MRF1 is sign-extended to MRF2, repeating
the MSB of MRF1 in the 16 bits of MRF2. Data written to MRF0 is not
sign-extended.

Figure 2-2. Multiplier Fixed-Point Result Placement

MRF2 MRF0

OVERFLOW UNDERFLOWFRACTIONAL RESULT

OVERFLOW INTEGER RESULTOVERFLOW

MRF1

79 63 31 0
ADSP-21161 SHARC Processor Hardware Reference 2-17

Multiply—Accumulator (Multiplier)
In addition to multiplication, fixed-point operations include accumula-
tion, rounding and saturation of fixed-point data. There are three MRF
register operations: Clear, Round, and Saturate.

The clear operation—MRF=0—resets the specified MRF register to zero.
Often, it is best to perform this operation at the start of a multiply/accu-
mulate operation to remove results left over from the previous operation.

The rounding operation—MRF=Rnd MRF—applies only to fractional
results, so integer results are not effected. This operation rounds the
80-bit MRF value to nearest at bit 32; for example, the MRF1-MRF0 boundary.
Rounding of a fixed-point result occurs either as part of a multiply or mul-
tiply/accumulate operation or as an explicit operation on the MRF register.
The rounded result in MRF1 can be sent either to the register file or back to
the same MRF register. To round a fractional result to zero (truncation)
instead of to nearest, a program would transfer the unrounded result from
MRF1, discarding the lower 32 bits in MRF0.

The saturate operation—MRF=Sat MRF—sets MRF to a maximum value if the
MRF value has overflowed. Overflow occurs when the MRF value is greater
than the maximum value for the data format—unsigned or twos-comple-
ment and integer or fractional—as specified in the saturate instruction.

Figure 2-3. MR Transfer Formats

ZEROSSIGN EXTEND MRF2

MRF0

MRF1

16 BITS 16 BITS 16 BITS

8-BITS32-BITS

ZEROS

ZEROS

8 BITS32 BITS
2-18 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
The six possible maximum values appear in Table 2-3. The result from
MRF saturation can be sent either to the register file or back to the same MRF
register.

Multiplier Status Flags
Multiplier operations update four status flags in the processing element’s
arithmetic status register (ASTATx and ASTATy). Table A-5 on page A-19
lists all the bits in these registers. The following bits in ASTATx or ASTATy
flag multiplier status (a 1 indicates the condition) for the most recent mul-
tiplier operation.

• Multiplier result negative. Bit 6 (MN)

• Multiplier overflow. Bit 7 (MV)

• Multiplier underflow. Bit 8 (MU)

• Multiplier floating-point invalid operation. Bit 9 (MI)

Table 2-3. Fixed-Point Format Maximum Values (For Saturation)

Maximum Number (Hexadecimal)

MRF2 MRF1 MRF0

2’s complement fractional (positive) 0000 7FFF FFFF FFFF FFFF

2’s complement fractional (negative) FFFF 8000 0000 0000 0000

2’s complement integer (positive) 0000 0000 0000 7FFF FFFF

2’s complement integer (negative) FFFF FFFF FFFF 8000 0000

Unsigned fractional number 0000 FFFF FFFF FFFF FFFF

Unsigned integer number 0000 0000 0000 FFFF FFFF
ADSP-21161 SHARC Processor Hardware Reference 2-19

Multiply—Accumulator (Multiplier)
Multiplier operations also update four “sticky” status flags in the process-
ing element’s Sticky status (STKYx and STKYy) register. Table A-5 on
page A-19 lists all the bits in these registers. The following bits in STKYx or
STKYy flag multiplier status (a 1 indicates the condition). Once set, a sticky
flag remains high until explicitly cleared:

• Multiplier fixed-point overflow. Bit 6 (MOS)

• Multiplier floating-point overflow. Bit 7 (MVS)

• Multiplier underflow. Bit 8 (MUS)

• Multiplier floating-point invalid operation. Bit 9 (MIS)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register or sticky register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

Multiplier Instruction Summary
Table 2-4 and Table 2-6 list the Multiplier instructions and how they
relate to ASTATx,y and STKYx,y flags. For more information on assembly
language syntax, see the ADSP-21160 SHARC DSP Instruction Set Refer-
ence. In these tables, note the meaning of the following symbols.

• Rn, Rx, Ry indicate any register file location; treated as fixed-point

• Fn, Fx, Fy indicate any register file location; treated as
floating-point

• * indicates the flag may be set or cleared, depending on results of
instruction

• ** indicates the flag may be set (but not cleared), depending on
results of instruction
2-20 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
• – indicates no effect

• The Input Mods column indicates the types of optional modifiers
that you can apply to the instructions inputs. For a list of modifi-
ers, see Table 2-5.

Table 2-4. Fixed-Point Multiplier Instruction Summary

Instruction Input
Mods

ASTATx,y Flags STKYx,y Flags

Fixed-Point:
For Input Mods, see
Table 2-5

MU MN MV MI MUS MOS MVS MIS

Rn = Rx * Ry 1 * * * 0 – ** – –

MRF = Rx * Ry 1 * * * 0 – ** – –

MRB = Rx * Ry 1 * * * 0 – ** – –

Rn = MRF + Rx * Ry 1 * * * 0 – ** – –

Rn = MRB + Rx * Ry 1 * * * 0 – ** – –

MRF = MRF + Rx * Ry 1 * * * 0 – ** – –

MRB = MRB + Rx * Ry 1 * * * 0 – ** – –

Rn = MRF – Rx * Ry 1 * * * 0 – ** – –

Rn = MRB – Rx * Ry 1 * * * 0 – ** – –

MRF = MRF – Rx * Ry 1 * * * 0 – ** – –

MRB = MRB – Rx * Ry 1 * * * 0 – ** – –

Rn = SAT MRF 2 * * * 0 – ** – –

Rn = SAT MRB 2 * * * 0 – ** – –

MRF = SAT MRF 2 * * * 0 – ** – –

MRB = SAT MRB 2 * * * 0 – ** – –

Rn = RND MRF 3 * * * 0 – ** – –

Rn = RND MRB 3 * * * 0 – ** – –

MRF = RND MRF 3 * * * 0 – ** – –

MRB = RND MRB 3 * * * 0 – ** – –

MRF = 0 – – – – – – – – –
ADSP-21161 SHARC Processor Hardware Reference 2-21

Multiply—Accumulator (Multiplier)
MRB = 0 – – – – – – – – –

MRxF = Rn – – – – – – – – –

MRxB = Rn – – – – – – – – –

Rn = MRxF – – – – – – – – –

Rn = MRxB – – – – – – – – –

Table 2-5. Input Modifiers For Fixed-Point Multiplier Instruction

Input
Mods from
Table 2-4

Input Mods—Options For Fixed-point Multiplier Instructions

Note the meaning of the following symbols in this table:
SSigned input
UUnsigned input
IInteger input(s)
FFractional input(s)
FRFractional inputs, Rounded output

Note that (SF) is the default format for 1-input operations, and (SSF) is the default
format for 2-input operations

1 (SSF), (SSI), (SSFR), (SUF), (SUI), (SUFR), (USF), (USI), (USFR), (UUF), (UUI), or
(UUFR)

2 (SF), (SI), (UF), or (UI)

3 (SF) or (UF)

Table 2-6. Floating-Point Multiplier Instruction Summary

Instruction ASTATx,y Flags STKYx,y Flags

Floating-Point: MU MN MV MI MUS MOS MVS MIS

Fn = Fx * Fy * * * * ** – ** **

Table 2-4. Fixed-Point Multiplier Instruction Summary (Cont’d)

Instruction Input
Mods

ASTATx,y Flags STKYx,y Flags

Fixed-Point:
For Input Mods, see
Table 2-5

MU MN MV MI MUS MOS MVS MIS
2-22 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Barrel-Shifter (Shifter)
The shifter performs bit-wise operations on 32-bit fixed-point operands.
Shifter operations include:

• Shifts and rotates from off-scale left to off-scale right

• Bit manipulation operations, including bit set, clear, toggle, and
test

• Bit field manipulation operations, including extract and deposit

• Fixed-point/floating-point conversion operations, including expo-
nent extract, number of leading 1s or 0s

Shifter Operation
The shifter takes from one to three inputs: X-input, Y-input, and Z-input.
The inputs (also known as operands) can be any register in the register
file. Within a shifter instruction, the inputs serve as follows.

• The X-input provides data that is operated on

• The Y-input specifies shift magnitudes, bit field lengths or bit
positions

• The Z-input provides data that is operated on and updated

In the following example, Rx is the X-input, Ry is the Y-input, and Rn is
the Z-input. The shifter returns one output (Rn) to the register file.

Rn = Rn OR LSHIFT Rx BY Ry;

As shown in Figure 2-4, the shifter fetches input operands from the upper
32 bits of a register file location (bits 39-8) or from an immediate value in
the instruction. The shifter transfers operands during the first half of the
cycle and transfers the result to the upper 32 bits of a register (with the
ADSP-21161 SHARC Processor Hardware Reference 2-23

Barrel-Shifter (Shifter)
eight LSBs zero-filled) during the second half of the cycle. With this
arrangement, the shifter can read and write the same register file location
in a single cycle.

The X-input and Z-input are always 32-bit fixed-point values. The
Y-input is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in
the register file. These inputs appear in Figure 2-4.

Some shifter operations produce 8-bit or 6-bit results. As shown in
Figure 2-5, the shifter places these results in either the shf8 field or the
bit6 field and sign-extends the results to 32 bits. The shifter always returns
a 32-bit result.

The shifter supports bit field deposit and bit field extract instructions for
manipulating groups of bits within an input. The Y-input for bit field
instructions specifies two 6-bit values: bit6 and len6, which are positioned
in the Ry register as shown in Figure 2-5. The shifter interprets bit6 and

Figure 2-4. Register File Fields for Shifter Instructions

39 7 0

32-BIT Y-INPUT OR RESULT

39 15 7 0

SHF8

8-BIT Y-INPUT OR RESULT
2-24 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
len6 as positive integers. Bit6 is the starting bit position for the deposit or
extract, and len6 is the bit field length, which specifies how many bits are
deposited or extracted.

Field deposit (Fdep) instructions take a group of bits from the input regis-
ter (starting at the LSB of the 32-bit integer field) and deposit the bits as
directed anywhere within the result register. The bit6 value specifies the
starting bit position for the deposit. Figure 2-7 shows how the inputs, bit6
and len6, work in an field deposit instruction (Rn=Fdep Rx By Ry).
Figure 2-8 shows bit placement for the field deposit instruction R0 = FDEP
R1 BY R2;.

Field extract (Fext) instructions extract a group of bits as directed from
anywhere within the input register and place them in the result register
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract. Figure 2-8 shows bit placement for
the following field extract instruction R3 = FEXT R4 BY R5;

Figure 2-5. Register File Fields for FDEP, FEXT Instructions

0 0 0 0 0 0 0 011111 11111 11111 11111 11111 11111 11111 111110 0 0 0 0 0 0 00 0 0 0 0 0 0 0
39 32 24 16

16

8

8

0

0

0x0000 00FF 00R1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 00000 00000 11111 00000 00000 00000 000000 0 0 0 00000 00000 11111 000000 0 0 0 0 0 0 0
39 32 24 16 8 0

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210 00R2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
39 32 24 16 8 0

16 8 0

Starting bit
position
for deposit

Reference
point

0x00FF 0000 00R0 11111 11111 11111 11111 11111 11111 11111 11111 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference 2-25

Barrel-Shifter (Shifter)

00

00

00
Figure 2-6. Bit Field Deposit Example

Figure 2-7. Bit Field Deposit Instruction

0 0 0 0 0 0 0 011111 11111 11111 11111 11111 11111 11111 111110 0 0 0 0 0 0 00 0 0 0 0 0 0 0
39 32 24 16

16

8

8

0

0

0x0000 00FFR1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 00000 00000 11111 00000 00000 00000 000000 0 0 0 00000 00000 11111 000000 0 0 0 0 0 0 0
39 32 24 16 8 0

len6 bit6 len6 = 8
bit6 = 16

0x0000 0210R2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0
39 32 24 16 8 0

16 8 0

Starting bit
position
for deposit

Reference
point

0x00FF 0000R0 11111 11111 11111 11111 11111 11111 11111 11111 0 0 0 0 0 0 0 0

39 19 13 7 0

LEN6 BIT6RY

RN

RX

39 7 0

39 7 0

DEPOSIT FIELD

BIT6 REFERENCE POINT

LEN6 = NUMBER OF BITS TO TAKE FROM RX, STARTING FROM LSB OF 32-BIT FIELD

RY DETERMINES LENGTH OF BIT FIELD TO TAKE FROM RX AND STARTING POSITION FOR DEPOSIT IN RN

BIT6 = STARTING BIT POSITION FOR DEPOSIT, REFERENCED FROM LSB OF 32-BIT FIELD
2-26 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements

7 00

0 00

F 00
Shifter Status Flags
Shifter operations update three status flags in the processing element’s
arithmetic status register (ASTATx and ASTATy). Table A-4 on page A-13
lists all the bits in these registers. The following bits in ASTATx or ASTATy
indicate shifter status (a 1 indicates the condition) for the most recent
ALU operation:

• Shifter overflow of bits to left of MSB. Bit 11 (SV)

• Shifter result zero. Bit 12 (SZ)

• Shifter input sign for exponent extract only. Bit 13 (SS)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the arithmetic status
register explicitly in the same cycle that the shifter is performing an opera-
tion, the explicit write to ASTAT supersedes any flag update caused by the
shift operation.

Figure 2-8. Bit Field Extract Example

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 00000 000000 111111 000000 111111 111111 1111110 0 0 0 00000 00000 11111 000000 0 0 0 0 0 0 0
39 32 24 16 8 0

len6 bit6

39 32 24 16 8 0

16 8 0

39 32 24 16

16

8

8

0

0

Starting bit position
for deposit

Reference point

len6 = 8
bit6 = 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000 00000 00000 00000 11111 11111 11111 111110 0 0 0 0 0 0 00 0 0 0 0 0 0 0

1 00000 00000 00000 00000 11111 11111 11111 0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 011111 0 0 0 0 0 0 0

0x0000 021

0x8710 000

0x0000 000

R5

R3

R4
ADSP-21161 SHARC Processor Hardware Reference 2-27

Barrel-Shifter (Shifter)
Shifter Instruction Summary
Table 2-7 lists the Shifter instructions and how they relate to ASTATx,y
flags. For more information on assembly language syntax, see the
ADSP-21160 SHARC DSP Instruction Set Reference. In these tables, note
the meaning of the following symbols:

• Rn, Rx, Ry indicate any register file location; bit fields used
depend on instruction

• Fn, Fx indicate any register file location; floating-point word

• * indicates the flag may set or cleared, depending on data

Table 2-7. Shifter Instruction Summary

Instruction ASTATx,y Flags

SZ SV SS

Rn = LSHIFT Rx BY Ry * * 0

Rn = LSHIFT Rx BY <data8> * * 0

Rn = Rn OR LSHIFT Rx BY Ry * * 0

Rn = Rn OR LSHIFT Rx BY <data8> * * 0

Rn = ASHIFT Rx BY Ry * * 0

Rn = ASHIFT Rx BY<data8> * * 0

Rn = Rn OR ASHIFT Rx BY Ry * * 0

Rn = Rn OR ASHIFT Rx BY <data8> * * 0

Rn = ROT Rx BY Ry * 0 0

Rn = ROT Rx BY <data8> * 0 0

Rn = BCLR Rx BY Ry * * 0

Rn = BCLR Rx BY <data8> * * 0

Rn = BSET Rx BY Ry * * 0

Rn = BSET Rx BY <data8> * * 0

Rn = BTGL Rx BY Ry * * 0
2-28 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Rn = BTGL Rx BY <data8> * * 0

BTST Rx BY Ry * * 0

BTST Rx BY <data8> * * 0

Rn = FDEP Rx BY Ry * * 0

Rn = FDEP Rx BY <bit6>:<len6> * * 0

Rn = Rn OR FDEP Rx BY Ry * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0

Rn = FDEP Rx BY Ry (SE) * * 0

Rn = FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = Rn OR FDEP Rx BY Ry (SE) * * 0

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) * * 0

Rn = FEXT Rx BY Ry * * 0

Rn = FEXT Rx BY <bit6>:<len6> * * 0

Rn = FEXT Rx BY Ry (SE) * * 0

Rn = FEXT Rx BY <bit6>:<len6> (SE) * * 0

Rn = EXP Rx (EX) * 0 *

Rn = EXP Rx * 0 *

Rn = LEFTZ Rx * * 0

Rn = LEFTO Rx * * 0

Rn = FPACK Fx 0 * 0

Fn = FUNPACK Rx 0 0 0

Table 2-7. Shifter Instruction Summary (Cont’d)

Instruction ASTATx,y Flags

SZ SV SS
ADSP-21161 SHARC Processor Hardware Reference 2-29

Data Register File
Data Register File
Each of the processor’s processing elements has a data register file: a set of
data registers that transfer data between the data buses and the computa-
tion units. These registers also provide local storage for operands and
results.

The two register files each consist of 16 primary registers and 16 alternate
(secondary) registers. All of the data registers are 40 bits wide. Within
these registers, 32-bit data is always left-justified. If an operation specifies
a 32-bit data transfer to these 40-bit registers, the eight LSBs are ignored
on register reads, and the eight LSBs are cleared to zeros on writes.

Program memory data accesses and data memory accesses to/from the reg-
ister file(s) occur on the PM data bus and DM data bus, respectively. One
PM data bus access for each processing element and/or one DM data bus
access for each processing element can occur in one cycle. Transfers
between the register files and the DM or PM data buses can move up to
64-bits of valid data on each bus.

If an operation specifies the same register file location as both an input
and output, the read occurs in the first half of the cycle and the write in
the second half. With this arrangement, the processor uses the old data as
the operand, before updating the location with the new result data. If
writes to the same location take place in the same cycle, only the write
with higher precedence actually occurs. The processor determines prece-
dence for the write operation from the source of the data; from highest to
lowest, the precedence is:

1. Data memory or universal register

2. Program memory

3. PEx ALU

4. PEy ALU
2-30 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
5. PEx Multiplier

6. PEy Multiplier

7. PEx Shifter

8. PEy Shifter

The data register file in Figure 2-1 on page 2-3 lists register names of R0
through R15 within PEx’s register file. When a program refers to these
registers as R0 through R15, the computational units treat the registers’
contents as fixed-point data. To perform floating point computations,
refer to these registers as F0 through F15. For example, the following
instructions refer to the same registers, but direct the computational units
to perform different operations:

F0=F1 * F2; /*floating-point multiply*/

R0=R1 * R2; /*fixed-point multiply*/

The F and R prefixes on register names do not effect the 32-bit or 40-bit
data transfer; the naming convention only determines how the ALU, mul-
tiplier, and shifter treat the data.

To maintain compatibility with code written for previous SHARC
DSPs, the assembly syntax accommodates references to PEx data
registers and PEy data registers.

Code may only refer to the PEy data registers (S0 through S15) for data
move instructions. The rules for using register names are as follows.

• R0 through R15 and F0 through F15 always refer to PEx registers for
data move and computational instructions, whether the processor
is in SISD or SIMD mode
ADSP-21161 SHARC Processor Hardware Reference 2-31

Alternate (Secondary) Data Registers
• R0 through R15 and F0 through F15 refer to both PEx and PEy reg-
ister for computational instructions in SIMD mode

• S0 through S15 always refer to PEy registers for data move instruc-
tions, whether the processor is in SISD or SIMD mode

For more information on SISD and SIMD computational operations, see
“Alternate (Secondary) Data Registers” on page 2-32. For more informa-
tion on ADSP-21161 processor assembly language, see the ADSP-21160
SHARC DSP Instruction Set Reference.

Alternate (Secondary) Data Registers
Each register file has an alternate register set. To facilitate fast context
switching, the processor includes alternate register sets for data, results,
and data address generator registers. Bits in the MODE1 register control
when alternate registers become accessible. While inaccessible, the con-
tents of alternate registers are not effected by processor operations. Note
that there is a one cycle latency between writing to MODE1 and being able to
access an alternate register set. The alternate register sets for data and
results are described in this section. For more information on alternate
data address generator registers, see the DAG “Alternate (Secondary) Data
Registers” on page 2-32.

Bits in the MODE1 register can activate independent-alternate-data-register
sets: the lower half (R0-R7 and S0-S7) and the upper half (R8-R15 and
S8-S15). To share data between contexts, a program places the data to be
shared in one half of either the current processing element’s register file or
the opposite processing element’s register file and activates the alternate
register set of the other half. For information on how to activate alternate
data registers, see the description on page 2-33.

Each multiplier has a primary or foreground (MRF) register and alternate or
background (MRB) results register. A bit in the MODE1 register selects which
result register receives the result from the multiplier operation, swapping
2-32 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
which register is the current MRF or MRB. This swapping facilitates context
switching. Unlike other registers that have alternates, both MRF and MRB are
accessible at the same time. All fixed-point multiplies can accumulate
results in either MRF or MRB, without regard to the state of the MODE1 regis-
ter. With this arrangement, code can use the result registers as primary
and alternate accumulators, or code can use these registers as two parallel
accumulators. This feature facilitates complex math.

The MODE1 register controls the access to alternate registers. Table A-2 on
page A-3 lists all the bits in MODE1. The following bits in MODE1 control
alternate registers (a 1 enables the alternate set).

• Secondary registers for computation unit results. Bit 2 (SRCU)

• Secondary registers for hi register file, R8-R15 and S8-15. Bit 7
(SRRFH)

• Secondary registers for lo register file, R0-R7 and S0-S7. Bit 10
(SRRFL)

The following example demonstrates how code should handle the one
cycle of latency from the instruction setting the bit in MODE1 to when the
alternate registers may be accessed. Note that it is possible to use any
instruction that does not access the switching register file instead of an NOP
instruction.

BIT SET MODE1 SRRFL; /* activate alternate reg. file */

NOP; /* wait for access to alternates */

R0=7;
ADSP-21161 SHARC Processor Hardware Reference 2-33

Multifunction Computations
Multifunction Computations
Using the many parallel data paths within its computational units, the
processor supports multiple-parallel (multifunction) computations. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the multiplier and the ALU or dual ALU functions. The multiple
operations perform the same as if they were in corresponding single-func-
tion computations. Multifunction computations also handle flags in the
same way as the single-function computations, except that in the dual
add/subtract computation the ALU flags from the two operations are
Or’ed together.

To work with the available data paths, the computation units constrain
which data registers may hold the four input operands for multifunction
computations. These constraints limit which registers may hold the
X-input and Y-input for the ALU and multiplier.

Figure 2-9 shows a computational unit and indicates which registers may
serve as X-inputs and Y-inputs for the ALU and multiplier. For example,
the X-input to the ALU can only be R8, R9, R10 or R11. Note that the
shifter is gray in Figure 2-7 to indicate that there are no shifter multifunc-
tion operations.
2-34 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Table 2-8, through Table 2-11 list the multifunction computations. For
more information on assembly language syntax, see the ADSP-21160
SHARC DSP Instruction Set Reference. In these tables, note the meaning of
the following symbols.

• Rm, Ra, Rs, Rx, Ry indicate any register file location; fixed-point

• Fm, Fa, Fs, Fx, Fy indicate any register file location; floating-point

• R3-0 indicates data file registers R3, R2, R1, or R0, and F3-0 indi-
cates data file registers F3, F2, F1, or F0

Figure 2-9. Input Registers for Multifunction Computations (ALU and
Multiplier)

REGISTER FILE
(16 × 40-BIT)
R0
R1
R2
R3
R4
R5
R6
R7

R12
R13
R14
R15

R8
R9
R10
R11

MULTIPLIER SHIFTER ALU

MRF2 MRF0MRF1

DM DATA BUS

PM DATA BUS

ASTATx STKYx

MODE1

TO PROGRAM SEQUENCER

X Y Z XY XY

NOTE THAT SHIFTER IS FADED
HERE, INDICATING THAT IT IS
NOT AVAILABLE FOR
MULTIFUNCTION INSTRUCTIONS.
ADSP-21161 SHARC Processor Hardware Reference 2-35

Multifunction Computations
• R7-4 indicates data file registers R7, R6, R5, or R4, and F7-4 indi-
cates data file registers F7, F6, F5, or F4

• R11-8 indicates data file registers R11, R10, R9, or R8, and F11-8
indicates data file registers F11, F10, F9, or F8

• R15-12 indicates data file registers R15, R14, R13, or R12, and
F15-12 indicates data file registers F15, F14, F13, or F12

• SSFR indicates the X-input is signed, Y-input is signed, use Frac-
tional inputs, and Rounded-to-nearest output

• SSF indicates the X-input is signed, Y-input is signed, use Frac-
tional input

Table 2-8. Dual Add And Subtract

Ra = Rx + Ry, Rs = Rx – Ry

Fa = Fx + Fy, Fs = Fx – Fy

Table 2-9. Fixed-Point Multiply and Add, Subtract, Or Average

(Any combination of left and right column)

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12

MRF=MRF + R3-0 * R7-4 (SSF), Ra=R11-8 – R15-12

Rm=MRF + R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2

MRF=MRF – R3-0 * R7-4 (SSF),

Rm=MRF – R3-0 * R7-4 (SSFR),

Table 2-10. Floating-Point Multiply And ALU Operation

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12

Fm=F3-0 * F7-4, Fa=F11-8 – F15-12

Fm=F3-0 * F7-4, Fa=FLOAT R11-8 by R15-12

Fm=F3-0 * F7-4, Ra=FIX F11-8 by R15-12
2-36 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Another type of multifunction operation is also available on the processor,
combining transfers between the results and data registers and transfers
between memory and data registers. Like other multifunction instructions,
these parallel operations complete in a single cycle. For example, the pro-
cessor can perform the following multiply and parallel read of data
memory:

MRF=MRF-R5*R0, R6=DM(I1,M2);

Or, the processor can perform the following result register transfer and
parallel read:

R5=MR1F, R6=DM(I1,M2);

Secondary Processing Element (PEy)
The ADSP-21161 processor contains two sets of computation units and
associated register files. As shown in Figure 2-10, these two Processing
Elements (PEx and PEy) support Single Instruction, Multiple Data
(SIMD) operation.

Fm=F3-0 * F7-4, Fa=(F11-8 + F15-12)/2

Fm=F3-0 * F7-4, Fa=ABS F11-8

Fm=F3-0 * F7-4, Fa=MAX (F11-8, F15-12)

Fm=F3-0 * F7-4, Fa=MIN (F11-8, F15-12)

Table 2-11. Multiply With Dual Add and Subtract

Rm = R3-0 * R7-4 (SSFR), Ra = R11-8 + R15-12, Rs = R11-8 – R15-12

Fm = F3-0 * F7-4, Fa = F11-8 + F15-12, Fs = F11-8 – F15-12

Table 2-10. Floating-Point Multiply And ALU Operation (Cont’d)
ADSP-21161 SHARC Processor Hardware Reference 2-37

Secondary Processing Element (PEy)
The MODE1 register controls the operating mode of the processing ele-
ments. Table A-2 on page A-3 lists all the bits in MODE1. The PEYEN bit (bit
21) in the MODE1 register enables or disables the PEy processing element.
When PEYEN is cleared (0), the ADSP-21161 processor operates in Sin-
gle-Instruction-Single-Data (SISD) mode, using only PEx; this is the
mode in which ADSP-2106x family DSPs operate. When the PEYEN bit is
set (1), the ADSP-21161 processor operates in SIMD mode, using the
PEx and PEy processing elements. There is a one cycle delay after PEYEN is
set or cleared, before the change to or from SIMD mode takes effect.

Figure 2-10. Block Diagram Showing Secondary Execution Complex

MULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEy)

16 x 40-BITMULT

ALU

BARREL
SHIFTER

DATA
REGISTER

FILE
(PEx)

16 x 40-BIT

PM DATA BUS

DM DATA BUS
BUS

CONNECT
(PX)

16/32/40/64

16/32/40/64

PROGRAM
SEQUENCER

SAME INSTRUCTION GOES TO BOTH ELEMENTS

DIFFERENT DATA GOES TO EACH ELEMENT
2-38 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
To support SIMD, the processor performs the following parallel
operations.

• Dispatches a single instruction to both processing element’s com-
putation units

• Loads two sets of data from memory, one for each processing
element

• Executes the same instruction simultaneously in both processing
elements

• Stores data results from the dual executions to memory

Using the information here and in the ADSP-21160 SHARC DSP
Instruction Set Reference, it is possible through SIMD mode’s paral-
lelism to double performance over similar algorithms running in
SISD (ADSP-2106x processor compatible) mode.

The two processing elements are symmetrical, and each contains the fol-
lowing functional blocks.

• ALU

• Multiplier primary and alternate result registers

• Shifter

• Data register file and alternate register file

Dual Compute Units Sets
The computation units (ALU, Multiplier, and Shifter) in PEx and PEy are
identical. The data bus connections for the dual computation units permit
asymmetric data moves to, from, and between the two processing ele-
ments. Identical instructions execute on the PEx and PEy computational
units; the difference is the data. The data registers for PEy operations are
identified (implicitly) from the PEx registers in the instruction. This
ADSP-21161 SHARC Processor Hardware Reference 2-39

Secondary Processing Element (PEy)
implicit relation between PEx and PEy data registers corresponds to com-
plementary register pairs in Table 2-12. Any universal registers that don’t
appear in Table 2-12 have the same identities in both PEx and PEy. When
a computation in SIMD mode refers to a register in the PEx column, the
corresponding computation in PEy refers to the complimentary register in
the PEy column.

Table 2-12. SIMD Mode Complementary Register Pairs

PEx PEy

R0 S0

R1 S1

R2 S2

R3 S3

R4 S4

R5 S5

R6 S6

R7 S7

R8 S8

R9 S9

R10 S10

R11 S11

R12 S12

R13 S13

R14 S14

ASTATx ASTATy

STKYx STKYy
2-40 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Table 2-13 lists the multiplier result SIMD mode complementary register
pairs. These multiplier result registers are not universal (UREGs) registers
and cannot be accessed directly. These registers can be read with the fol-
lowing multiplier operations:

MRxF/B = Rn;

Rn = MRxF/B;

Table 2-13. Multiplier Result SIMD Mode Complementary Register Pairs

PEx PEy

MRF0 MSF0

MRF1 MSF1

MRF2 MSF2

MRB0 MSB0

MRB1 MSB1

MRB2 MSB2

Table 2-14. Other Complementary Register Pairs

USTAT1 USTAT2

USTAT3 USTAT4

PX1 PX2
ADSP-21161 SHARC Processor Hardware Reference 2-41

Secondary Processing Element (PEy)
Dual Register Files
The two 16 entry data register files (one in each PE) and their operand
and result busing and porting are identical. The same is true for each 16
entry alternate register files. The transfer direction, source and destination
registers, and data bus usage depend on the following conditions:

• Computational mode:
– Is PEy enabled—PEYEN bit=1 in MODE1 register
– Is the data register file in PEx (R0-R15, F0-F15) or PEy (S0-S15)
– Is the instruction a data register swap between the processing
 elements

• Data addressing mode:
– What is the state of the Internal Memory Data Width (IMDW)
 bits in the System Configuration (SYSCON) register
– Is Broadcast write enabled—BDCST1,9 bits in MODE1 register
– What is the type of address—long, normal, or short word
– Is Long Word override (LW) specified in the instruction
– What are the states of instruction fields for DAG1 or DAG2

• Program sequencing (conditional logic):
–What is the outcome of the instruction’s condition comparison
 on each processing element

For information on SIMD issues that relate to computational modes, see
“SIMD (Computational) Operations” on page 2-43. For information on
SIMD issues relating to data addressing, see “SIMD Mode and Sequenc-
ing” on page 3-57. For information on SIMD issues relating to program
sequencing, see “Addressing in SISD and SIMD Modes” on page 4-18.
2-42 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
Dual Alternate Registers
Both register files consist of a primary set of 16 by 40-bit registers and an
alternate set of 16 by 40-bit registers. Context switching between the two
sets of registers occur in parallel between the two processing elements.
“Alternate (Secondary) Data Registers” on page 2-32.

SIMD (Computational) Operations
In SIMD mode, the dual processing elements execute the same instruc-
tion, but operate on different data. To support SIMD operation, the
elements support a variety of dual data move features.

The processor supports unidirectional and bidirectional register-to-regis-
ter transfers with the conditional compute and move instruction. All four
combinations of inter-register file and intra-register file transfers
(PEx ↔ PEx, PEx ↔ PEy, PEy ↔ PEx, and PEy ↔ PEy) are possible in
both SISD (unidirectional) and SIMD (bidirectional) modes.

In SISD mode (PEYEN bit=0), the register-to-register transfers are unidirec-
tional, meaning that an operation performed on one processing element is
not duplicated on the other processing element. The SISD transfer uses a
source register and a destination register, and either register can be in
either element’s data register file. For a summary of unidirectional trans-
fers, see the upper half of Table 2-15. Note that in SISD mode a
condition for an instruction only tests in the PEx element and applies to
the entire instruction.

In SIMD mode (PEYEN bit=1), the register-to-register transfers are bidirec-
tional, meaning that an operation performed on one element is duplicated
in parallel on the other element. The instruction uses two source registers
(one from each element’s register file) and two destination registers (one
from each element’s register file). For a summary of bidirectional trans-
fers, see the lower half of Table 2-15. Note that in SIMD mode a
ADSP-21161 SHARC Processor Hardware Reference 2-43

Secondary Processing Element (PEy)
conditional for an instruction test in both the PEx and PEy elements,
dividing control of the explicit and implicit transfers as detailed in
Table 2-15.

Bidirectional register-to-register transfers in SIMD mode are allowed
between a data register and DAG, control, or status registers. When the
DAG, control, or status register is a source of the transfer, the destination
can be a data register. This SIMD transfer duplicates the contents of the
source register in a data register in both processing elements.

Careful programming is required when a DAG, control, or status
register is a destination of a transfer from a data register. If the des-
tination register has a complement (for example ASTATx and
ASTATy), the SIMD transfer moves the contents of the explicit data
register into the explicit destination and moves the contents of the
implicit data register into the implicit destination (the comple-
ment). If the destination register has no complement (for example,
I0), only the explicit transfer occurs.

Even if the code uses a conditional operation to select whether the
transfer occurs, only the explicit transfer can take place if the desti-
nation register has no complement.

In the case where a DAG, control, or status register is both source and des-
tination, the data move operation executes the same as if SIMD mode
were disabled.

In both SISD and SIMD modes, the processor supports bidirectional reg-
ister-to-register swaps. The swap always occurs between one register in
each processing element’s data register file.

Registers swaps use the special swap operator, <->. A register-to-register
swap occurs when registers in different processing elements exchange val-
ues; for example R0 <-> S1. Only single, 40-bit register to register swaps
are supported—no double register operations.
2-44 ADSP-21161 SHARC Processor Hardware Reference

Processing Elements
When they are unconditional, register-to-register swaps operate the same
in SISD mode and SIMD mode. If a condition is added to the instruction
in SISD mode, the condition tests only in the PEx element and controls
the entire operation. If a condition is added in SIMD mode, the condition
tests in both the PEx and PEy elements and controls the halves of the
operation as detailed in Table 2-15.

SIMD conditional instructions with the same destination registers
do not produce predictable transfers. For example, the instruction
IF EQ R4 = R14 – R15, S4 = R6; may not work as expected. This
kind of usage is prohibited, as it is not logical to use it this way.

Table 2-15. Register-To-Register Move Summary (SISD Versus SIMD)

Mode Instruction Explicit Transfer Implicit Transfer

SISD1

1 In SISD mode, the conditional applies only to the entire operation and is only tested against PEx’s
flags. When the condition tests true, the entire operation occurs.

IF condition compute, Rx = Ry; Rx loaded from Ry None

IF condition compute, Rx = Sy; Rx loaded from Sy None

IF condition compute, Sx = Ry; Sx loaded from Ry None

IF condition compute, Sx = Sy; Sx loaded from Sy None

IF condition compute, Rx <-> Sy; Rx swaps to Sy
Sy swaps to Rx

None

SIMD2

2 In SIMD mode, the conditional applies separately to the explicit and implicit transfers. Where the
condition tests true (PEx for the explicit and PEy for the implicit), the operation occurs in that pro-
cessing element.

IF condition compute, Rx = Ry; Rx loaded from Ry Sx loaded from Sy

IF condition compute, Rx = Sy; Rx loaded from Sy Sx loaded from Ry

IF condition compute, Sx = Ry; Sx loaded from Ry Rx loaded from Sy

IF condition compute, Sx = Sy; Sx loaded from Sy Rx loaded from Ry

IF condition compute, Rx <-> Sy;3

3 Register to register transfers (R0=S0) and register swaps (R0<->S0) do not cause a PMD bus conflict.
These operations use only the DMD bus and a hidden 16-bit bus to do the two register moves.

Rx swaps to Sy
Sy swaps to Rx

None
ADSP-21161 SHARC Processor Hardware Reference 2-45

Secondary Processing Element (PEy)
SIMD And Status Flags
When the processor is in SIMD mode (PEYEN bit=1), computations on
both processing elements generate status flags, producing a logical Oring
of the exception status test on each processing element. If one of the four
fixed-point or floating-point exceptions is enabled, an exception condition
on either or both processing elements generates an exception interrupt.
Interrupt service routines must determine which of the processing ele-
ments encountered the exception. Note that returning from a floating
point interrupt does not automatically clear the STKY state. Code must
clear the STKY bits in both processing element’s sticky status (STKYx and
STKYy) registers as part of the exception service routine. For more informa-
tion, see “Interrupts and Sequencing” on page 3-34.
2-46 ADSP-21161 SHARC Processor Hardware Reference

3 PROGRAM SEQUENCER

The processor’s program sequencer implements program flow which con-

stantly provides the address of the next instruction to be executed by other
parts of the processor. Program flow in the processor is mostly linear, with
the processor executing program instructions sequentially. This linear flow
varies occasionally when the program uses non-sequential program struc-
tures, such as those illustrated in Figure 3-1. Non-sequential structures
direct the processor to execute an instruction that is not at the next
sequential address following the current instruction. These structures
include:

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of program memory.

• Jumps. Program flow transfers permanently to another part of pro-
gram memory.

• Interrupts. Subroutines in which a runtime event (not an instruc-
tion) triggers the execution of the routine.

• Idle. An instruction that causes the processor to cease operations
and hold its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.
ADSP-21161 SHARC Processor Hardware Reference 3-1

The sequencer manages execution of these program structures by selecting
the address of the next instruction to execute. As part of its process, the
sequencer handles the following tasks:

• Increments the fetch address

• Maintains stacks

• Evaluates conditions

• Decrements the loop counter

• Calculates new addresses

• Maintains an instruction cache

• Handles interrupts

To accomplish these tasks, the sequencer uses the blocks shown in
Figure 3-2. The sequencer’s address multiplexer selects the value of the
next fetch address from several possible sources. The fetched address
enters the instruction pipeline, made up of the fetch address register,
decode address register, and program counter (PC). These contain the
24-bit addresses of the instructions currently being fetched, decoded, and
executed. The PC couples with the PC stack, which stores return addresses
and top-of-loop addresses. All addresses generated by the sequencer are
24-bit program memory instruction addresses.

To manage events, the sequencer’s interrupt controller handles interrupt
processing, determines whether an interrupt is masked, and generates the
appropriate interrupt vector address.

With selective caching, the instruction cache lets the processor access data
in program memory and fetch an instruction (from the cache) in the same
cycle. The DAG2 data address generator outputs program memory data
addresses.
3-2 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
The sequencer evaluates conditional instructions and loop termination
conditions by using information from the status registers. The loop
address stack and loop counter stack support nested loops. The status
stack stores status registers for implementing nested interrupt routines.

Table 3-1 and Table 3-2 list the registers within and related to the pro-
gram sequencer. All registers in the program sequencer are universal
registers, so they are accessible to other universal registers and to data
memory. All the sequencer’s registers and the tops of stacks are readable,

Figure 3-1. Program Flow Variations

N

N+1

N+2

N+3

N+4

N+5

ADDRESS:

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LINEAR FLOW

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

DO UNTIL

LOOP

N TIMES

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

JUMP

JUMP

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

CALL

SUBROUTINE

INSTRUCTION

RTS

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

INSTRUCTION

RTI

INSTRUCTION

INTERRUPT

IRQ

VECTOR

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

IDLE

INSTRUCTION

INSTRUCTION

IDLE

WAITING
FOR IRQ

INSTRUCTION

INSTRUCTION
ADSP-21161 SHARC Processor Hardware Reference 3-3

Figure 3-2. Sequencer Block Diagram

MODE1 MODE2 ASTATX USTAT1 USTAT3

TPERIOD

TCOUNT

DECREMENT

MULTIPLEXER

TCOUNT=0

+

PC-RELATIVE
ADDRESS

DIRECT
BRANCH

INTERRUPT LATCH
(IRPTL)

INTERRUPT MASK
(IMASK)

INTERRUPT MASK
POINTER (IMASKP)

INTERRUPT
CONTROLLER

PROGRAM
COUNTER STACK

TOP OF PC
STACK (PCSTK)

PC STACK
POINTER (PCSTKP)

FETCH
ADDRESS
(FADDR)

DECODE
ADDRESS
(DADDR)

PROGRAM
COUNTER

(PC)

NEXT ADDRESS MULTIPLEXER

INSTRUCTION
CACHE

INSTRUCTION
LATCH

OTHER
INTERRUPTS

TIMEXP

YES

NO

INTERRUPT
VECTOR

RETURN ADDRESS
OR TOP OF LOOP

ADDRESS
FROM DAG2

INDIRECT
BRANCH

INSTRUCTION PIPELINE

LOOP ADDRESS STACK
(LADDR)

LOOP COUNT STACK
(CURLCNTR, LCNTR)

LOOP CONTROL

CONDITION
LOGIC

INPUT
FLAGS

DM DATA BUS PM ADDRESS BUS PM DATA BUS

REPEATED
ADDRESS

(IDLE)

NEXT
ADDRESS
(LINEAR
FLOW)

+1

32 32 32

24

ASTATY USTAT2 USTAT4STKYX STKYY

BRANCH
CONTROL
3-4 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
and all these registers are writable, except for the fetch address, decode
address, and PC. Pushing or popping the PC stack is done with a write to
the PC stack pointer, which is readable and writable. Pushing or popping
the loop address stack requires explicit instructions.

A set of system control registers configures or provides input to the
sequencer. These registers appear across the top and within the interrupt
controller shown in Figure 3-2. A bit manipulation instruction permits
setting, clearing, toggling, or testing specific bits in the system registers.
For information on this instruction (Bit), see the ADSP-21160 SHARC
DSP Instruction Set Reference. Writes to some of these registers do not take
effect on the next cycle. For example, after a write to the MODE1 register to
enable ALU saturation mode, the change does not take effect until two
cycles after the write. Also, some of these registers do not update on the
cycle immediately following a write. An extra cycle is required before a
read of the register returns the new value. With the lists of sequencer and
system registers, Table 3-1 and Table 3-2 summarize the number of extra
cycles (latency) for a write to take effect (effect latency) and for a new
value to appear in the register (read latency). A “0” indicates that the write
takes effect or appears in the register on the next cycle after the write
instruction is executed, and a “1” indicates one extra cycle.

Table 3-1. Program Sequencer Registers Read and Effect
Latencies

Register Contents Bits Read
Latency

Effect
Latency

FADDR fetch address 24 — —

DADDR decode address 24 — —

PC execute address 24 — —

PCSTK top of PC stack 24 0 0

PCSTKP PC stack pointer 5 1 1

LADDER top of loop address stack 32 0 0
ADSP-21161 SHARC Processor Hardware Reference 3-5

CURLCNTR top of loop count stack (current loop
count)

32 0 0

LCNTR loop count for next DO UNTIL loop 32 0 0

Table 3-2. System Registers Read and Effect Latencies

Register Contents Bits Read Latency Maximum
Effect
Latency

MODE1 mode control bits 32 0 1

MODE2 mode control bits 32 0 1

IRPTL interrupt latch 32 0 1

IMASK interrupt mask 32 0 1

IMASKP interrupt mask pointer (for nest-
ing)

32 1 1

MMASK mode mask 32 0 1

FLAGS flag inputs 32 0 1

LIRPTL link port interrupt latch/mask 32 0 1

ASTATX arithmetic status flags 32 0 1

ASTATY arithmetic status flags 32 0 1

STKYX sticky status flags 32 0 1

STKYY sticky status flags 32 0 1

USTAT1 user-defined status flags 32 0 0

USTAT2 user-defined status 32 0 0

USTAT3 user-defined status 32 0 0

USTAT4 user-defined status 32 0 0

Table 3-1. Program Sequencer Registers Read and Effect
Latencies (Cont’d)

Register Contents Bits Read
Latency

Effect
Latency
3-6 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
The following sections in this chapter explain how to use each of the func-
tional blocks in Figure 3-2:

• “Instruction Pipeline” on page 3-7

• “Instruction Cache” on page 3-8

• “Branches and Sequencing” on page 3-13

• “Loops and Sequencing” on page 3-22

• “Interrupts and Sequencing” on page 3-34

• “Timer and Sequencing” on page 3-50

• “Stacks and Sequencing” on page 3-52

• “Conditional Sequencing” on page 3-53

• “SIMD Mode and Sequencing” on page 3-57

Instruction Pipeline
The program sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from program memory in sequential order by incrementing
the fetch address. Using its instruction pipeline, the processor processes
instructions in three clock cycles:

• Fetch cycle. The processor reads the instruction from either the
on-chip instruction cache or from program memory.

• Decode cycle. The processor decodes the instruction, generating
conditions that control instruction execution.

• Execute cycle. The processor executes the instruction; the opera-
tions specified by the instruction complete in a single cycle.
ADSP-21161 SHARC Processor Hardware Reference 3-7

Instruction Cache
These cycles overlap in the pipeline, as shown in Table 3-3. In sequential
program flow, when one instruction is being fetched, the instruction
fetched in the previous cycle is being decoded, and the instruction fetched
two cycles before is being executed. Sequential program flow always has a
throughput of one instruction per cycle.

Any non-sequential program flow can potentially decrease the processor’s
instruction throughput. Non-sequential program operations include:

• Program memory data accesses that conflict with instruction
fetches

• Jumps

• Subroutine calls and returns

• Interrupts and return

• Loops

Instruction Cache
Usually, the sequencer fetches an instruction from memory on each cycle.
Occasionally, bus constraints prevent some of the data and instructions
from being fetched in a single cycle. To alleviate these data flow con-

Table 3-3. Pipelined Execution Cycles

Cycles Fetch Decode Execute

1 0x08

2 0x09 0x08

3 0x0A 0x09 0x08

4 0x0B 0x0A 0x09

5 0x0C 0x0B 0x0A
3-8 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
straints, the processor has an instruction cache, which appears in
Figure 3-2. When the processor executes an instruction that requires data
access over the PM data bus, a bus conflict occurs because the sequencer
uses the PM data bus for fetching instructions. To avoid these conflicts,
the processor caches these instructions, reducing delays. Except for
enabling or disabling the cache, its operation requires no user interven-
tion. For more information, see “Using the Cache” on page 3-11.

When the processor first encounters a fetch conflict, the processor must
wait to fetch the instruction on the following cycle, causing a delay. The
processor automatically writes the fetched instruction to the cache to pre-
vent the same delay from happening again. The sequencer checks the
instruction cache on every program memory data access. If the instruction
needed is in the cache, the instruction fetch from the cache happens in
parallel with the program memory data access, without incurring a delay.

Because of the three-stage instruction pipeline, as the processor executes
an instruction (at address n) that requires a program memory data access,
this execution creates a conflict with the instruction fetch (at address
n+2), assuming sequential execution. The cache stores the fetched instruc-
tion (n+2), not the instruction requiring the program memory data access.

If the instruction needed to avoid a conflict is in the cache, the cache pro-
vides the instruction while the program memory data access is performed.
If the needed instruction is not in the cache, the instruction fetch from
memory takes place in the cycle following the program memory data
access, incurring one cycle of overhead. The fetched instruction is loaded
into the cache, if the cache is enabled and not frozen, so that it is available
the next time the same conflict occurs.

Figure 3-3 shows a block diagram of the instruction cache. The cache
holds 32 instuction-address pairs. These pairs (or cache entries) are
arranged into 16 (15-0) cache sets according to their address’ 4 least sig-
nificant bits (3-0). The two entries in each set (entry 0 and entry 1) have a
ADSP-21161 SHARC Processor Hardware Reference 3-9

Instruction Cache
valid bit, indicating whether the entry contains a valid instruction. The
least recently used (LRU) bit for each set indicates which entry was not used
last (0=entry 0 and 1=entry 1).

The cache places instructions in entries according to the 4 LSBs of the
instruction’s address. When the sequencer checks for an instruction to
fetch from the cache, it uses the 4 address LSBs as an index to a cache set.
Within that set, the sequencer checks the addresses of the two entries,
looking for the needed instruction. If the cache contains the instruction,
the sequencer uses the entry and updates the LRU bit (if necessary) to indi-
cate the entry did not contain the needed instruction.

When the cache does not contain a needed instruction, the cache loads a
new instruction and its address, placing these in the least recently used
entry of the appropriate cache set and toggling the LRU bit (if necessary).

Figure 3-3. Instruction Cache Architecture

INSTRUCTIONS

SET 0

SET 1

SET 2

SET 13

SET 14

SET 15

ADDRESSES
BITS (23-4)

LRU
BIT

VALID
BIT

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ENTRY 0

ENTRY 0

ENTRY 0

ENTRY 1

ENTRY 1

ENTRY 1

ADDRESSES
BITS (3-0)

0000

0001

0010

1101

1110

1111
3-10 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Using the Cache
After a processor reset, the cache starts cleared (containing no instruc-
tions), unfrozen, and enabled. From then on, the MODE2 register controls
the operating mode of the instruction cache. Table A-3 on page A-10 lists
all the bits in MODE2. The following bits in MODE2 control cache modes:

• Cache Disable. Bit 4 (CADIS) directs the sequencer to disable the
cache (if 1) or enable the cache (if 0). Disabling the cache does not
mark the current content of the cache as invalid. If the cache is
enabled again, the existing content is used again. To clear the
cache, use the FLUSH CACHE instruction.

• Cache Freeze. Bit 19 (CAFRZ) directs the sequencer to freeze the
contents of the cache (if 1) or let new entries displace the entries in
the cache (if 0).

If self-modifying code (for example, software loader kernel) or soft-
ware overlays are used, execute a FLUSH CACHE instruction followed
by a NOP before executing the new code. Otherwise, old content
from the cache could still be used, although the code has changed.

When changing the cache’s mode, note that an instruction containing a
program memory data access must not be placed directly after a cache
enable or cache disable instruction, because the processor must wait at
least one cycle before executing the PM data access. A program should
have an NOP inserted after the cache enable instruction.

Optimizing Cache Usage
Cache operation is usually efficient and requires no intervention. How-
ever, certain ordering of instructions can work against the cache’s
architecture and degrade cache efficiency. When the order of PM data
accesses and instruction fetches continuously displaces cache entries and
loads new entries, the cache is not operating efficiently. Rearranging the
order of these instructions remedies this inefficiency.
ADSP-21161 SHARC Processor Hardware Reference 3-11

Instruction Cache
An example of inefficient cache code appears in Table 3-4. The program
memory data access at address 0x101 in the loop, Outer, causes the cache
to load the instruction at 0x103 (into set 3). Each time the program calls
the subroutine, Inner, the program memory data accesses at 0x201 and
0x211 displace the instruction at 0x103 by loading the instructions at
0x203 and 0x213 (also into set 3). If the program only calls the Inner sub-
routine rarely during the Outer loop execution, the repeated cache loads
do not greatly influence performance. If the program frequently calls the
subroutine while in the loop, the cache inefficiency has a noticeable effect
on performance. To improve cache efficiency on this code (if for instance,
execution of the Outer loop is time-critical), rearrange the order of some
instructions. Moving the subroutine call up one location (starting at
0x201) would work here, because with that order the two cached instruc-
tions end up in cache set 4 instead of set 3.

Table 3-4. Cache-Inefficient Code

Address Instruction

0x0100 lcntr=1024, do Outer until LCE;

0x0101 r0=dm(i0,m0), pm(i8,m8)=f3;

0x0102 r1=r0-r15;

0x0103 if eq call (Inner);

0x0104 f2=float r1;

0x0105 f3=f2*f2;

0x0106 Outer: f3=f3+f4;

0x0107 pm(i8,m8)=f3;

...

0x0200 Inner: r1=R13;

0x0201 r14=pm(i9,m9);

...

0x0211 pm(i9,m9)=r12;
3-12 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Branches and Sequencing
One of type of non-sequential program flow that the sequencer supports is
branching. A branch occurs when a JUMP or CALL/return instruction begins
execution at a new location, other than the next sequential address. For
descriptions on how to use JUMP and CALL/return instructions, see the
ADSP-21160 SHARC DSP Instruction Set Reference. Briefly, these instruc-
tions operate as follows:

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically pushes the return address (the next sequential
address after the CALL instruction) onto the PC stack. This push
makes the address available for the CALL instruction’s matching
return instruction, allowing easy return from the subroutine.

• A return instruction causes the sequencer to fetch the instruction at
the return address, which is stored at the top of the PC stack. The
two types of return instructions are return from subroutine (RTS)
and return from interrupt (RTI). While the return from subroutine
(RTS) only pops the return address off the PC stack, the return from
interrupt (RTI) pops the return address and:

1. Pops the status stack if the ASTATx,y and MODE1 status regis-
ters have been pushed for any of the following interrupts:
IRQ2-0, timer, or VIRPT.

2. Clears the interrupt’s bit in the interrupt latch register
(IRPTL) and the interrupt mask pointer (IMASKP).

...

0x021F rts;

Table 3-4. Cache-Inefficient Code (Cont’d)

Address Instruction
ADSP-21161 SHARC Processor Hardware Reference 3-13

Branches and Sequencing
 There are a number of parameters that can be specified for branches:

• JUMP and CALL/return instructions can be conditional. The program
sequencer can evaluate status conditions to decide whether to exe-
cute a branch. If no condition is specified, the branch is always
taken. For more information on these conditions, see “Conditional
Sequencing” on page 3-53.

• JUMP and CALL/return instructions can be immediate or delayed.
Because of the instructions pipeline, an immediate branch incurs
two lost (overhead) cycles. A delayed branch has no overhead. For
more information, see “Delayed Branches” on page 3-15.

• JUMP instructions that appear within a loop or within an interrupt
service routine have additional options. For information on the
loop abort (LA) option, see “Loops and Sequencing” on page 3-22.
For information on the loop re-entry (LR) option, see “Restrictions
on Ending Loops” on page 3-25.For information on the clear inter-
rupt (CI) option, see “Interrupts and Sequencing” on page 3-34.

The sequencer block diagram in Figure 3-2 on page 3-4 shows that
branches can be direct or indirect. The difference is that the sequencer
generates the address for a direct branch, and the PM data address genera-
tor (DAG2) produces the address for an indirect branch.

Direct branches are JUMP or CALL/return instructions that use an abso-
lute—not changing at runtime—address (such as a program label) or use a
PC-relative address. Some instruction examples that cause a direct branch
are:

JUMP fft1024; /*Where fft1024 is an address label*/

CALL (pc,10); /*Where (pc,10) a PC-relative address*/
3-14 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Indirect branches are JUMP or CALL/return instructions that use a dynamic
address that comes from the PM data address generator. For more infor-
mation on the data address generator, see Chapter 4, Data Address
Generator. Some instruction examples that cause an indirect branch are:

JUMP (m8,i12); /*where (m8,i12) are DAG2 registers*/

CALL (m9,i13); /*where (m9,i13) are DAG2 registers*/

Conditional Branches
The sequencer supports conditional branches. These are JUMP or
CALL/return instructions whose execution is based on testing an IF condi-
tion. For more information on condition types in IF condition
instructions, see “Conditional Sequencing” on page 3-53. Note that the
processor’s Single-Instruction, Multiple-Data mode influences the execu-
tion of conditional branches. For more information, see “SIMD Mode
and Sequencing” on page 3-57.

Delayed Branches
The instruction pipeline influences how the sequencer handles branches.
For immediate branches in which JUMPs and CALL/return instructions are
not specified as delayed branches (DB), two instruction cycles are lost
(NOPs) as the pipeline empties and refills with instructions from the new
branch.

As shown in Table 3-5 and Table 3-6, the processor does not execute the
two instructions after the branch, which are in the fetch and decode
stages. For a CALL, the decode address (the address of the instruction after
the CALL) is the return address. During the two lost (no-operation) cycles,
the pipeline fetches and decodes the first instruction at the branch address.
ADSP-21161 SHARC Processor Hardware Reference 3-15

Branches and Sequencing
For delayed branches, JUMPs and CALL/return instructions with the delayed
branches (DB) modifier, no instruction cycles are lost in the pipeline,
because the processor executes the two instructions after the branch while
the pipeline fills with instructions from the new branch.

As shown in Table 3-7 and Table 3-8, the processor executes the two
instructions after the branch, while the instruction at the branch address is
fetched and decoded. In the case of a CALL, the return address is the third
address after the branch instruction. While delayed branches use the

Table 3-5. Pipelined Execution Cycles for Immediate Branch
(JUMP/Call)

Cycles Fetch Decode Execute

1 n+2 n+1→nop1 n

2 j2 n+2→nop3 NOP

3 j+1 j NOP

4 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address
1. n+1 suppressed
2. For call, n+1 pushed on PC stack
3. n+2 suppressed

Table 3-6. Pipelined Execution Cycles for Immediate Branch (Return)

Cycles Fetch Decode Execute

1 n+2 n+1→nop1 n2

2 r n+2→nop3 NOP

3 r+1 r NOP

4 r+2 r+1 r

Note that n is the branching instruction, and r is the instruction branch address
1. n+1 suppressed
2. r (n+1 in Table 3-5) popped from PC stack
3. n+2 suppressed
3-16 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
instruction pipeline more efficiently than immediate branches, note that
delayed branch code can be harder to understand because of the instruc-
tions between the branch instruction and the actual branch.

Table 3-7. Pipelined Execution Cycles for Delayed Branch (JUMP or
CALL)

Cycles Fetch Decode Execute

1 n+2 n+1 n

2 j1 n+2 n+1

3 j+1 j n+2

4 j+2 j+1 j

Note that n is the branching instruction, and j is the instruction branch address
1. For call, n+3 pushed on PC stack

Table 3-8. Pipelined Execution Cycles For Delayed Branch (return)

Cycles Fetch Decode Execute

1 n+2 n+1 n1

2 r n+2 n+1

3 r+1 r n+2

4 r+2 r+1 r

n is the branching instruction, and r is the instruction branch address
1. r (n+3 in Table 3-7) popped from PC stack
ADSP-21161 SHARC Processor Hardware Reference 3-17

Branches and Sequencing
Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of the following:

• Other branches (no JUMP, CALL, or return instructions)

• Any stack manipulations (no PUSH or POP instructions or writes to
the PC stack or PC stack pointer)

• Any loops or other breaks in sequential operation (no DO/UNTIL or
IDLE instructions)

Development software for the processor should always flag these
types of instructions as code errors in the two locations after a
delayed branch instruction.

It is possible to follow a delayed branch instruction with a JUMP, CALL,
or return instruction in one special case. If the sequential branch instruc-
tions use mutually exclusive conditions, one branch may following
another. The following example is valid.

if gt jump (PC, 7) (db); // if greater than...

if le jump (PC,11) (db); // if less than or equal...

Interrupt processing is also influenced by delayed branches and the
instruction pipeline. Because the delayed branch instruction and the two
instructions that follow it must execute sequentially, the processor does
not immediately process an interrupt that occurs in between a delayed
branch instruction and either of the two instructions that follow. Any
interrupt that occurs during these instructions is latched, but is not pro-
cessed until the branch is complete.
3-18 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
During a delayed branch, a program can read the PC stack or PC
stack pointer immediately after a delayed call or return. This read
shows that the return address on the PC stack has already been
pushed or popped, even though the branch has not occurred yet.

Restrictions and Limitations When Using Delayed Branches

Besides being more challenging to code, delayed branches impose some
limitations that stem from the instruction pipeline architecture. Because
the delayed branch instruction and the two instructions that follow it
must execute sequentially, the instructions in the two locations that follow
a delayed branch instruction cannot be any of those described in the fol-
lowing five sections.

Development software for the ADSP-21161 processor should
always flag the operations described in the next five sections as code
errors in the two locations after a delayed branch instruction.

Normally it is not valid to use two conditional instructions using the (DB)
option following each other. But the execution is allowed when these
instructions are mutually exclusive as shown below.

If gt jump (PC, 7) (db);

If le jump (pc, 11) (db);

Other Jumps, or Calls with RTI, RTS

These instructions cannot be used when they follow a delayed branch
instruction. This is shown in the following code that uses the JUMP
instruction.

jump foo(db);

jump my(db);

r0=r0+r1;

r1=r1+r2;
ADSP-21161 SHARC Processor Hardware Reference 3-19

Branches and Sequencing
In this case, the delayed branch instruction r1=r1+r2, is not executed.
Further, the control jumps to my instead of foo, where the delayed branch
instruction is the execution of foo.

The exception is for the JUMP instruction, which applies for the mutually
exclusive conditions EQ (equal), and NE (not equal). If the first EQ con-
dition evaluates true, then the NE conditional jump has no meaning and
is the same as a NOP instruction. Code samples for these conditions are
shown below.

if eq jump label1 (db);

if ne jump label1 (db);

nop;

nop;

Pushes or Pops of the PC Stack

In this case a push of the PC stack in a delayed branch is followed by a
pop. If a value is pushed in the delayed branch of a call, it is first popped
in the called subroutine. This is followed by an RTS instruction.

call foo (db);

push PCSTK;

nop; /* second push due to PCSTK */

foo; /* first push because of call */

This example shows that when a program pushes the PCSTK during a
delayed slot, the PC stack pointer is pushed onto the PCSTK.

The following instructions are executed prior to executing the RTS.

pop PCSTK;

RTS (db);

nop;

nop;
3-20 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
If pushing the PC stack, a stack pop must be performed first. This is fol-
lowed by an RTS instruction. If a value is popped inside a delayed branch,
whatever subroutine return address is pushed is popped back, which is not
allowed.

Writes to the PC Stack or PC Stack Pointer

The following two situations may arise when programs attempt to write to
the PC stack inside a delayed branch.

1. If programs write into the PC stack inside a jump, one of the fol-
lowing situations can occur.

a. The PC stack cannot hold a value that has already been
pushed onto the PC stack.

When the PC stack contains a value and a program writes
that same value onto the stack, the original value is over-
written by the new value and the original value becomes
corrupted.

b. The PC stack is empty.

Programs cannot write to the PC stack when they are inside
a jump. In this case the PC stack remains empty.

2. Write to the PC stack inside a call.

If a program writes to the PC stack inside of a call, the value that is
pushed onto the PC stack because that call is overwritten by the
value written onto the PC stack. Therefore, when a program per-
forms an RTS, the program returns to the address pushed onto the
PC stack and not to the address pushed while branching to the sub-
routine. For example:
ADSP-21161 SHARC Processor Hardware Reference 3-21

Loops and Sequencing
call foo3 (db);

PCSTK=0x9011C;

nop;

The value 90114 is pushed onto the PC stack, while the value
9011C is written to the PC stack. Accordingly, the value 90114 is
overwritten by the value 9011C in the PC stack because values that
are pushed onto the stack have precedence over values written to
the stack. Therefore, when the program comes back by executing
an RTS, the return is to address 9011C and not to 90114.

IDLE Instruction

An interrupt is needed to come out of the IDLE instruction. If a program
places an IDLE instruction inside the delayed branch the processor remains
in the idled state because interrupts are latched but not serviced until the
program exits a delayed branch.

Loops and Sequencing
Another type of non-sequential program flow that the sequencer supports
is looping. A loop occurs when a DO/UNTIL instruction causes the processor
to repeat a sequence of instructions until a condition tests true.

A special condition for terminating a loop is Loop Counter Expired (LCE).
This condition tests whether the loop has completed the number of itera-
tions in the LCNTR register. Loops that terminate with conditions other
than LCE have some additional restrictions. For more information, see
“Restrictions on Ending Loops” on page 3-25 and “Restrictions on Short
Loops” on page 3-26. For more information on condition types in
DO/UNTIL instructions, see “Conditional Sequencing” on page 3-53.

The processor’s Single-Instruction, Multiple-Data mode influences
the execution of loops. For more information, see “SIMD Mode
and Sequencing” on page 3-57.
3-22 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
The DO/UNTIL instruction uses the sequencer’s loop and condition fea-
tures, which appear in Figure 3-2 on page 3-4. These features provide
efficient software loops without the overhead of additional instructions to
branch, test a condition, or decrement a counter. The following code
example shows a DO/UNTIL loop that contains three instructions and iter-
ates 30 times.

LCNTR=30, DO the_end UNTIL LCE; /*Loop iterates 30 times*/

R0=DM(I0,M0), F2=PM(I8,M8);

R1=R0-R15;

the_end: F4=F2+F3; /*Last instruction in loop*/

When executing a DO/UNTIL instruction, the program sequencer pushes
the address of the loop’s last instruction and loop’s termination condition
onto the loop address stack. The sequencer also pushes the top-of-loop
address—address of the instruction following the DO/UNTIL instruction—
onto the PC stack.

The sequencer’s instruction pipeline architecture influences loop termina-
tion. Because instructions are pipelined, the sequencer must test the
termination condition (and, if the loop is counter-based, decrement the
counter) before the end of the loop. Based on the test’s outcome, the next
fetch either exits the loop or returns to the top-of-loop.

The condition test occurs when the processor is executing the instruction
two locations before the last instruction in the loop (at location e – 2,
where e is the end-of-loop address). If the condition tests false, the
sequencer repeats the loop, fetching the instruction from the top-of-loop
address, which is stored on the top of the PC stack. If the condition tests
true, the sequencer terminates the loop, fetching the next instruction after
the end of the loop and popping the loop and PC stacks.
ADSP-21161 SHARC Processor Hardware Reference 3-23

Loops and Sequencing
A special case of loop termination is the loop abort instruction, JUMP (LA).
This instruction causes an automatic loop abort when it occurs inside a
loop. When the loop aborts, the sequencer pops the PC and loop address
stacks once. If the aborted loop was nested, the single pop of the stacks
leaves the correct values in place for the outer loop.

Table 3-9 and Table 3-10 show the pipeline states for loop iteration and
termination.

Table 3-9. Pipelined Execution Cycles for Loop Back (Iteration)

Cycles Fetch Decode Execute

1 e e –1 e –21

2 b2 e e –1

3 b+1 b e

4 b+2 b+1 b

Note that e is the loop end instruction, and b is the loop start instruction.
1. Termination condition tests false
2. Loop start address is top of PC stack

Table 3-10. Pipelined Execution Cycles for Loop Termination

Cycles Fetch Decode Execute

1 e e –1 e –21

2 e+12 e e –1

3 e+2 e+1 e

4 e+3 e+2 e+1

Note that e is the loop end instruction.
1. Termination condition tests true
2. Loop aborts and loop stacks pop
3-24 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Restrictions on Ending Loops
The sequencer’s loop features (which optimize performance in many ways)
limit the types of instructions that may appear at or near the end of the
loop. These restrictions include:

• Nested loops cannot use the same end-of-loop instruction address.

• Nested loops with a non-counter-based loop as the outer loop must
place the end address of the outer loop at least two addresses after
the end address of the inner loop.

• Nested loops with a non-counter-based loop as the outer loop that
use the loop abort instruction, JUMP (LA), to abort the inner loop
may not JUMP (LA) to the last instruction of the outer loop.

• An instruction that writes to the loop counter from memory can-
not be used as the third-to-last instruction of a counter-based loop
(at e–2, where e is the end-of-loop address).

• An IF NOT LCE instruction cannot be used as the instruction that
follows a write to CURLCNTR from memory.

• Branch (JUMP or CALL/return) instructions may not be used as any
of the last three instructions of a loop. This no end-of-loop
branches rule also applies to single-instruction and two-instruction
loops with only one iteration.

There is one exception to the no end-of-loop branches rule. The last three
instructions of a loop may contain an immediate CALL —a CALL without a
DB modifier—that is paired with a loop re-entry return—a return (RTS)
with loop re-entry modifier (LR). The immediate CALL may be one of the
last three instructions of a loop, but not in a one-instruction loop or a
two-instruction, single-iteration loop.
ADSP-21161 SHARC Processor Hardware Reference 3-25

Loops and Sequencing
Restrictions on Short Loops
The sequencer’s pipeline features (which optimize performance in many
ways) restrict how short loops iterate and terminate. Short loops (1- or
2-instruction loops) terminate in a special way because they are shorter
than the instruction pipeline. Counter-based loops (DO/UNTIL LCE) of one
or two instructions are not long enough for the sequencer to check the ter-
mination condition two instructions from the end of the loop. In these
short loops, the sequencer has already looped back when the termination
condition is tested. The sequencer provides special handling to prevent
overhead (NOP) cycles if the loop is iterated a minimum number of times.

Table 3-11 and Table 3-12 show the pipeline execution for counter-based
single-instruction loops. Table 3-13 and Table 3-14 show the pipeline
execution for counter-based two-instruction loops. For no overhead, a
loop of length one must be executed at least three times and a loop of
length two must be executed at least twice. Loops of length one that iter-
ate only once or twice and loops of length two that iterate only once incur
two cycles of overhead, because two aborted instructions after the last iter-
ation clear the instruction pipeline.

Table 3-11. Pipelined Execution Cycles for Single Instruction
Counter-Based Loop With Three Iterations

Cycles Fetch Decode Execute

1 n+2 n+1 n1

2 n+12 n+1 n+1 (pass 1)

3 n+23 n+1 n+1 (pass 2)

4 n+3 n+2 n+1 (pass 3)

5 n+4 n+3 n+2

Note: n is the loop start instruction, and n+2 is the instruction after the loop.
1. Loop count (LCNTR) equals 3
2. No opcode latch or fetch address update; count expired tests true
3. Loop iteration aborts; PC and loop stacks pop
3-26 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Table 3-12. Pipelined Execution Cycles for Single Instruction
Counter-Based Loop With Two Iterations (Two Overhead Cycles)

Cycles Fetch Decode Execute

1 n+2 n+1 n1

2 n+12 n+1 n+1 (pass 1)

3 n+13 n+1→nop4 n+1 (pass 2)

4 n+2 n+1→nop5 NOP

5 n+3 n+2 NOP

6 n+4 n+3 n+2

Note: n is the loop start instruction, and n+2 is the instruction after the loop.
1. Loop count (LCNTR) equals 2
2. No opcode latch or fetch address update
3. Count expired tests true
4. Loop iteration aborts; PC and loop stacks pop; n+1 suppressed
5. n+1 suppressed

Table 3-13. Pipelined Execution Cycles for Two Instruction
Counter-Based Loop With Two Iterations

Cycles Fetch Decode Execute

1 n+2 n+1 n1

2 n+12 n+2 n+1 (pass 1)

3 n+23 n+1 n+2 (pass 1)

4 n+34 n+2 n+1 (pass 2)

5 n+4 n+3 n+2 (pass 2)

6 n+5 n+4 n+3

Note: n is the loop start instruction, and n+3 is the instruction after the loop.
1. Loop count (LCNTR) equals 2
2. PC stack supplies loop start address
3. Count expired tests true
4. Loop iteration aborts; PC and loop stacks pop
ADSP-21161 SHARC Processor Hardware Reference 3-27

Loops and Sequencing
Processing of an interrupt that occurs during the last iteration of a
one-instruction loop is delayed by one cycle in the following cases:

• the loop executes once or twice

• a two-instruction loop executes once

• a cycle follows one of these loops (which is an NOP)

Similarly, in a one-instruction loop that iterates at least three times, pro-
cessing is delayed by one cycle if the interrupt occurs during the
third-to-last iteration. For more information on pipeline execution during
interrupts, see “Interrupts and Sequencing” on page 3-34.

Table 3-14. Pipelined Execution Cycles for Two Instruction
Counter-Based Loop With One Iteration (Two Overhead Cycles)

Cycles Fetch Decode Execute

1 n+2 n+1 n1

2 n+12 n+2 n+1 (pass 1)

3 n+23 n+1→nop4 n+2 (pass 1)

4 n+3 n+2→nop5 NOP

5 n+4 n+3 NOP

6 n+5 n+4 n+3

Note: n is the loop start instruction, and n+3 is the instruction after the loop.
1. Loop count (LCNTR) equals 1
2. PC stack supplies loop start address
3. Count expired tests true
4. Loop iteration aborts; PC and loop stacks pop; n+1 suppressed
5. n+2 suppressed
3-28 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Short non-counter-based loops terminate differently from short
counter-based loops. These differences stem from the architecture of the
pipeline and conditional logic:

• In a three-instruction non-counter-based loop, the sequencer tests
the termination condition when the processor executes the top of
loop instruction. When the condition tests true, the sequencer
completes the iteration of the loop and terminates.

• In a two-instruction non-counter-based loop, the sequencer tests
the termination condition when the processor executes the last
(second) instruction. If the condition becomes true when the first
instruction is executed, the condition tests true during the second
instruction, and the sequencer completes one more iteration of the
loop before exiting. If the condition becomes true during the sec-
ond instruction, the sequencer completes two more iterations of
the loop before exiting.

• In a one-instruction non-counter-based loop, the sequencer tests
the termination condition every cycle. After the cycle when the
condition becomes true, the sequencer completes three more itera-
tions of the loop before exiting.

Loop Address Stack
The sequencer’s loop support, which appears in Figure 3-2 on page 3-4,
includes a loop address stack. The loop address stack is six levels deep by
32 bits wide.

The LADDR register contains the top entry on the loop address stack. This
register is readable and writable over the DM Data bus. Reading and writ-
ing LADDR does not move the loop address stack pointer; only a stack push
or pop performed with explicit instructions moves the stack pointer. LADDR
contains the value 0xFFFF FFFF when the loop address stack is empty.
Table A-14 on page A-45 lists all the bits in LADDR.
ADSP-21161 SHARC Processor Hardware Reference 3-29

Loops and Sequencing
The sequencer pushes an entry onto the loop address stack when executing
a DO/UNTIL or PUSH loop instruction. The stack entry pops off the stack
two instructions before the end of its loop’s last iteration or on a POP loop
instruction. A stack overflow occurs if a seventh entry (one more than full)
is pushed onto the loop stack. The stack is empty when no entries are
occupied.

The loop stacks’ overflow or empty status is available. Because the
sequencer keeps the loop stack and loop counter stack synchronized, the
same overflow and empty flags apply to both stacks. These flags are in the
sticky status register (STKYx). For more information on STKYx, see
Table A-5 on page A-19. For more information on how these flags work
with the loop stacks, see “Loop Counter Stack” on page 3-30. Note that a
loop stack overflow causes a maskable interrupt.

Because the sequencer tests the termination condition two instructions
before the end of the loop, the loop stack pops before the end of the loop’s
final iteration. If a program reads LADDR at either of these instructions, the
value is already the termination address for the next loop stack entry.

Loop Counter Stack
The sequencer’s loop support, which appears in Figure 3-2 on page 3-4,
includes a loop counter stack. The sequencer keeps the loop counter stack
synchronized with the loop address stack. Both stacks always have the
same number of locations occupied. Because these stacks are synchro-
nized, the same empty and overflow status flags from the STKYx register
apply to both stacks.

The loop counter stack is six locations deep. The stack is full when all
entries are occupied, is empty when no entries are occupied, and is over-
flowed if a push occurs when the stack is already full. Bits in the STKYx
3-30 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
register indicate the loop counter stack full and empty states. Table A-5
on page A-19 lists the bits in the STYKx register. The STKYx bits that indi-
cate loop counter stack status are:

• Loop stacks overflowed. Bit 25 (LSOV) indicates that the loop
counter stack and loop stack are overflowed (if 1) or not over-
flowed (if 0)—A sticky bit.

• Loop stacks empty. Bit 26 (LSEM) indicates that the loop counter
stack and loop stack are empty (if 1) or not empty (if 0)—Not
sticky, cleared by a PUSH.

Within the sequencer, the current loop counter (CURLCNTR) and loop
counter (LCNTR) registers allow access to the loop counter stack. CURLCNTR
tracks iterations for a loop being executed, and LCNTR holds the count
value before the loop is executed. The two counters let the processor
maintain the count for an outer loop, while a program is setting up the
count for an inner loop.

The top entry in the loop counter stack (CURLCNTR) always contains the
current loop count. This register is readable and writable over the DM
Data bus. Reading CURLCNTR when the loop counter stack is empty returns
the value 0xFFFF FFFF.

The sequencer decrements the value of CURLCNTR for each loop iteration.
Because the sequencer tests the termination condition two instruction
cycles before the end of the loop, the loop counter also decrements before
the end of the loop. If a program reads CURLCNTR at either of the last two
loop instructions, the value is already the count for the next iteration.

The loop counter stack pops two instructions before the end of the last
loop iteration. When the loop counter stack pops, the new top entry of the
stack becomes the CURLCNTR value—the count in effect for the executing
loop. If there is no executing loop, the value of CURLCNTR is 0xFFFF FFFF
after the pop.
ADSP-21161 SHARC Processor Hardware Reference 3-31

Loops and Sequencing
Writing CURLCNTR does not cause a stack push. If a program writes a new
value to CURLCNTR, the program changes the count value of the loop cur-
rently executing. When no DO/UNTIL LCE loop is executing, writing to
CURLCNTR has no effect. Because the processor must use CURLCNTR to per-
form counter-based loops, some restrictions apply to how a program can
write CURLCNTR. For more information, see “Restrictions on Ending
Loops” on page 3-25.

The next-to-top entry in the loop counter stack (LCNTR) is the location on
the stack that takes effect on the next loop stack push. To set up a count
value for a nested loop without changing the count for the currently exe-
cuting loop, a program writes the count value to LCNTR.

A value of zero in LCNTR causes a loop to execute 232 times.

A DO/UNTIL LCE instruction pushes the value of LCNTR onto the loop count
stack, making that value the new CURLCNTR value. Figure 3-4 demonstrates
this process for a set of nested loops. The previous CURLCNTR value is pre-
served one location down in the stack. If a program reads LCNTR when the
loop counter stack is full, the stack returns invalid data. When the loop
counter stack is full, the stack discards any data written to LCNTR. If a pro-
gram reads LCNTR during the last two instructions of a terminating loop,
the value of LCNTR is the last CURLCNTR value for the loop.
3-32 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Figure 3-4. Pushing the Loop Counter Stack for Nested Loops

1

AAAA AAAALCNTR

CURLCNTR

LCNTR

4

AAAA AAAA

DDDD DDDD

CCCC CCCC

BBBB BBBB

AAAA AAAA

0XFFFF FFFF

LCNTR

CURLCNTR

CURLCNTR

LCNTR

3

AAAA AAAA

CCCC CCCC

BBBB BBBB

CURLCNTR

LCNTR

6

BBBB BBBB

AAAA AAAA

DDDD DDDD

CCCC CCCC

FFFF FFFF

EEEE EEEE

CURLCNTR

7

BBBB BBBB

DDDD DDDD

FFFF FFFF

CCCC CCCC

EEEE EEEE

AAAA AAAA

CURLCNTR

LCNTR

2

AAAA AAAA

BBBB BBBB

CURLCNTR

LCNTR

5

AAAA AAAA

BBBB BBBB

CCCC CCCC

DDDD DDDD

EEEE EEEE
ADSP-21161 SHARC Processor Hardware Reference 3-33

Interrupts and Sequencing
Interrupts and Sequencing
Another type of non-sequential program flow that the sequencer supports
is interrupt processing. Interrupts may stem from a variety of conditions,
both internal and external to the processor. In response to an interrupt,
the sequencer processes a subroutine call to a predefined address, the
interrupt vector. The processor assigns a unique vector to each type of
interrupt.

The processor supports three prioritized, individually-maskable external
interrupts, each of which can be either level- or edge-sensitive. External
interrupts occur when another device asserts one of the processor’s inter-
rupt inputs (IRQ2-0). The processor also supports internal interrupts. An
internal interrupt can stem from arithmetic exceptions, stack overflows, or
circular data buffer overflows. Several factors control the processor’s
response to an interrupt request. The processor responds to an interrupt
request if:

• The processor is executing instructions or is in an idle state

• The interrupt is not masked

• Interrupts are globally enabled

• A higher priority request is not pending

When the processor responds to an interrupt, the sequencer branches pro-
gram execution with a call to the corresponding interrupt vector address.
Within the processor’s program memory, the interrupt vectors are
grouped in an area called the interrupt vector table. The interrupt vectors
in this table are spaced at 4-instruction intervals. For a list of interrupt
vector addresses and their associated latch and mask bits, see Table B-1 on
page B-1. Each interrupt vector has associated latch and mask bits.
Table A-9 on page A-27 lists the latch and mask bits.
3-34 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
To process an interrupt, the processor’s program sequencer does the
following:

1. Outputs the appropriate interrupt vector address

2. Pushes the current PC value (the return address) onto the PC stack

3. Pushes the current value of the ASTATx,y and MODE1 registers onto
the status stack (if the interrupt is IRQ2-0, timer, or VIRPT)

4. Sets the appropriate bit in the interrupt latch register (IRPTL)

5. Alters the interrupt mask pointer (IMASKP) to reflect the current
interrupt nesting state, depending on the nesting mode

At the end of the interrupt service routine, the sequencer processes the
return from interrupt (RTI) instruction and does following:

1. Returns to the address stored at the top of the PC stack

2. Pops this value off of the PC stack

3. Pops the status stack (if the ASTATx,y and MODE1 status registers
were pushed for the IRQ2-0, timer, or VIRPT interrupt)

4. Clears the appropriate bit in the interrupt latch register (IRPTL)
and interrupt mask pointer (IMASKP)

Except for reset, all interrupt service routines should end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is empty,
so there is no return address. The last instruction of the reset service rou-
tine should be a jump to the start of your program.

If software writes to a bit in IRPTL forcing an interrupt, the processor rec-
ognizes the interrupt in the following cycle, and two cycles of branching
to the interrupt vector follow the recognition cycle.
ADSP-21161 SHARC Processor Hardware Reference 3-35

Interrupts and Sequencing
The processor responds to interrupts in three stages: synchronization and
latching (1 cycle), recognition (1 cycle), and branching to the interrupt
vector (2 cycles). Table 3-15, Table 3-16, and Table 3-17 show the pipe-
lined execution cycles for interrupt processing.

Table 3-15. Pipelined Execution Cycles for Interrupt During Single-Cycle
Instruction

Cycles Fetch Decode Execute

1 n+1 n n–11

2 n+22 n+1→nop3 n

3 v4 n+2→nop5 nop

4 v+1 v nop

5 v+2 v+1 v

Note that n is the single-cycle instruction, and v is the interrupt vector instruction
1. Interrupt occurs
2. Interrupt recognized
3. n+1 pushed on PC stack; n+1 suppressed
4. Interrupt vector output
5. n+2 suppressed
3-36 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Table 3-16. Pipelined Execution Cycles for Interrupt During Instruction
With Conflicting PM Data Access (Instruction Not Cached)

Cycles Fetch Decode Execute

1 n+1 n n–11

2 —2 n+1→nop3 n

3 n+24 n+1→nop5 nop

4 v6 n+2→nop7 nop

5 v+1 v nop

6 v+2 v+1 v

Note that n is the conflicting instruction, and v is the interrupt vector instruction
1. Interrupt occurs
2. Interrupt recognized, but not processed; PM data access
3. n+1 suppressed
4. Interrupt processed
5. n+1 suppressed
6. Interrupt vector output
7. n+1 pushed on PC stack; n+2 suppressed
ADSP-21161 SHARC Processor Hardware Reference 3-37

Interrupts and Sequencing
For most interrupts, internal and external, only one instruction is exe-
cuted after the interrupt occurs (and before the two instructions aborted)
while the processor fetches and decodes the first instruction of the service
routine. Because of the one-cycle delay between an arithmetic exception
and the STKYx,y register update, interrupt processing starts two cycles
after an arithmetic exception occurs. Table 3-18 lists the latency associ-
ated with the IRQ2-0 interrupts and the multiprocessor vector interrupt.

Table 3-17. Pipelined Execution Cycles for Interrupt During Delayed
Branch Instruction

Cycles Fetch Decode Execute

1 n+1 n n–11

2 n+22 n+1 n

3 j n+2 n+1

4 j+13 j→nop4 n+2

5 v5 j+1→nop6 nop

6 v+1 v nop

7 v+2 v+1 v

Note that n is the delayed branch instruction, j is the instruction at the branch address, and v
is the interrupt vector instruction
1. Interrupt occurs
2. Interrupt recognized, but not processed
3. Interrupt processed
4. For a Call, n+3 (return address) is pushed onto the PC stack; j suppressed
5. Interrupt vector output
6. j pushed on PC stack; j+1 suppressed

Table 3-18. Minimum Latency of the IRQ2-0 and VIRPT Interrupts

Interrupt Minimum Latency

IRQ2-0 3 cycles

VIRPT 6 cycles
3-38 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. This delay allows the first
instruction of the lower priority interrupt routine to be executed before it
is interrupted. For more information, see “Nesting Interrupts” on
page 3-45.

Certain processor operations that span more than one cycle hold off inter-
rupt processing. If an interrupt occurs during one of these operations, the
processor latches the interrupt, but delays its processing. The operations
that have delayed interrupt processing are as follows:

• A branch (JUMP or CALL/return) instruction and the following cycle,
whether it is an instruction (in a delayed branch) or an NOP (in a
non-delayed branch)

• The first of the two cycles used to perform a program memory data
access and an instruction fetch when the instruction is not cached

• The third-to-last iteration of a one-instruction loop

• The last iteration of either a one-instruction loop executed once or
twice or a two-instruction loop executed once, and the following
cycle (which is an NOP)

• The first of the two cycles used to fetch and decode the first
instruction of an interrupt service routine

• Any waitstates for external memory accesses

• Any external memory access required when the processor does not
have control of the external bus, during a host bus grant or when
the processor is a bus slave in a multiprocessing system
ADSP-21161 SHARC Processor Hardware Reference 3-39

Interrupts and Sequencing
Sensing Interrupts
The processor supports two types of interrupt sensitivity—the signal shape
that triggers the interrupt. On interrupt pins (IRQ2-0), either the input
signal’s edge or level can trigger an external interrupt.

The processor detects a level-sensitive interrupt if the signal input is low
(active) when sampled on the rising edge of CLKIN. A level-sensitive inter-
rupt must go high (inactive) before the processor returns from the
interrupt service routine. If a level-sensitive interrupt is still active when
the processor samples it after returning from its service routine, the pro-
cessor treats the signal as a new request. The processor repeats the same
interrupt routine without returning to the main program, assuming no
higher priority interrupts are active.

The processor detects an edge-sensitive interrupt if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN. An edge-sensitive interrupt signal can stay active
indefinitely without triggering additional interrupts. To request another
interrupt, the signal must go high, then low again.

Edge-sensitive interrupts require less external hardware compared to
level-sensitive requests, because negating the request is unnecessary. An
advantage of level-sensitive interrupts is that multiple interrupting devices
may share a single level-sensitive request line on a wired-OR basis, allow-
ing easy system expansion.

The MODE2 register controls external interrupt sensitivity. Table A-3 on
page A-10 lists all bits in the MODE2 register. The following bits in MODE2
control interrupt sensitivity:

• Interrupt 0 Sensitivity. Bit 0 (IRQ0E), directs the processor to
detect IRQ0 as edge-sensitive (if 1) or level-sensitive (if 0).
3-40 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
• Interrupt 1 Sensitivity. Bit 1 (IRQ1E), directs the processor to
detect IRQ1 as edge-sensitive (if 1) or level-sensitive (if 0).

• Interrupt 2 Sensitivity. Bit 2 (IRQ2E), directs the processor to
detect IRQ2 as edge-sensitive (if 1) or level-sensitive (if 0).

The processor accepts external interrupts that are asynchronous to the
processor’s clock (CLKIN), allowing external interrupt signals to change at
any time. An external interrupt must be held low at least one CLKIN cycle
to guarantee that the processor samples the signal.

External interrupts must meet the setup and hold time require-
ments relative to the rising edge of CLKIN. For information on
interrupt signal timing requirements, see the processor’s Data
Sheet.

Masking Interrupts
The sequencer supports interrupt masking—latching an interrupt, but not
responding to it. Except for the RESET and EMU interrupts, all interrupts are
maskable. If a masked interrupt is latched, the processor responds to the
latched interrupt if it is later unmasked.

Interrupts can be masked globally or selectively. Bits in the MODE1, IMASK,
and LIRPTL registers control interrupt masking. Table A-2 on page A-3
lists the bits in MODE1, Table A-9 on page A-27 lists the bits in IMASK, and
Table A-10 on page A-34 lists the bits in LIRPTL. These bits control inter-
rupt masking as follows:

• Global interrupt enable. MODE1, Bit 12 (IRPTEN) directs the proces-
sor to enable (if 1) or disable (if 0) all interrupts.

• Selective interrupt enable. IMASK, Bits 30-10 and 8-0, direct the
processor to enable (if 1) or disable/mask (if 0) the corresponding
interrupt.
ADSP-21161 SHARC Processor Hardware Reference 3-41

Interrupts and Sequencing
• Selective link port interrupt enable. LIRPTL, Bits 17-16 (LPxMSK)
direct the processor to enable (if 1) or disable/mask (if 0) the corre-
sponding link port interrupt.

• SPI port interrupt enable. LIRPTL, Bit 18 (SPIRMSK) and Bit 19
(SPITMSK) direct the processor to enable (if 1) or disable/mask (if 0)
the SPI port receive interrupt or transmit interrupt, respectively.

Except for the non-maskable interrupts and boot interrupts, all interrupts
are masked at reset. For booting, the processor automatically unmasks and
uses the external port (EPOI), link port (LP0I) or SPI port (SPIRI) inter-
rupt after reset. Usage depends on whether the ADSP-21161 processor is
booting from EPROM, host, SPI or link ports.

Latching Interrupts
When the processor recognizes an interrupt, the processor’s interrupt latch
(IRPTL and LIRPTL) registers latch the interrupts—set a bit to record that
the interrupt occurred. The bits in these registers indicate all interrupts
that are currently being serviced or are pending. Because these registers are
readable and writable, any interrupt except reset can be set or cleared in
software. Note that writing to the reset bit (bit 1) in IRPTL puts the pro-
cessor into an illegal state.

When an interrupt occurs, the sequencer sets the corresponding bit in
IRPTL or LIRPTL. During execution of the interrupt’s service routine, the
processor clears this bit during every cycle to prevent the same interrupt
from being latched while its service routine is executing. After the return
from interrupt (RTI), the sequencer stops clearing the latch bit.

If necessary, it is possible to re-use an interrupt while it is being serviced.
For more information, see “Reusing Interrupts” on page 3-47.

The interrupt latch bits in IRPTL correspond to interrupt mask bits in the
IMASK register. In both registers, the interrupt bits are arranged in order of
priority. The interrupt priority is from 0 (highest) to 31 (lowest). Inter-
3-42 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
rupt priority determines which interrupt is serviced first when more than
one occurs in the same cycle. Priority also determines which interrupts are
nested when the processor has interrupt nesting enabled. For more infor-
mation, see “Nesting Interrupts” on page 3-45.

While IRPTL latches interrupts for a variety of events, the LIRPTL register
contains latch and mask bits only for Link port and SPI DMA interrupts.
A logical Or’ing of link port interrupts (masked-latch state) appears in the
LPSUM bit in the IRPTL register. Because the LPSUM bit has a corresponding
mask bit in the IMASK register, programs can use LPSUM for a second level of
link port interrupt masking.

Multiple events can cause arithmetic interrupts—fixed-point overflow
(FIXI) and floating-point overflow (FLTOI), underflow (FLTUI), and
invalid operation (FLTII). To determine which event caused the interrupt,
a program can read the arithmetic status flags in the STYKx or STKYy status
registers. Table A-5 on page A-19 lists the bits in these registers. Service
routines for arithmetic interrupts must clear the appropriate STKYx or
STKYy bits to clear the interrupt. If the bits are not cleared, the interrupt is
still active after the return from interrupt (RTI).

Status bits in STKYy apply only in SIMD mode. For more informa-
tion, see “Secondary Processing Element (PEy)” on page 2-37.

One event can cause multiple interrupts. The timer decrementing to zero
causes two timer expired interrupts, TMZHI (high priority) and TMZLI (low
priority). This feature allows selection of the priority for the timer inter-
rupt. Programs should unmask the timer interrupt with the desired
priority and leave the other one masked. If both interrupts are unmasked,
IRPTL latches both interrupts when the timer reaches zero, and the proces-
sor services the higher priority interrupt first, and then the lower priority
interrupt.
ADSP-21161 SHARC Processor Hardware Reference 3-43

Interrupts and Sequencing
The IRPTL also supports software interrupts. When a program sets the
latch bit for one of these interrupts (SFT0I, SFT1I, SFT2I, or SFT3I), the
sequencer services the interrupt, and the processor branches to the corre-
sponding interrupt routine. Software interrupts have the same behavior as
all other maskable interrupts.

Stacking Status During Interrupts
To run in an interrupt driven system, programs depend on the processor
being restored to its pre-interrupt state after an interrupt is serviced. The
sequencer’s status stack eases the return from interrupt process by elimi-
nating some interrupt service overhead—register saves and restores.

The status stack is fifteen locations deep. The stack is full when all entries
are occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the status stack full and empty states. Table A-5 on page A-19 lists
the bits in the STYKx register. The STKYx bits that indicate status stack sta-
tus are:

• Status stack overflow. Bit 23 (SSOV) indicates that the status stack
is overflowed (if 1) or not overflowed (if 0)—A sticky bit.

• Status stack empty. Bit 24, (SSEM) indicates that the status stack is
empty (if 1) or not empty (if 0)—Not sticky, cleared by a PUSH.

For some interrupts (IRQ2-0, timer expired, and VIRPT), the sequencer
automatically pushes the ASTATx, ASTATy, and MODE1 registers onto the sta-
tus stack. When the sequencer pushes an entry onto the status stack, the
processor uses the MMASK register to clear the corresponding bits in the
MODE1 register. All other bit settings remain the same. For more informa-
tion and an example of how the MMASK and MODE1 registers work together,
see the section “Mode Mask Register (MMASK)” on page A-8.
3-44 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
The sequencer automatically pops the ASTATx, ASTATY, and MODE1 registers
from the status stack during the return from interrupt instruction (RTI).
In one other case, JUMP (CI), the sequencer pops the stack. For more
information, see “Reusing Interrupts” on page 3-47.

Only the IRQ2-0, timer expired, and VIRPT interrupts cause the sequencer
to push an entry onto the status stack. All other interrupts require either
explicit saves and restores of effected registers or an explicit push or pop of
the stack (PUSH/POP STS).

Pushing ASTATx, ASTATy, and MODE1 preserves the status and control bit
settings. This feature allows a service routine to alter these bits with the
knowledge that the original settings are automatically restored upon the
return from the interrupt.

The top of the status stack contains the current values of ASTATx, ASTATy,
and MODE1. Reading and writing these registers does not move the stack
pointer. Explicit PUSH or POP instructions do move the status stack pointer.

Nesting Interrupts
The sequencer supports interrupt nesting—responding to another inter-
rupt while a previous interrupt is being serviced. Bits in the MODE1, IMASKP,
and LIRPTL registers control interrupt nesting. Table A-2 on page A-3 lists
the bits in MODE1, Table A-9 on page A-27 lists the bits in IMASKP, and
Table A-10 on page A-34 lists the bits in LIRPTL. These bits control inter-
rupt nesting as follows:

• Interrupt nesting enable. MODE1 Bit 11 (NESTM). This bit directs the
processor to enable (if 1) or disable (if 0) interrupt nesting.

• Interrupt Mask Pointer. IMASKP Bits 30- 15, 13-10 and 8-0. These
bits list the interrupts in priority order and provide a temporary
interrupt mask for each nesting level.
ADSP-21161 SHARC Processor Hardware Reference 3-45

Interrupts and Sequencing
• Link Port DMA Interrupt Mask Pointer. LIRPTL Bits 25-24,
(LPxMSKP). These bits are the link port DMA interrupts in priority
order. They provide a temporary interrupt mask for each nesting
level.

• SPI Port DMA Interrupt Mask Pointer. LIRPTL Bits 27-26,
(SPITMSKP and SPIRMSKP). These bits are the SPI port transmit and
receive DMA interrupts respectively. They provide a temporary
interrupt mask.

When interrupt nesting is disabled, a higher priority interrupt can not
interrupt a lower priority interrupt’s service routine. Other interrupts are
latched as they occur, but the processor processes them after the active
routine finishes.

When interrupt nesting is enabled, a higher priority interrupt can inter-
rupt a lower priority interrupt’s service routine. Lower interrupts are
latched as they occur, but the processor process them after the nested rou-
tines finish.

Programs should change the interrupt nesting enable (NESTM) bit only
while outside of an interrupt service routine or during the reset service
routine.

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one cycle. This delay allows the first instruction of
the lower priority interrupt routine to be executed, before it is
interrupted.

When servicing nested interrupts, the processor uses the interrupt mask
pointer (IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting; the IMASK value is not effected. The processor changes
IMASKP each time a higher priority interrupt interrupts a lower priority ser-
vice routine.
3-46 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
The bits in IMASKP correspond to the interrupts in order of priority. When
an interrupt occurs, the processor sets its bit in IMASKP. If nesting is
enabled, the processor uses IMASKP to generate a new temporary interrupt
mask, masking all interrupts of equal or lower priority to the highest pri-
ority bit set in IMASKP and keeping higher priority interrupts the same as
in IMASK. When a return from an interrupt service routine (RTI) is exe-
cuted, the processor clears the highest priority bit set in IMASKP and
generates a new temporary interrupt mask. The processor masks all inter-
rupts of equal or lower priority to the highest priority bit set in IMASKP.
The bit set in IMASKP that has the highest priority always corresponds to
the priority of the interrupt being serviced.

If an interrupt recurs while its service routine is running and nesting is
enabled, the processor updates IRPTL, but does not service the interrupt.
The processor waits until the return from interrupt (RTI) completes before
vectoring to the service routine again.

If nesting is not enabled, the processor masks out all interrupts and IMASKP
is not used, but the processor still updates IMASKP to create a temporary
interrupt mask.

The interrupt controller uses the IMASKP register and the LPxMSKP,
SPITMSKP, and SPIRMSKP bits of the LIRPTL register. These bits
should not be modified.

Reusing Interrupts
When an interrupt occurs the sequencer sets the corresponding bit in
IRPTL. During execution of the service routine, the sequencer keeps this
bit cleared—the processor clears the bit during every cycle, preventing the
same interrupt from being latched while its service routine is already
executing.
ADSP-21161 SHARC Processor Hardware Reference 3-47

Interrupts and Sequencing
If necessary, it is possible to re-use an interrupt while it is being serviced.
Using a JUMP clear interrupt, JUMP (CI), instruction in the interrupt ser-
vice routine clears the interrupt, allowing its reuse while the service
routing is executing.

The JUMP (CI) instruction reduces an interrupt service routine to a normal
subroutine, clearing the appropriate bit in the interrupt latch and inter-
rupt mask pointer and popping the status stack. After the JUMP (CI)
instruction, the processor stops automatically clearing the interrupt’s latch
bit, allowing the interrupt to latch again.

When returning from a subroutine entered with a JUMP (CI) instruction, a
program must use a return loop reentry, RTS(LR), instruction. For more
information, see “Restrictions on Ending Loops” on page 3-25.

The following example shows an interrupt service routine that is reduced
to a subroutine with the (CI) modifier:

instr1; /*Interrupt entry from main program*/

JUMP(PC,3) (DB,CI); /*Clear interrupt status*/

instr3;

instr4;

instr5;

RTS (LR); /*Use LR modifier with return from subroutine*/

The JUMP (PC,3)(DB,CI) instruction actually only continues linear
execution flow by jumping to the location PC + 3 (instr5). The two
intervening instructions (instr3, instr4) are executed because of the
delayed branch (DB). This JUMP instruction is only an example—a
JUMP (CI) can be to any location.

Interrupting IDLE
The sequencer supports placing the processor in IDLE—a special instruc-
tion that halts the processor core in a low-power state. The halt occurs
until an external interrupt (IRQ2-0), timer interrupt, DMA interrupt, or
3-48 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
VIRPT vector interrupt occurs. When executing an IDLE instruction, the
sequencer fetches one more instruction at the current fetch address and
then suspends operation. The processor’s I/O processor is not effected by
the IDLE instruction—DMA transfers to or from internal memory contin-
ues uninterrupted.

The processor’s internal clock and timer (if enabled) continue to run dur-
ing IDLE. When an external interrupt (IRQ2-0), timer interrupt, DMA
interrupt, or VIRPT vector interrupt occurs, the processor responds nor-
mally. After two cycles used to fetch and decode the first instruction of the
interrupt service routine, the processor continues executing instructions
normally.

Multiprocessing Interrupts
The sequencer supports a multiprocessor vector interrupt. The vector
interrupt (VIRPT) permits passing interprocessor commands in multi-
ple-processor systems. This interrupt occurs when an external processor (a
host or another processor) writes an address to the VIRPT register, inserting
a new vector address for VIRPT.

The VIRPT register has space for the vector address and data for the service
routine. Table A-19 on page A-64 lists the bits in the VIRPT registers.

When servicing a VIRPT interrupt, the processor automatically pushes the
status stack and executes the service routine located at the address speci-
fied in VIRPT. During the return from interrupt (RTI), the processor
automatically pops the status stack.
ADSP-21161 SHARC Processor Hardware Reference 3-49

Timer and Sequencing
To flag that a VIRPT interrupt is pending, the processor sets the VIPD bit in
the SYSTAT register when the external processor writes to the VIRPT regis-
ter. Programs passing interprocessor commands must monitor VIPD to
check if the processor can receive a new VIRPT address, because:

• If an external processor writes VIRPT while a previous vector is
pending, the new VIRPT address replaces the previous pending one.

• If an external processor writes VIRPT while a previous vector is exe-
cuting, the new VIRPT address does not execute (no new interrupt is
triggered).

When returning from a VIRPT interrupt, the processor clears the VIPD bit.
Note that if a processor writes to its own VIRPT register, the write is
ignored.

Timer and Sequencing
The sequencer includes a programmable interval timer, which appears in
Figure 3-2 on page 3-4. Bits in the MODE2, TCOUNT, and TPERIOD registers
control timer operations. Table A-3 on page A-10 lists the bits in the
MODE2 register. The bits that control the timer are given as follows:

• Timer enable. MODE2 Bit 5 (TIMEN). This bit directs the processor to
enable (if 1) or disable (if 0) the timer.

• Timer count. (TCOUNT) This register contains the decrementing
timer count value, counting down the cycles between timer
interrupts.

• Timer period. (TPERIOD) This register contains the timer period,
indicating the number of cycles between timer interrupts.

The TCOUNT register contains the timer counter. The timer decrements the
TCOUNT register during each clock cycle. When the TCOUNT value reaches
zero, the timer generates an interrupt and asserts the TIMEXP output high
3-50 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
for 4 cycles (when the timer is enabled), as shown in Figure 3-5. On the
clock cycle after TCOUNT reaches zero, the timer automatically reloads
TCOUNT from the TPERIOD register.

The TPERIOD value specifies the frequency of timer interrupts. The num-
ber of cycles between interrupts is TPERIOD + 1. The maximum value of
TPERIOD is 232 – 1.

To start and stop the timer, programs use the MODE2 register’s TIMEN bit.
With the timer disabled (TIMEN=0), the program loads TCOUNT with an ini-
tial count value and loads TPERIOD with the number of cycles for the
desired interval. Then, the program enables the timer (TIMEN=1) to begin
the count.

When a program enables the timer, the timer starts decrementing the
TCOUNT register at the end of the next clock cycle. If the timer is subse-
quently disabled, the timer stops decrementing TCOUNT after the next clock
cycle as shown in Figure 3-5.

The timer expired event (TCOUNT decrements to zero) generates two inter-
rupts, TMZHI and TMZLI. For information on latching and masking these
interrupts to select timer expired priority, see “Latching Interrupts” on
page 3-42.

As with other interrupts, the sequencer needs two cycles to fetch and
decode the first instruction of the timer expired service routine before exe-
cuting the routine. The pipeline execution for the timer interrupt appears
in Table 3-15 on page 3-36.

Programs can read and write the TPERIOD and TCOUNT registers by using
universal register transfers. Reading the registers does not effect the timer.
Note that an explicit write to TCOUNT takes priority over the sequencer’s
loading TCOUNT from TPERIOD and the timer’s decrementing of TCOUNT.
Also note that TCOUNT and TPERIOD are not initialized at reset. Programs
should initialize these registers before enabling the timer.
ADSP-21161 SHARC Processor Hardware Reference 3-51

Stacks and Sequencing
Stacks and Sequencing
The sequencer includes a Program Counter (PC) stack, which appears in
Figure 3-2 on page 3-4. At the start of a subroutine or loop, the sequencer
pushes return addresses for subroutines (CALL/return instructions) and
top-of-loop addresses for loops (DO/UNTIL) instructions onto the PC stack.
The sequencer pops the PC stack during a return from interrupt (RTI),
returns from subroutine (RTS), and loop termination.

The PC stack is 30 locations deep. The stack is full when all entries are
occupied, is empty when no entries are occupied, and is overflowed if a
push occurs when the stack is already full. Bits in the STKYx register indi-
cate the PC stack full and empty states. Table A-5 on page A-19 lists the
bits in the STYKx register. The STKYx bits that indicate PC stack status are:

Figure 3-5. Timer Enable and Disable

CLKIN

Set TIMEN Timer Active
TIMER

TCOUNT=N TCOUNT=N TCOUNT=N-1

CLKIN

Clear TIMEN
Timer Inactive

TIMER

TCOUNT=M-1 TCOUNT=M-2 TCOUNT=M-2

in MODE2
ENABLE

in MODE2
DISABLE
3-52 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
• PC stack full. Bit 21 (PCFL) indicates that the PC stack is full (if 1)
or not full (if 0)—Not a sticky bit, cleared by a POP.

• PC stack empty. Bit 22 (PCEM) indicates that the PC stack is empty
(if 1) or not empty (if 0)—Not sticky, cleared by a PUSH.

The PC stack full condition causes a maskable interrupt (SOVFI). This
interrupt occurs when the PC stack has 29 locations filled (the almost full
state). The PC stack full interrupt occurs when one location is left, because
the PC stack full service routine needs that last location for its return
address.

The address of the top of the PC stack is available in the PC stack pointer
(PCSTKP) register. The value of PCSTKP is zero when the PC stack is empty,
is 1...30 when the stack contains data, and is 31 when the stack overflows.
This register is a readable and writable register. A write to PCSTKP takes
effect after a one-cycle delay. If the PC stack is overflowed, a write to
PCSTKP has no effect.

The overflow and full flags provide diagnostic aid only. Programs should
not use these flags for runtime recovery from overflow. Note that the sta-
tus stack, loop stack overflow, and PC stack full conditions trigger a
maskable interrupt.

The empty flags can ease stack saves to memory. Programs can monitor
the empty flag when saving a stack to memory to determine when the pro-
cessor has transferred all values.

Conditional Sequencing
The sequencer supports conditional execution with conditional logic that
appears in Figure 3-2 on page 3-4. This logic evaluates conditions for con-
ditional (IF) instructions and loop (DO/UNTIL) terminations. The
conditions are based on information from the arithmetic status registers
(ASTATx and ASTATy), the mode control 1 register (MODE1), the flag inputs,
ADSP-21161 SHARC Processor Hardware Reference 3-53

Conditional Sequencing
and the loop counter. For more information on arithmetic status, see
“Using Computational Status” on page 2-8. When in SIMD mode, condi-
tional execution is effected by the arithmetic status of both processing
elements. For information on conditional sequencing in SIMD mode, see
“SIMD Mode and Sequencing” on page 3-57.

Each condition that the processor evaluates has an assembler mnemonic.
The condition mnemonics for conditional instructions appear in
Table 3-19. For most conditions, the sequencer can test both true and
false states. For example, the sequencer can evaluate ALU equal-to-zero
(EQ) and ALU not-equal-to-zero (NZ).

To test conditions that do not appear in Table 3-19, a program can use
the Test Flag (TF) condition generated from a Bit Test Flag (BTF) instruc-
tion. The TF flag is set or cleared as a result of a BIT TEST or BIT XOR
instruction, which can test the contents of any of the processor’s system
registers, including STKYx and STKYy.

Table 3-19. IF Condition and DO/UNTIL Termination
Mnemonics

Condition From Description True if… Mnemonic

ALU ALU = 0 AZ = 1 EQ

ALU ≠ 0 AZ = 0 NE

ALU > 0 footnote1 GT

ALU < zero footnote2 LT

ALU ≥ 0 footnote3 GE

ALU ≤ 0 footnote4 LE

ALU carry AC = 1 AC

ALU not carry AC = 0 NOT AC

ALU overflow AV = 1 AV

ALU not overflow AV = 0 NOT AV
3-54 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Multiplier Multiplier overflow MV = 1 MV

Multiplier not overflow MV= 0 NOT MV

Multiplier sign MN = 1 MS

Multiplier not sign MN = 0 NOT MS

Shifter Shifter overflow SV = 1 SV

Shifter not overflow SV = 0 NOT SV

Shifter zero SZ = 1 SZ

Shifter not zero SZ = 0 NOT SZ

Bit Test Bit test flag true BTF = 1 TF

Bit test flag false BTF = 0 NOT TF

Flag Input Flag0 asserted FI0 = 1 FLAG0_IN

Flag0 not asserted FI0 = 0 NOT FLAG0_IN

Flag1 asserted FI1 = 1 FLAG1_IN

Flag1 not asserted FI1 = 0 NOT FLAG1_IN

Flag2 asserted FI2 = 1 FLAG2_IN

Flag2 not asserted FI2 = 0 NOT FLAG2_IN

Flag3 asserted FI3 = 1 FLAG3_IN

Flag3 not asserted FI3 = 0 NOT FLAG3_IN

Mode Bus master true BM

Bus master false NOT BM

Table 3-19. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From Description True if… Mnemonic
ADSP-21161 SHARC Processor Hardware Reference 3-55

Conditional Sequencing
The two conditions that do not have complements are LCE/NOT LCE (loop
counter expired/not expired) and TRUE/FOREVER. The context of these con-
dition codes determines their interpretation. Programs should use TRUE
and NOT LCE in conditional (IF) instructions. Programs should use FOR-
EVER and LCE to specify loop (DO/UNTIL) termination. A DO FOREVER
instruction executes a loop indefinitely, until an interrupt or reset
intervenes.

There are some restrictions on how programs may use conditions in
DO/UNTIL loops. For more information, see “Restrictions on Ending
Loops” on page 3-25 and “Restrictions on Short Loops” on page 3-26.

The bus master (BM) condition indicates whether the processor is
the current bus master in a multiprocessor system. To enable test-
ing this condition, a program must clear the MODE1 register’s
Condition Code Select (CSEL) bits. Otherwise, the bus master con-
dition is always false.

Sequencer Loop counter expired (Do) CURLCNTR = 1 LCE

Loop counter not expired
(IF)

CURLCNTR ≠ 1 NOT ICE

Always false (Do) Always FOREVER

Always true (IF) Always TRUE

1 ALU greater than (GT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
2 ALU less than (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
3 ALU greater equal (GE) is true if: [AF and (AN xor (AV and ALUSAT)) or

(AF and AN and AZ)] = 0
4 ALU lesser or equal (LT) is true if: [AF and (AN xor (AV and ALUSAT)) or

(AF and AN)] or AZ = 1

Table 3-19. IF Condition and DO/UNTIL Termination
Mnemonics (Cont’d)

Condition From Description True if… Mnemonic
3-56 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
SIMD Mode and Sequencing
The processor supports a Single-Instruction, Multiple-Data (SIMD)
mode. In this mode, both of the processor’s processing elements (PEx and
PEy) execute instructions and generate status conditions. For more infor-
mation on SIMD computations, see “Secondary Processing Element
(PEy)” on page 2-37.

Because the two processing elements can generate different outcomes, the
sequencers must evaluate conditions from both elements (in SIMD mode)
for conditional (IF) instructions and loop (DO/UNTIL) terminations. The
processor records status for the PEx element in the ASTATx and STKYx reg-
isters. The processor records status for the PEy element in the ASTATy and
STKYy registers. Table A-4 on page A-13 lists the bits in ASTATx and
ASTATy, and Table A-5 on page A-19 lists the bits in STKYx and STKYy.

Even though the processor has dual processing elements, the sequencer
does not have dual sets of stacks. The sequencer has one PC stack, one loop
address stack, and one loop counter stack. The status bits for stacks are in
STKYx and are not duplicated in STKYy. In SIMD mode, the status stack
stores both ASTATx and ASTATy. A status stack PUSH or POP instruction in
SIMD mode affects both registers in parallel.

While in SIMD mode, the sequencer evaluates conditions from both PE’s
for conditional (IF) and loop (DO/UNTIL) instructions. Table 3-20 summa-
rizes how the sequencer resolves each conditional test when SIMD mode is
enabled.
ADSP-21161 SHARC Processor Hardware Reference 3-57

SIMD Mode and Sequencing
Conditional Compute Operations
While in SIMD mode, a conditional compute operation can execute on
both PE’s, either PE, or neither PE, depending on the outcome of the sta-
tus flag test. Flag testing is independently performed on each PE.

Table 3-20. Conditional Execution Summary

Conditional Operation Conditional Outcome Depends On …

Compute Operations Executes in each processing element independently
depending on condition test in each processing element

Branches and Loops Executes in sequencer depending on ANDing condition
test in each processing element

Data Moves (from complementary
pair1 to complementary pair)

Executes move in each processing element (and/or mem-
ory) independently depending on condition test in each
processing element. The same uncomplimented universal
register is the source for each move, including X<->Y
swap.

Data Moves (from uncomplemented
Ureg register to complementary pair)

Executes move in each processing element (and/or mem-
ory) independently depending on condition test in each
processing element. The same uncomplimented universal
register is the source for each move, including X<->Y
swap.

Data Moves (from complementary
pair to uncomplemented register2)

Executes explicit move to uncomplemented universal reg-
ister depending on condition test in PEx only; no
implicit move occurs. The same uncomplimented univer-
sal register is the source for each move, including X<->Y
swap.

DAG Operations Executes modify3 in DAG depending on ORing condi-
tion test in each processing element

1 Complementary pairs are registers with SIMD complements, include PEx/y data registers and
USTAT1/2, USTAT3/4, ASTATx/y, STKYx/y, and PX1/2 universal registers.

2 Uncomplemented registers are universal registers that do not have SIMD complements.
3 Post-modify operations follow this rule, but pre-modify operations always occur despite out-

come.
3-58 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Conditional Branches and Loops
The processor executes a conditional branch (JUMP or CALL/return) or loop
(DO/UNTIL) based on the result of AND’ing the condition tests on both
PEx and PEy. A conditional branch or loop in SIMD mode occurs only
when the condition is true in PEx and PEy.

Using complementary conditions (for example EQ and NE), programs can
produce an OR’ing of the condition tests for branches and loops in SIMD
mode. A conditional branch or loop that uses this technique should con-
sist of a series of conditional compute operations. These conditional
computes generate NOPs on the processing element where a branch or loop
does not execute. For more information on programming in SIMD mode,
see the ADSP-21160 SHARC DSP Instruction Set Reference.

Conditional Data Moves
The execution of a conditional (IF) data move (register-to-register and
register-to/from-memory) instruction depends on three factors:

• The explicit data move depends on the evaluation of the condi-
tional test in the PEx processing element

• The implicit data move depends on the evaluation of the condi-
tional test in the PEy processing element

• Both moves depend on the types of registers used in the move

There are four cases for SIMD conditional data moves:
ADSP-21161 SHARC Processor Hardware Reference 3-59

SIMD Mode and Sequencing
Case 1: Complementary Register Pair Data Move

In this case data moves from a complementary register pair to a comple-
mentary register pair. The processor executes the explicit move depending
on the evaluation of the conditional test in the PEx processing element
and the implicit move depending on the evaluation of the conditional test
in the PEy processing element.

Example: Register–to–Memory Move — PEx Explicit Register

IF EQ DM(I0,M0) = R2;

For this instruction the processor is operating in SIMD mode, a register in
the PEx data register file is the explicit register and I0 is pointing to an
even address in internal memory. Indirect addressing is shown in the
instructions shown in this example. However, the same results occur using
direct addressing. The data movement resulting from the evaluation of the
conditional test in the PEx and PEy processing elements is shown in
Table 3-21.

Table 3-21. Register–to–Memory Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move occurs from
r2 to location I0

s2 transfers to location
(I0+1)

1 0 r2 transfers to location I0 NO data move occurs from
s2 to location (I0+1)

1 1 r2 transfers to location I0 s2 transfers to location
(I0+1)
3-60 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Example: Register–to–Memory Move — PEy Explicit Register

IF EQ DM(I0,M0) = S2;

For this instruction the processor is operating in SIMD mode, a register in
the PEy data register file is the explicit register and I0 is pointing to an
even address in internal memory. The data movement resulting from the
evaluation of the conditional test in the PEx and PEy processing elements
is shown in Table 3-22.

Examples: Register–to–Register Move Instructions

IF EQ R8 = R2;

IF EQ PX1 = R2;

IF EQ USTAT1 = R2;

For these instruction the processor is operating in SIMD mode and regis-
ters in the PEx data register file are used as the explicit registers. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-23.

Table 3-22. Register–to–Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move occurs from
s2 to location I0

r2 transfers to location I0+1

1 0 s2 transfers to location I0 NO data move occurs from r2
to location I0+1

1 1 s2 transfers to location I0 r2 transfers to location I0+1
ADSP-21161 SHARC Processor Hardware Reference 3-61

SIMD Mode and Sequencing
Examples: Register–to–Register Move Instructions

IF EQ R8 = S2;

IF EQ PX1 = S2;

IF EQ USTAT1 = S2;

For these instructions the processor is operating in SIMD mode and regis-
ters in the PEy data register file are used as explicit registers. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-24.

Table 3-23. Register–to–Register Moves – Complementary Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move to registers
r9,px1,ustat1 occurs

s2 transfers to registers s9,px2
and ustat2

1 0 r2 transfers to registers
r9,px1 and ustat1

NO data move to s9, px2, or
ustat2 occurs

1 1 r2 transfers to registers
r9,px1, and ustat1

s2 transfers to registers
s9,px2,and ustat2

Table 3-24. Register–to–Register Moves – Complementary Register
Pairs

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 NO data move occurs NO data move occurs

0 1 NO data move to registers
s9,px and ustat1 occurs

r2 transfers to registers s9,px2,
and ustat2
3-62 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
Case 2: Uncomplemented–to–Complementary
Register Move

In this case data moves from an uncomplemented register (Ureg without a
SIMD complement) to a complementary register pair. The processor exe-
cutes the explicit move depending on the evaluation of the conditional test
in the PEx processing element. The processor executes the implicit move
depending on the evaluation of the conditional test in the PEy processing
element. In each processing element where the move occurs, the content
of the source register is duplicated in destination.

Example: Register–to–Register Move

IF EQ R1 = PX;

While PX1 and PX2 are complementary registers, the combined PX
register has no complementary register. For more information, see
“Internal Data Bus Exchange” on page 5-10.

For this instruction the processor is operating in SIMD mode. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-24.

1 0 s2 transfers to registers r9,px1
and ustat1

NO data move to registers
s9,px2, and ustat2 occurs

1 1 s2 transfers to registers r9,px1,
and ustat1

r2 transfers to registers s9,px2,
and ustat2

Table 3-24. Register–to–Register Moves – Complementary Register
Pairs (Cont’d)

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit
ADSP-21161 SHARC Processor Hardware Reference 3-63

SIMD Mode and Sequencing
Case 3: Complementary Register => Uncomplimentary
Register

In this case data moves from a complementary register pair to an uncom-
plemented register. The processor executes the explicit move to the
uncomplemented universal register, depending on the condition test in
the PEx processing element only. The processor does not perform an
implicit move.

Example: Register–to–Register Move

IF EQ PX = R1;

For this instruction the processor is operating in SIMD mode. The data
movement resulting from the evaluation of the conditional test in the PEx
and PEy processing elements is shown in Table 3-26.

Table 3-25. Complementary–to–Uncomplemented Register Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 r1 remains unchanged s1 remains unchanged

0 1 r1 remains unchanged s1 gets px value

1 0 r1 gets px value s1 remains unchanged

1 1 r1 gets px value s1 gets px value

Table 3-26. Complementary–to–Uncomplemented Move

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit

0 0 px remains unchanged no implicit move

0 1 px remains unchanged no implicit move
3-64 ADSP-21161 SHARC Processor Hardware Reference

Program Sequencer
For more details on PX register transfers, refer to “Internal Data Bus
Exchange” on page 5-10.

Case 4: Data Move Involves External Memory or
IOP Memory Space

Conditional data moves from a complementary register pair to an uncom-
plemented register with an access to external memory space or IOP
memory space. This results in unexpected behavior and should not be
used.

IF EQ DM(I0,M0) = R2;

IF EQ DM(I0,M0) = S2;

For these instruction the processor is operating in SIMD mode and the
explicit register is either a PEx register or PEy register. I0 points to either
external memory space or IOP memory space.

Indirect addressing is shown in the instructions shown in this example.
However, the same results occur using direct addressing.

1 0 r1 40-bit explicit move to px no implicit move

1 1 r1 40-bit explicit move to px no implicit move

Table 3-26. Complementary–to–Uncomplemented Move (Cont’d)

Condition
in PEx

Condition
in PEy

Result

AZx AZy Explicit Implicit
ADSP-21161 SHARC Processor Hardware Reference 3-65

SIMD Mode and Sequencing
Conditional DAG Operations
Conditional post-modify DAG operations update the DAG register based
on OR’ing of the condition tests on both processing elements. Actual data
movement involved in a conditional DAG operation is based on indepen-
dent evaluation of condition tests in PEx and PEy. Only the post modify
update is based on the OR’ing of the these conditional tests.

Conditional pre-modify DAG operations behave differently. The DAGs
always pre-modify an index, independent of the outcome of the condition
tests on each processing element.
3-66 ADSP-21161 SHARC Processor Hardware Reference

4 DATA ADDRESS GENERATOR

The processor’s Data Address Generators (DAGs) generate addresses for

data moves to and from Data Memory (DM) and Program Memory (PM).
By generating addresses, the DAGs let programs refer to addresses indi-
rectly, using a DAG register instead of an absolute address. The DAGs
architecture, which appears in Figure 4-1, supports several functions that
minimize overhead in data access routines. These functions include:

• Supply address and post-modify—provides an address during a
data move and auto-increments the stored address for the next
move.

• Supply pre-modified address—provides a modified address during
a data move without incrementing the stored address.

• Modify address—increments the stored address without perform-
ing a data move.

• Bit-reverse address—provides a bit-reversed address during a data
move without reversing the stored address.

• Broadcast data moves—performs dual data moves to complemen-
tary registers in each processing element to support SIMD mode.
ADSP-21161 SHARC Processor Hardware Reference 4-1

Setting DAG Modes
As shown in Figure 4-1, each DAG has four types of registers. These regis-
ters hold the values that the DAG uses for generating addresses. The four
types of registers are:

• Index registers (I0-I7 for DAG1 and I8-I15 for DAG2). An index
register holds an address and acts as a pointer to memory. For
example, the DAG interprets DM(I0,0) and PM(I8,0) syntax in an
instruction as addresses.

• Modify registers (M0-M7 for DAG1 and M8-M15 for DAG2). A
modify register provides the increment or step size by which an
index register is pre- or post-modified during a register move. For
example, the DM(I0, M1) instruction directs the DAG to output the
address in register I0 then modify the contents of I0 using the M1
register.

• Length and Base registers (L0-L7 and B0-B7 for DAG1 and
L8-L15 and B8-B15 for DAG2). Length and base registers setup
the range of addresses and the starting address for a circular buffer.
For more information on circular buffers, see “Addressing Circular
Buffers” on page 4-12.

Setting DAG Modes
The MODE1 register controls the operating mode of the DAGs. Table A-2
on page A-3 lists all the bits in MODE1. The following bits in MODE1 control
Data Address Generator modes:

• Circular buffering enable. Bit 24 (CBUFEN) enables circular buffer-
ing (if 1) or disables circular buffering (if 0).

• Broadcast register loading enable, DAG1-I1. Bit 23 (BDCST1)
enables register broadcast loads to complementary registers from I1
indexed moves (if 1) or disables broadcast loads (if 0).
4-2 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
• Broadcast register loading enable, DAG2-I9. Bit 22 (BDCST9)
enables register broadcast loads to complementary registers from I9
indexed moves (if 1) or disables broadcast loads (if 0).

• SIMD mode enable. Bit 21 (PEYEN) enables computations in
PEy—SIMD mode—(if 1) or disables PEy—SISD mode—(if 0).
For more information on SIMD mode, see “Secondary Processing
Element (PEy)” on page 2-37.

Figure 4-1. Data Address Generator (DAG) Block Diagram

STKYX

MODE2

MODE1

MUX

MUX

ADD

I
REGISTERS

8 X 32

32

32

32

3232
IMMEDIATE

VALUE FROM
INSTRUCTION

ADDRESS ADJUSTMENT PER WORD SIZE (SHORT, NORMAL, OR LONG)

OPTIONAL BIT-REVERSE FOR I0-DAG1 & I8-DAG2
OPTIONAL BROADCAST FOR I1-DAG1 & I9-DAG2

M
REGISTERS

8 X 32

DM ADDRESS BUS (DAG1 - I,M,L,B0-7)

PM ADDRESS BUS (DAG2 - I,M,L,B8-15)

32 32

DM OR PM DATA BUS

L
REGISTERS

8 X 32

B
REGISTERS

8 X 32

MODULUS
LOGIC

BIT-REVERSE
(OPTIONAL)

3232

UPDATE32

PRE-MODIFY
ADDRESSING

POST-MODIFY
ADDRESSING
ADSP-21161 SHARC Processor Hardware Reference 4-3

Setting DAG Modes
• Secondary registers for DAG2 lo, I,M,L,B8-11. Bit 6 (SRD2L)
Secondary registers for DAG2 hi, I,M,L,B12-15. Bit 5 (SRD2H)
Secondary registers for DAG1 lo, I,M,L,B0-3. Bit 4 (SRD1L)
Secondary registers for DAG1 hi, I,M,L,B4-7. Bit 3 (SRD1H)
These bits select the corresponding secondary register set (if 1) or
select the corresponding primary register set—the set that is avail-
able at reset—(if 0).

• Bit-reverse addressing enable, DAG1-I0. Bit 1 (BR0) enables
bit-reversed addressing on I0 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

• Bit-reverse addressing enable, DAG2-I8. Bit 0 (BR8) enables
bit-reversed addressing on I8 indexed moves (if 1) or disables
bit-reversed addressing (if 0).

Circular Buffering Mode
The CBUFEN bit in the MODE1 register enables circular buffering—a mode in
which the DAG supplies addresses ranging within a constrained buffer
length (set with an L register), starting at a base address (set with a B regis-
ter), and incrementing the addresses on each access by a modify value (set
with an M register).

For revision 1.0 and greater of ADSP-21161 processor, the Circu-
lar Buffer Enable bit (CBUFEN) in SYSCON is set (=1) upon reset. For
earlier silicon revisions 0.x, this bit is cleared (=0) upon reset. This
change was made to ensure code compatibility with the
ADSP-2106x SHARC family (ADSP-21060/1/2 and
ADSP-21065L) where circular buffering is active upon reset.

However, circular buffering is disabled upon reset for the
ADSP-21160. Make note of this when porting code from
ADSP-21160 to ADSP-21161 processor.
4-4 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
For more information on setting up and using circular buffers, see
“Addressing Circular Buffers” on page 4-12. When using circular buffers,
the DAGs can generate an interrupt on buffer overflow (wrap around).
For more information, see “Using DAG Status” on page 4-8.

Broadcast Loading Mode
The BDCST1 and BDCST9 bits in the MODE1 register enable broadcast loading
mode—multiple register loads from a single load command. When the
BDCST1 bit is set (1), the DAG performs a dual data register load on
instructions that use the I1 register for the address. The DAG loads both
the named register (explicit register) in one processing element and loads
that register’s complementary register (implicit register) in the other pro-
cessing element. The BDCST9 bit in the MODE1 register enables this feature
for the I9 register.

Enabling either DAG1 or DAG2 register load broadcasting has no effect
on register stores or loads to universal registers other than the register file
data registers. Table 4-1 demonstrates the effects of a register load opera-
tion on both processing elements with register load broadcasting enabled.
In Table 4-1, note that Rx and Sx are complementary data registers.

Table 4-1. Dual Processing Element Register Load Broadcasts

Instruction syntax Rx = DM(I1,Ma); {Syntax #1}
Rx = PM(I9,Mb); {Syntax #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Syntax #3}

PEx explicit operations Rx = DM(I1,Ma); {Explicit #1}
Rx = PM(I9,Mb); {Explicit #2}
Rx = DM(I1,Ma), Rx = PM(I9,Mb); {Explicit #3}

PEy implicit operations Sx = DM(I1,Ma); {Implicit #1}
Sx = PM(I9,Mb); {Implicit #2}
Sx = DM(I1,Ma), Sx = PM(I9,Mb); {Implicit #3}

 1. Note that the letters a and b (as in Ma or Mb) indicate numbers for modify registers in
DAG1 and DAG2. The letter a indicates a DAG1 register and can be replaced with
0 through 7. The letter b indicates a DAG2 register and can be replaced with 8 through 15.
ADSP-21161 SHARC Processor Hardware Reference 4-5

Setting DAG Modes
The PEYEN bit (SISD/SIMD mode select) does not influence broadcast
operations. Broadcast loading is particularly useful in SIMD applications
where the algorithm needs identical data loaded into each processing ele-
ment. For more information on SIMD mode (in particular, a list of
complementary data registers), see “Secondary Processing Element (PEy)”
on page 2-37.

Alternate (Secondary) DAG Registers
Each DAG has an alternate register set. To facilitate fast context switch-
ing, the processor includes alternate register sets for data, results, and data
address generator registers. Bits in the MODE1 register control when alter-
nate registers become accessible. While inaccessible, the contents of
alternate registers are not effected by processor operations. Note that there
is a one cycle latency between writing to MODE1 and being able to access an
alternate register set. The alternate register sets for the DAGs are described
in this section. For more information on alternate data and results regis-
ters, see “Alternate (Secondary) Data Registers” on page 2-32.

Bits in the MODE1 register can activate alternate register sets within the
DAGs: the lower half of DAG1 (I,M,L,B0-3), the upper half of DAG1
(I,M,L,B4-7), the lower half of DAG2 (I,M,L,B8-11), and the upper half
of DAG2 (I,M,L,B12-15). Figure 4-1 shows the DAG’s primary and alter-
nate register sets.

To share data between contexts, a program places the data to be shared in
one half of either the current DAG’s registers or the other DAG’s registers
and activates the alternate register set of the other half. The following
example demonstrates how code should handle the one cycle of latency
4-6 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
from the instruction setting the bit in MODE1 to when the alternate registers
may be accessed. Note that it is possible to use any instruction that does
not access the switching register file instead of an NOP instruction.

BIT SET MODE1 SRD1L; /* Activate alternate dag1 lo regs */

NOP; /* Wait for access to alternates */

R0=DM(i0,m1);

Figure 4-2. Data Address Generator Primary and Alternate Registers

I0

I1

I2

I3

M0

M1

M2

M3

L0

L1

L2

L3

B0

B1

B2

B3

SRD1L

I4

I5

I6

I7

M4

M5

M6

M7

L4

L5

L6

L7

B4

B5

B6

B7

SRD1H

I8

I9

I10

I11

M8

M9

M10

M11

L8

L9

L10

L11

B8

B9

B10

B11

SRD2L

I12

I13

I14

I15

M12

M13

M14

M15

L12

L13

L14

L15

B12

B13

B14

B15

SRD2H

MODE1 SELECT BIT DAG1 REGISTERS (DATA MEMORY)

DAG2 REGISTERS (PROGRAM MEMORY)
ADSP-21161 SHARC Processor Hardware Reference 4-7

Using DAG Status
Bit-reverse Addressing Mode
The BR0 and BR8 bits in the MODE1 register enable bit-reverse addressing
mode—outputting addresses in reverse bit order. When BR0 is set (1),
DAG1 bit-reverses 32-bit addresses output from I0. When BR8 is set (1),
DAG2 bit-reverses 32-bit addresses output from I8. The DAGs only
bit-reverse the address output from I0 or I8; the contents of these registers
are not reversed. Bit-reverse addressing mode effects both pre-modify and
post-modify operations. The following example demonstrates how
bit-reverse mode effects address output:

BIT SET Mode1 BR0; /* Enables bit-rev. addressing for DAG1 */

I0=0x8a000; /* Loads I0 with the bit reverse of the

buffer’s base address, DM(0x51000) */

M0=0x4000000; /* Loads M0 with value for post-modify */

R1=DM(I0,M0); /* Loads r1 with contents of DM address

DM(0x51000), which is the bit-reverse of 0x8a000, then post modi-

fies I0 for the next access with (0x8a000 + 0x4000000)=0x408a000,

which is the bit-reverse of DM(0x51020) */

In addition to bit-reverse addressing mode, the processor supports a
bit-reverse instruction (BITREV). This instruction bit-reverses the contents
of the selected register. For more information on the BITREV instruction,
see “Modifying DAG Registers” on page 4-17 or the ADSP-21160
SHARC DSP Instruction Set Reference.

Using DAG Status
As described in “Addressing Circular Buffers” on page 4-12, the DAGs
can provide addressing for a constrained range of addresses, repeatedly
cycling through this data (or buffer). A buffer overflow (or wrap around)
occurs each time the DAG circles past the buffer’s base address.
4-8 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
The DAGs can provide buffer overflow information when executing circu-
lar buffer addressing for I7 or I15. When a buffer overflow occurs (a
circular buffering operation increments the I register past the end of the
buffer), the appropriate DAG updates a buffer overflow flag in a sticky
status (STKYx) register. A buffer overflow can also generate a maskable
interrupt. Two ways to use buffer overflows from circular buffering are:

• Interrupts. Enable interrupts and use an interrupt service routine
to handle the overflow condition immediately. This method is
appropriate if it is important to handle all overflows as they occur;
for example in a “ping-pong” or swap I/O buffer pointers routine.

• STKYx registers. Use the BIT TST instruction to examine overflow
flags in the STKY register after a series of operations. If an overflow
flag is set, the buffer has overflowed—wrapped around—at least
once. This method is useful when overflow handling is not critical.

DAG Operations
The processor’s DAGs perform several types of operations to generate data
addresses. As shown in Figure 4-1 on page 4-3, the DAG registers and the
MODE1, MODE2, and STKYx registers all contribute to DAG operations. The
following sections provide details on DAG operations:

• “Addressing With DAGs” on page 4-10

• “Addressing Circular Buffers” on page 4-12

• “Modifying DAG Registers” on page 4-17

An important item to note from Figure 4-1 on page 4-3 is that the DAG
automatically adjusts the output address per the word size of the address
location (short word, normal word, or long word). This address adjust-
ment lets internal memory use the address directly.
ADSP-21161 SHARC Processor Hardware Reference 4-9

DAG Operations
SISD/SIMD mode, access word size, and data location (inter-
nal/external) all influence data access operations.

Addressing With DAGs
The DAGs support two types of modified addressing—generating an
address that is incremented by a value or a register. In pre-modify address-
ing, the DAG adds an offset (modifier), either an M register or an
immediate value, to an I register and outputs the resulting address.
Pre-modify addressing does not change (or update) the I register. The
other type of modified addressing is post-modify addressing. In post-mod-
ify addressing, the DAG outputs the I register value unchanged then adds
an M register or immediate value, updating the I register value. Figure 4-3
compares pre- and post-modify addressing.

The difference between pre-modify and post-modify instructions in the
processor’s assembly syntax is the position of the index and modifier in the
instruction. If the I register comes before the modifier, the instruction is a
post-modify operation. If the modifier comes before the I register, the

Figure 4-3. Pre-Modify and Post-Modify Operations

I

M

+

OUTPUT I+M

PRE-MODIFY
NO I REGISTER UPDATE

SYNTAX: PM(MX, IX)
DM(MX, IX)

1. OUTPUT I

M

I+M

+

2. UPDATE

POST-MODIFY
I REGISTER UPDATE

SYNTAX: PM(IX, MX)
DM(IX, MX)
4-10 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
instruction is a pre-modify without update operation. The following
instruction accesses the program memory location indicated by the value
in I15 and writes the value I15 + M12 to the I15 register:

R6 = PM(I15,M12); /* Post-modify addressing with update */

By comparison, the following instruction accesses the program memory
location indicated by the value I15 + M12 and does not change the value in
I15:

R6 = PM(M12,I15); /* Pre-modify addressing without update */

Modify (M) registers can work with any index (I) register in the same
DAG (DAG1 or DAG2). For a list of I and M registers and their DAGs,
see Figure 4-2 on page 4-7.

Instructions can use a number (immediate value), instead of an M register,
as the modifier. The size of an immediate value that can modify an I regis-
ter depends on the instruction type. For all single data access operations,
modify immediate values can be up to 32 bits wide. Instructions that com-
bine DAG addressing with computations limit the size of the modify
immediate value. In these instructions (multifunction computations), the
modify immediate values can be up to 6 bits wide. The following example
instruction accepts up to 32-bit modifiers:

R1=DM(0x40000000,I1); /* DM address = I1+0x4000 0000 */

The following example instruction accepts up to 6-bit modifiers:

F6=F1+F2,PM(I8,0x0B)=ASTAT; /* PM address = I8, I8=I8+0x0B */

Note that pre-modify addressing operations must not change the memory
space of the address. For example, pre-modifying an address in the proces-
sor’s internal memory space should not generate an address in external
memory space.
ADSP-21161 SHARC Processor Hardware Reference 4-11

DAG Operations
Addressing Circular Buffers
The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, “wrapping around”
to repeat stepping through the range of addresses in a circular pattern. To
address a circular buffer, the DAG steps the index pointer (I register)
through the buffer, post-modifying and updating the index on each access
with a positive or negative modify value (M register or immediate value). If
the index pointer falls outside the buffer, the DAG subtracts or adds the
length of the buffer from or to the value, wrapping the index pointer back
to the start of the buffer. The DAG’s support for circular buffer address-
ing appears in Figure 4-1 on page 4-3, and an example of circular buffer
addressing appears in Figure 4-4.

The starting address that the DAG wraps around is called the buffer’s base
address (B register). There are no restrictions on the value of the base
address for a circular buffer.

Circular buffering may only use post-modify addressing. The
DAG’s architecture, as shown in Figure 4-1 on page 4-3, cannot
support pre-modify addressing for circular buffering, because cir-
cular buffering requires that the index be updated on each access.

It is important to note that the DAGs do not detect memory map over-
flow or underflow. If the address post-modify produces I+M > 0xFFFF
FFFF or I–M < 0, circular buffering may not function correctly. Also, the
length of a circular buffer should not let the buffer straddle the top of the
memory map. For more information on the processor’s memory map, see
“Internal Address and Data Buses” on page 5-7.
4-12 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
As shown in Figure 4-4, programs use the following steps to set up a circu-
lar buffer:

1. Enable circular buffering (BIT SET Mode1 CBUFEN;). This operation
is only needed once in a program.

2. Load the buffer’s base address into the B register. This operation
automatically loads the corresponding I register.

Figure 4-4. Circular Data Buffers

0

1

2

3

4

5

6

7

8

9

10

1

2

3

0

1

2

3

4

5

6

7

8

9

10

4

5

6

0

1

2

3

4

5

6

7

8

9

10

7

8

9

0

1

2

3

4

5

6

7

8

9

10

10

11

THE COLUMNS ABOVE SHOW THE SEQUENCE IN ORDER OF LOCATIONS ACCESSED IN ONE PASS.
NOTE THAT "0" ABOVE IS ADDRESS DM(0X55000). THE SEQUENCE REPEATS ON SUBSEQUENT PASSES.

THE FOLLOWING SYNTAX SETS UP AND ACCESSES A CIRCULAR BUFFER WITH:
LENGTH = 11
BASE ADDRESS = 0X55000
MODIFIER = 4

BIT SET MODE1 CBUFEN; /* ENABLES CIRCULAR BUFFER ADDRESSING; JUST ONCE IN PROGRAM */
B0 = 0X55000; /* LOADS B0 AND L0 REGISTERS WITH BASE ADDRESS */
L0 = 0XB; /* LOADS L0 REGISTER WITH LENGTH OF BUFFER */
M1 = 0X4; /* LOADS M1 WITH MODIFIER OR STEP SIZE */
LCNTR = 11, DO MY_CIR_BUFFER UNTIL LCE; /* SETS UP A LOOP CONTAINING BUFFER ACCESSES */
R0 = DM(I0,M1); /* AN ACCESS WITHIN THE BUFFER USES POST MODIFY ADDRESSING */
... /* OTHER INSTRUCTIONS IN THE MY_CIR_BUFFER LOOP */
MY_CIR_BUFFER: NOP; /* END OF MY_CIR_BUFFER LOOP */
ADSP-21161 SHARC Processor Hardware Reference 4-13

DAG Operations
3. Load the buffer’s length into the corresponding L register. For
example, L0 corresponds to B0.

4. Load the modify value (step size) into an M register in the corre-
sponding DAG. For example, M0 through M7 correspond to B0.
Alternatively, the program can use an immediate value for the
modifier.

After this set up, the DAGs use the modulus logic in Figure 4-1 on
page 4-3 to process circular buffer addressing.

On the ADSP-21161 processor, programs enable circular buffering by set-
ting the CBUFEN bit in the MODE1 register. This bit has a corresponding
mask bit in the MMASK register. Setting the corresponding MMASK bit causes
the CBUFEN bit to be cleared following a push status instruction (PUSH STS),
the execution of an external interrupt, timer interrupt, or vectored inter-
rupt. This feature lets programs disable circular buffering while in an
interrupt service routine that does not use circular buffering. By disabling
circular buffering, the routine does not need to save and restore the
DAG’s B and L registers.

Clearing the CBUFEN bit disables circular buffering for all data load and
store operations. The DAGs perform normal post-modify load and store
accesses instead, ignoring the B and L register values. Note that a write to a
B register modifies the corresponding I register, independent of the state
of the CBUFEN bit. The MODIFY instruction executes independent of the
state of the CBUFEN bit. The MODIFY instruction always performs circular
buffer modify of the index registers if the corresponding B and L registers
are set up, independent of the state of the CBUFEN bit.

For revision 1.0 and greater of ADSP-21161 processor, the Circu-
lar Buffer Enable bit (CBUFEN) in SYSCON is set (=1) upon reset. For
earlier silicon revisions 0.x, this bit is cleared (=0) upon reset. This
change was made to ensure code compatibility with the
ADSP-2106x SHARC family (ADSP-21060/1/2 and
ADSP-21065L) where circular buffering is active upon reset.
4-14 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
However, circular buffering is disabled upon reset for the
ADSP-21160. Make note of this when porting code from
ADSP-21160 to ADSP-21161 processor.

On the first post-modify access to the buffer, the DAG outputs the I reg-
ister value on the address bus then modifies the address by adding the
modify value. If the updated index value is within the buffer length, the
DAG writes the value to the I register. If the updated value is outside the
buffer length, the DAG subtracts (positive) or adds (negative) the L regis-
ter value before writing the updated index value to the I register. In
equation form, these post-modify and wrap around operations work as
follows:

• If M is positive:

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)

Inew = Iold + M – L if Iold + M ≥ Buffer base + length (end of
buffer)

• If M is negative:

Inew = Iold + M if Iold + M ≥ Buffer base (start of buffer)

Inew = Iold + M + L if Iold + M < Buffer base (start of buffer)

The DAGs use all four types of DAG registers for addressing circular buff-
ers. These registers operate as follows for circular buffering:

• The index (I) register contains the value that the DAG outputs on
the address bus.

• The modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I register at the end of
each memory access. The M register can be any M register in the
same DAG as the I register and does not have to have the same
number. The modify value also can be an immediate value instead
ADSP-21161 SHARC Processor Hardware Reference 4-15

DAG Operations
of an M register. The size of the modify value, whether from an M
register or immediate, must be less than the length (L register) of
the circular buffer.

• The length (L) register sets the size of the circular buffer and the
address range that the DAG circulates the I register through. L
must be positive and cannot have a value greater than 231 – 1. If an
L register’s value is zero, its circular buffer operation is disabled.

• The base (B) register, or the B register plus the L register, is the
value that the DAG compares the modified I value with after each
access. When the B register is loaded, the corresponding I register is
simultaneously loaded with the same value. When I is loaded, B is
not changed. Programs can read the B and I registers
independently.

There is one set of registers (I7 and I15) in each DAG that can generate an
interrupt on circular buffer overflow (address wraparound). For more
information, see “Using DAG Status” on page 4-8.

When a program needs to use I7 or I15 without circular buffering and the
processor has the circular buffer overflow interrupts unmasked, the pro-
gram should disable the generation of these interrupts by setting the
B7/B15 and L7/L15 registers to values that prevent the interrupts from
occurring. If I7 were accessing the address range 0x1000–0x2000, the pro-
gram could set B7=0x0000 and L7=0xFFFF. Because the processor
generates the circular buffer interrupt based on the wrap around equations
on page 4-15, setting the L register to zero does not necessarily achieve the
desired results. If the program is using either of the circular buffer over-
flow interrupts, it should avoid using the corresponding I register(s) (I7 or
I15) where interrupt branching is not needed.
4-16 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
In the case of circular buffer overflow interrupts, if CBUFEN = 1 and register
L7 = 0 (or L15 = 0), then the CB7I (or CB15I) interrupt occurs at every
change of I7 (or I15), after the index register (I7 or I15) crosses the base
register (B7 or B15) value. This behavior is independent of the context of
the DAG registers, both primary and alternate.

When a Long word access, SIMD access, or Normal word access
(with LW option) crosses the end of the circular buffer, the proces-
sor completes the access before responding to the end of buffer
condition.

Modifying DAG Registers
The DAGs support two operations that modify an address value in an
index register without outputting an address. These two operations,
address bit-reversal and address modify, are useful for bit-reverse address-
ing and maintaining pointers.

The MODIFY instruction modifies addresses in any DAG index register
(I0-I15) without accessing memory. If the I register’s corresponding B and
L registers are set up for circular buffering, a MODIFY instruction performs
the specified buffer wrap around (if needed). The syntax for MODIFY is sim-
ilar to post-modify addressing (index, then modifier). MODIFY accepts
either a 32-bit immediate values or an M register as the modifier. The fol-
lowing example adds 4 to I1 and updates I1 with the new value:

MODIFY(I1,4);

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0-I15) without accessing memory. This instruction is
independent of the bit-reverse mode. The BITREV instruction adds a 32-bit
immediate value to a DAG index register, bit-reverses the result, and
writes the result back to the same index register. The following example
adds 4 to I1, bit-reverses the result, and updates I1 with the new value:

BITREV(I1,4);
ADSP-21161 SHARC Processor Hardware Reference 4-17

DAGs, Registers, and Memory
Addressing in SISD and SIMD Modes
Single-Instruction, Multiple-Data (SIMD) mode (PEYEN bit=1) does not
change the addressing operations in the DAGs, but it does change the
amount of data that moves during each access. The DAGs put the same
addresses on the address buses in SIMD and SISD modes. In SIMD
mode, the processor’s memory and processing elements get data from the
locations named (explicit) in the instruction syntax and complementary
(implicit) locations. For more information on data moves between regis-
ters, see “Secondary Processing Element (PEy)” on page 2-37.

DAGs, Registers, and Memory
DAG registers are part of the processor’s universal register set. Programs
may load the DAG registers from memory, from another universal regis-
ter, or with an immediate value. Programs may store DAG registers’
contents to memory or to another universal register.

The DAG’s registers support the bidirectional register-to-register transfers
that are described in “SIMD (Computational) Operations” on page 2-43.
When the DAG register is a source of the transfer, the destination can be a
register file data register. This transfer results in the contents of the single
source register being duplicated in complementary data registers in each
processing element.

Programs should use care in the case where the DAG register is a destina-
tion of a transfer from a register file data register source. Programs should
use a conditional operation to select either one processing element or nei-
ther as the source. Having both processing elements contribute a source
value results in the PEx element’s write having precedence over the PEy
element’s write.

In the case where a DAG register is both source and destination, the data
move operation executes the same as it would if SIMD mode were dis-
abled (PEYEN cleared).
4-18 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
DAG Register-to-Bus Alignment
There are three word alignment cases for DAG registers and PM or DM
data buses: Normal word, Extended-precision Normal word, and Long
word.

The DAGs align normal word (32-bit) addressed transfers to the low order
bits of the buses. These transfers between memory and 32-bit DAG1 or
DAG2 registers use the 64-bit DM and PM data buses. Figure 4-5 illus-
trates these transfers.

The DAGs align extended-precision normal word (40-bit) addressed
transfers or register-to-register transfers to bits 39-8 of the buses. These
transfers between a 40-bit data register and 32-bit DAG1 or DAG2 regis-
ters use the 64-bit DM and PM data buses. Figure 4-6 illustrates these
transfers.

Figure 4-5. Normal Word (32-bit) DAG Register Memory Transfers

DAG1 OR DAG2 REGISTERS

03163

0X0000 0000

DM OR PM DATA BUS

031
ADSP-21161 SHARC Processor Hardware Reference 4-19

DAGs, Registers, and Memory
Long word (64-bit) addressed transfers between memory and 32-bit
DAG1 or DAG2 registers target double DAG registers and use the 64-bit
DM and PM data buses. Figure 4-7 illustrates how the bus works in these
transfers.

If the Long word transfer specifies an even-numbered DAG register (e.g.,
I0 or I2), then the even numbered register value transfers on the lower
half of the 64-bit bus, and the even numbered register + 1 value transfers
on the upper half (bits 63-32) of the bus.

If the Long word transfer specifies an odd numbered DAG register (e.g.,
I1, or B3), the odd numbered register value transfers on the lower half of
the 64-bit bus, and the odd numbered register - 1 value (I0 or B2 in this
example) transfers on the upper half (bits 63-32) of the bus.

Figure 4-6. DAG Register to Data Register Transfers

Figure 4-7. Long Word DAG Register to Data Register Transfers

DAG1 OR DAG2 REGISTERS

031

03963

0X0000 00

DM OR PM DATA BUS

0X00

8

EXPLICIT (NAMED)
DAG1 OR DAG2 REGISTERS

031

03163
DM OR PM DATA BUS

IMPLICIT (NAMED+1)
DAG1 OR DAG2 REGISTERS

031
4-20 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
In both the even- and odd-numbered cases, the explicitly specified DAG
register sources or sinks bits 31-0 of the Long word addressed memory.

DAG Register Transfer Restrictions
The two types of transfer restrictions are hold-off conditions and illegal
conditions that the processor does not detect.

For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is automatically inserted by the processor.
When an instruction that loads a DAG register is followed by an instruc-
tion that uses any register in the same DAG register pair1 for data
addressing, modify instructions, or indirect jumps, the processor inserts an
extra (NOP) cycle between the two instructions. This hold-off happens
because the same bus is needed by both operations in the same cycle. So,
the second operation must be delayed. The following case causes a delay
because it exhibits a write/read dependency in which I0 is written in one
cycle. The results of that register write are not available to a register read
for one cycle. Note that if either instruction had specified I1, the stall
would still occur, because the processor’s DAG register transfers can occur
in pairs. The DAG detects write/read dependencies with a register pair
granularity:

I0=8;

DM(I0,M1)=R1;

1 DAG register are accessible in pair granularity for single-cycle access. The pairings are odd-even. For
example I0 and I1 are a pair, and I2 and I3 are a pair.
ADSP-21161 SHARC Processor Hardware Reference 4-21

DAGs, Registers, and Memory
Certain other sequences of instructions cause incorrect results on the pro-
cessor and are flagged as errors by processor assembler software. These
types of instructions can execute on the processor, but cause incorrect
results:

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the
index register. The instruction writes the wrong data to memory or
updates the wrong index register.

Do not try these: DM(M2,I1)=I0; or DM(I1,M2)=I0;
These example instructions do not work because I0 and I1 are both
DAG1 registers.

• An instruction that loads a DAG register from memory using indi-
rect addressing from the same DAG, with update of the index
register. The instruction either loads the DAG register or updates
the index register, but not both.

Do not try this: L2=DM(I1,M0);
This example instruction does not work because L2 and I1 are both
DAG1 registers.
4-22 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
DAG Instruction Summary
Table 4-3 through, Table 4-9 list the DAG instructions. For more infor-
mation on assembly language syntax, see the ADSP-21160 SHARC DSP
Instruction Set Reference. In these tables, note the meaning of the following
symbols:

• I15-8 indicates a DAG2 index register: I15, I14, I13, I12, I11, I10,
I9, or I8, and I7-0 indicates a DAG1 index register I7, I6, I5, I4,
I3, I2, I1, or I0.

• M15-8 indicates a DAG2 modify register: M15, M14, M13, M12, M11,
M10, M9, or M8, and M7-0 indicates a DAG1 modify register M7, M6,
M5, M4, M3, M2, M1, or M0.

• Ureg indicates any universal register; For a list of the processor’s
universal registers, see Table A-1 on page A-2.

• Dreg indicates any data register; For a list of the processor’s data
registers, see the Data Register File registers that are listed in
Table A-1 on page A-2.

• Data32 indicates any 32-bit value, and Data6 indicates any 6-bit
value

Table 4-2. Post-Modify Addressing, Modified By M Register and
Updating I Register

DM(I7-0,M7-0)=Ureg (LW); {DAG1}

PM(I15-8,M15-8)=Ureg (LW); {DAG2}

Ureg=DM(I7-0,M7-0) (LW); {DAG1}

Ureg=PM(I15-8,M15-8) (LW); {DAG2}

DM(I7-0,M7-0)=Data32; {DAG1}

PM(I15-8,M15-8)=Data32; {DAG2}
ADSP-21161 SHARC Processor Hardware Reference 4-23

DAG Instruction Summary
Table 4-3. Post-Modify Addressing, Modified By 6-Bit Data and Updating
I Register

DM(I7-0,Data6)=Dreg; {DAG1}

PM(I15-8,Data6)=Dreg; {DAG2}

Dreg=DM(I7-0,Data6); {DAG1}

Dreg=PM(I15-8,Data6); {DAG2}

Table 4-4. Pre-Modify Addressing, Modified By M Register (No I Register
Update)

DM(M7-0,I7-0)=Ureg (LW); {DAG1}

PM(M15-8,I15-8)=Ureg (LW); {DAG2}

Ureg=DM(M7-0,I7-0) (LW); {DAG1}

Ureg=PM(M15-8,I15-8) (LW); {DAG2}

Table 4-5. Pre-Modify Addressing, Modified By 6-Bit Data (No I Register
Update)

DM(Data6,I7-0)=Dreg; {DAG1}

PM(Data6,I15-8)=Dreg; {DAG2}

Dreg=DM(Data6,I7-0); {DAG1}

Dreg=PM(Data6,I15-8); {DAG2}

Table 4-6. Pre-Modify Addressing, Modified By 32-Bit Data
(No I Register Update)

Ureg=DM(Data32,I7-0) (LW); {DAG1}

Ureg=PM(Data32,I15-8) (LW); {DAG2}

DM(Data32,I7-0)=Ureg (LW); {DAG1}

PM(Data32,I15-8)=Ureg (LW); {DAG2}
4-24 ADSP-21161 SHARC Processor Hardware Reference

Data Address Generator
Table 4-7. Update (Modify) I Register, Modified By M Register

Modify(I7-0,M7-0); {DAG1}

Modify(I15-8,M15-8); {DAG2}

Table 4-8. Update (Modify) I Register, Modified By 32-Bit Data

Modify(I7-0,Data32); {DAG1}

Modify(I15-8,Data32); {DAG2}

Table 4-9. Bit-Reverse and Update I Register, Modified By 32-Bit Data

Bitrev(I7-0,Data32); {DAG1}

Bitrev(I15-8,Data32); {DAG2}
ADSP-21161 SHARC Processor Hardware Reference 4-25

DAG Instruction Summary
4-26 ADSP-21161 SHARC Processor Hardware Reference

5 MEMORY

The ADSP-21161 processor contains a large, dual-ported internal mem-

ory for single-cycle, simultaneous, independent accesses by the core
processor and I/O processor. The dual-ported memory in combination
with three separate on-chip buses allow two data transfers from the core
and one transfer from the I/O processor in a single cycle. Using the IO
bus, the I/O processor provides data transfers between internal memory
and the processor’s communication ports (link ports, serial ports, and
external port) without hindering the processor core’s access to memory.
This chapter describes the processor’s memory and how to use it. The pro-
cessor provides access to external memory through the processor’s external
port. For information on connecting and timing accesses to external mem-
ory, see “External Memory Interface” on page 7-3.

The processor contains one megabit of on-chip SRAM, organized as two
blocks of 0.5 Mbits. Each block can be configured for different combina-
tions of code and data storage. All of the memory can be accessed as
16-bit, 32-bit, 48-bit, or 64-bit words. The memory can be configured in
each block as a maximum of 16K words of 32-bit data, 8K words of 64-bit
data, 32K words of 16-bit data, 10.67K words of 48-bit instructions (or
40-bit data), or combinations of different word sizes up to 0.5 Mbit. This
gives a total for the complete internal memory: a maximum of 32K words
of 32-bit data, 16K words of 64-bit data, 64K words of 16-bit data, and
21K words of 48-bit instructions (or 40-bit data). The processor features a
16-bit floating-point storage format that effectively doubles the amount of
data that may be stored on-chip. A single instruction converts the format
from 32-bit floating-point to 16-bit floating-point.
ADSP-21161 SHARC Processor Hardware Reference 5-1

Internal Memory
While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data using the DM bus,
(typically block 1) for transfers, and the other block (typically block 0)
stores instructions and data using the PM bus. Using the DM bus and PM
bus with one dedicated to each memory block assures single-cycle execu-
tion with two data transfers. In this case, the instruction must be available
in the cache.

Internal Memory
The ADSP-21161 has 2 MBits of internal memory space; 1 MBit is
addressable. The 1 MBit of memory is divided into two 0.5 MBit blocks:
Block 0 and Block 1. The additional 1MBit of the memory space is
reserved on the ADSP-21161. Table 5-1 shows the maximum number of
data or instruction words that can fit in each 0.5 MBit internal memory
block.

External Memory
While the processor’s internal memory is divided into blocks, the proces-
sor’s external memory spaces are divided into banks. The internal memory
blocks and the external memory spaces may be addressed by either data

Table 5-1. Words Per 0.5 MBit Internal Memory Block

Word Type Bits Per Word Maximum Number of Words
Per 0.5 MBit block

Instruction 48-bits 10.67K Words

Long Word Data 64-bits 8K Words

Extended Precision Normal Word Data 40-bits 10.67K Words

Normal Word Data 32-bits 16K Words

Short Word Data 16-bits 32K Words
5-2 ADSP-21161 SHARC Processor Hardware Reference

Memory
address generator. External memory banks are fixed sizes that can be con-
figured for various waitstate and access configurations. For more
information, see “External Memory” on page 5-22.

There are 254 Mwords of external memory space that the processor can
address. External memory connects to the processor’s external port, which
extends the processor’s 24-bit address and 32-bit data buses off the proces-
sor. The processor can make 8, 16, 32, or 48-bit accesses to external
memory for instructions and 8,16, or 32-bit accesses for data. Table 5-2
shows the access types and words for processor external memory accesses.
The processor’s DMA controller automatically packs external data into
the appropriate word width during data transfer.

The external data bus can be expanded to 48-bits if the link ports
are disabled and the corresponding full width instruction packing
mode (IPACK) is enabled in the SYSCON register. Ensure that link
ports are disabled when executing code from external 48-bit mem-
ory. For more information, see “Executing Instructions From
External Memory” on page 5-101.

The total addressable space for the fixed external memory bank sizes
depends on whether SDRAM or Non-SDRAM (for example, SRAM,
SBSRAM) is used. Each external memory bank for SDRAM can address
64M words. For Non-SDRAM memory, each bank can address up to

Table 5-2. Internal-to-External Memory Word Transfers1

1 For external port word alignment, see Figure 7-1 on page 7-2.

Word Type Transfer Type

Packed Instruction 32, 16, or 8- to 48-bit packing

Normal Word Data 32-bit word in 32-bit transfer

Short Word Data Not supported
ADSP-21161 SHARC Processor Hardware Reference 5-3

Processor Architecture
16M words. The remaining 48M words are reserved. These reserved
addresses for non-SDRAM accesses are aliased to the first 16M spaces
within the bank.

The total external memory available is given as follows:

3*(16M) + 14M = 62M (Non- SDRAM banks)

3*(64M) + 62M = 254M (SDRAM banks)

Banks 1, 2 and 3 have the same amount of external memory (16M for
Non-SDRAM and 64M for SDRAM), while bank 0 is smaller (14M for
Non-SDRAM and 62M for SDRAM).

The external memory address bus is 24-bits wide with four additional
bank select MSx lines. For more information on the external memory, see
the section “External Memory” on page 5-22.

Processor Architecture
Most microprocessors use a single address and single data bus for memory
access. This type of memory architecture is called Von Neumann architec-
ture. But, DSPs require greater data throughput than Von Neumann
architecture provides, so many DSPs use memory architectures that have
separate data and address buses for program and data storage. These two
sets of buses let the processor retrieve a data word and an instruction
simultaneously. This type of memory architecture is called Harvard
architecture.

SHARC DSPs go a step further by using a Super Harvard architecture.
This four bus architecture has two address buses and two data buses, but
provides a single, unified address space for program and data storage.
While the Data Memory (DM) bus only carries data, the Program Mem-
ory (PM) bus handles instructions and data, allowing dual-data accesses.
5-4 ADSP-21161 SHARC Processor Hardware Reference

Memory
Processor core and I/O processor accesses to internal memory are com-
pletely independent and transparent to one another. Each block of
memory can be accessed by the processor core and I/O processor in every
cycle—no extra cycles are incurred if the processor core and the I/O pro-
cessor access the same block.

A memory access conflict can occur when the processor core attempts two
accesses to the same internal memory block in the same cycle. When this
conflict, known as block conflict occurs, an extra cycle is incurred. The
DM bus access completes first and the PM bus access completes in the fol-
lowing (extra) cycle.

During a single-cycle, dual-data access, the processor core uses the inde-
pendent PM and DM buses to simultaneously access data from both
memory blocks. Though dual-data accesses provide greater data through-
put, it is important to note some limitations on how programs may use
them. The limitations on single-cycle, dual-data accesses are:

• The two pieces of data must come from different memory blocks.

If the core accesses two words from the same memory block over
the same bus in a single instruction, an extra cycle is needed.

• The data access execution may not conflict with an instruction
fetch operation. The PM data bus tries to fetch an instruction in
every cycle. If a data fetch is also attempted over the PM bus, an
extra cycle may be required depending on the cache.

If the cache contains the conflicting instruction, the data access
completes in a single-cycle and the sequencer uses the cached
instruction. If the conflicting instruction is not in the cache, an
extra cycle is needed to complete the data access and cache the con-
flicting instruction. For more information, see “Instruction Cache”
on page 3-8.

For more information on how the buses access memory blocks, see “Inter-
nal Memory” on page 5-16.
ADSP-21161 SHARC Processor Hardware Reference 5-5

Off-Chip Memory and Peripherals Interface
Off-Chip Memory and Peripherals
Interface

The ADSP-21161 processor’s external port provides the processor’s inter-
face to off-chip memory and peripherals. Figure 5-9 on page 5-23 shows
the external memory of ADSP-21161. The 62 Mword off-chip address
space (254 Mword if all SDRAM) is included in the ADSP-21161’s uni-
fied address space. The separate on-chip buses-for PM addresses, PM data,
DM addresses, DM data, I/O addresses, and I/O data-are multiplexed at
the external port to create an external system bus with a single 24-bit
address bus and a single 32-bit data bus. Every access to external memory
is based on an address that fetches a 32-bit word. When fetching instruc-
tions from external 32-bit memory, the program sequencer accesses two
32-bit data locations, four 16-bit locations or eight 8-bit locations.
Unused link port lines can also be used as additional data lines DATA15-0,
allowing single cycle execution of 48-bit instructions from external mem-
ory at up to 100 MHz.

The external port supports asynchronous, synchronous, and synchronous
burst accesses. ZBT synchronous burst SRAM can be interfaced gluelessly.
However, the zero bus turnaround feature is not supported by this proces-
sor; only the bursting protocol is supported. The ADSP-21161 processor
also can interface gluelessly to SDRAM. Addressing of external memory
devices is facilitated by on-chip decoding of high-order address lines to
generate memory bank select signals. The ADSP-21161 processor pro-
vides programmable memory wait states and external memory
acknowledge controls to allow interfacing to memory and peripherals with
variable access, hold, and disable time requirements.

Efficient memory usage relies on how the program and data are arranged
in memory and varies how the program accesses the data. For more infor-
mation, see “Arranging Data in Memory” on page 5-100.
5-6 ADSP-21161 SHARC Processor Hardware Reference

Memory
Buses
As shown in Figure 5-1 on page 5-9, the processor has three sets of inter-
nal buses connected to its dual-ported memory, the Program Memory
(PM) bus, Data Memory (DM) bus, and I/O Processor (IO) bus. The PM
bus and DM bus share one memory port and the IO bus connects to the
other port. Memory accesses from the processor’s core (computational
units, data address generators, or program sequencer) use the PM or DM
buses, while the I/O processor uses the IO bus for memory accesses.

The processor core’s PM bus and DM bus and I/O processor’s External
Port (EP) bus can try to access multiprocessor memory space or external
memory space in the same cycle. The processor has a two level arbitration
system to handle this conflicting access. Arbitration stems from a priority
convention and the state of the SYSCON register’s EBPRx bits. When arbi-
trating between the processor core buses, the DM bus always has priority
over the PM bus. Arbitration between the winning core bus and I/O pro-
cessor EP bus depends on the priority set with the EBPRx bits. For more
information on setting this priority, see “External Bus Priority” on
page 5-39.

Internal Address and Data Buses
Figure 5-1 shows that the PM buses, DM buses, and I/O processor have
access to the external bus (pins DATA47-16, ADDR23-0) through the
processor’s external port. The external port provides access to system
(off-processor) memory and peripherals. This port also lets the processor
access the IOP register space of other DSPs when connected in a multi-
processing system.
ADSP-21161 SHARC Processor Hardware Reference 5-7

Buses
Almost without exception, the processor’s three buses can access all mem-
ory spaces, supporting all data sizes. There are three restrictions on the
access of buses to memory. The limitations on the PM, DM, and IO buses
are as follows:

• The PM, DM, and IO buses make Normal Word addressing
accesses to multiprocessor or external memory. These buses can
make 40/48 bit data transfers by configuring the link data pins as
additional data pins for external accesses. For more information,
see “Multiprocessor Memory” on page 5-19.

• The IO bus may not access the I/O processor’s memory mapped
registers. For more information, see “I/O Processor” on page 6-1.

• The IO bus may not use short word addressing for DMA
operation.

Addresses for the PM and DM buses come from the processor’s program
sequencer and Data Address Generators (DAGs). The program sequencer
generates 24-bit program memory addresses while DAGs supply 32-bit
addresses for locations throughout the processor’s memory spaces. The
DAGs supply addresses for data reads and writes on both the PM and DM
address buses, while the program sequencer uses only the PM address bus
for sequencing execution.

Each DAG is associated with a particular data bus. DAG1 supplies
addresses over the DM bus and DAG2 supplies addresses over the PM
bus. For more information on address generation, see “Program
Sequencer” on page 3-1 or “Data Address Generator” on page 4-1.

Because the processor’s internal memory is arranged in four 16-bit wide
by 8K high columns, memory is addressable in widths that are multiples
of columns up to 64 bits: 1 column = 16-bit words, 2 columns = 32-bit
words, 3 columns = 48- or 40-bit words, and 4 columns = 64-bit words.
For more information on the how the processor works with memory
words, see “Memory Organization and Word Size” on page 5-25.
5-8 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-1. ADSP-21161 Memory and Internal Buses Block Diagram

ADDRESS DATAADDRESS DATA

ADDRESS

DATA

ADDRESS

DATA

PX BUS EXCHANGE REGISTER

PM ADDRESS BUS

PM DATA BUS

DM ADDRESS BUS

DM DATA BUS

IO ADDRESS BUS

IO DATA BUS

ANY TWO PATHS
SIMULTANEOUSLY

ADDRESSES AND
DATA FOLLOW
PARALLEL PATHS

IO ADDRESS

IO DATA

EP
ADDRESS

EP
DATA

EXTERNAL PORT

ADDRESS DATA

BLOCK 0
(NORMAL WORD 0X40000 - 0X43FFF)

BLOCK 1
(NORMAL WORD 0X50000 - 0X53FFF)

INTERNAL
(DSP) MEMORY

EXTERNAL
(SYSTEM) MEMORY

I/O PROCESSOR

BANK 0
(STARTING AT NORMAL WORD 0X200000)

18 64 32 64
64

64 6432 32

64

3224
ADSP-21161 SHARC Processor Hardware Reference 5-9

Buses
The PM and DM data buses are 64 bits wide. Both data buses can handle
long word (64-bit), normal word (32-bit), extended-precision normal
word (40-bit), and short word (16-bit) data, but only the PM data bus
carries Instruction words (48-bit).

Internal Data Bus Exchange
The data buses let programs transfer the contents of any register in the
processor to any other register or to any internal memory location in a sin-
gle cycle. As shown in Figure 5-1 on page 5-2, the PM Bus Exchange (PX)
register permits data to flow between the PM and DM data buses. The PX
register can work as one 64-bit register or as two 32-bit registers (PX1 and
PX2). The alignment of PX1 and PX2 within PX appears in Figure 5-2.

The PX1, PX2, and the combined PX register are Universal registers
(UREG) that are accessible for register-to-register or memory-to-register
transfers.

Figure 5-2. PM Bus Exchange (PX, PX1, and PX2) Registers

PX1

03263

PX2

31

0031 31

Combined PX Register

Instruction Examples

PX = DM(0x80000)(LW);
PX = DM(0x40000);
5-10 ADSP-21161 SHARC Processor Hardware Reference

Memory
PX register-to-register transfers with data registers are either 40-bit transfers
for the combined PX or 32-bit transfers for PX1 or PX2. Figure 5-3 shows
the bit alignment and gives an example of instructions for register-to-reg-
ister transfers.

Figure 5-3 shows that during a transfer between PX1 or PX2 and a data
register (DREG), the bus transfers the upper 32 bits of the register file and
zero fills the eight LSBs.

During a transfer between the combined PX register and a register file, the
bus transfers the upper 40 bits of PX and zero fills the lower 24 bits.

Figure 5-3. PX, PX1, and PX2 Register-to-Register Transfers

Register File Transfer

PX1 or PX2

39 7 0

0x0

32 bits

Register File Transfer

39 0

40 bits 0x0

02363

8

32 bits

31 024

40 bits

Combined PX

PX1PX2

Instruction Examples

R3 = PX; R3 = PX1; or R3 = PX2;
ADSP-21161 SHARC Processor Hardware Reference 5-11

Buses
PX register-to- internal memory transfers over the DM or PM data bus are
either 48-bit for the combined PX or 32-bit transfers (on bits 31-0 of the
bus) for PX1 or PX2. Figure 5-4 shows these transfers.

Figure 5-4 shows that during a transfer between PX1 or PX2 and internal
memory, the bus transfers the lower 32 bits of the register.

During a transfer between the combined PX register and internal memory,
the bus transfers the upper 48 bits of PX and zero fills the lower 8 bits.

The status of the memory block’s Internal Memory Data Width
(IMDWx) setting does not effect this default transfer size for PX to
internal memory.

Figure 5-5 shows a PX register-to-external memory transfer. The PX register
transfers the upper 32 bits of the PM data bus into PX1 and the lower 16
bits to PX2, zero filling the remaining 16 bits.

Figure 5-4. PX, PX1, PX2 Register-to-Memory Transfers on DM (LW) or
PM (LW) Data Bus

Instruction Examples

PX = DM (0xC0000) (LW); PM(I7,M7) = PX1;

31

PX1 or PX2

32 bits

063

0x0 32 bits

DM or PM Data Bus Transfer

31 0

7

 PX2

DM and PM Data Bus Transfer (not LW)

03163

48 bits

8

7 03163 8

48 bits 0x0

0x0

 PX1

Combined PX
5-12 ADSP-21161 SHARC Processor Hardware Reference

Memory
Since there are 32 DATA pins on the ADSP-21161 processor, 40/48 bit data
transfers using register to register transfers are not directly supported. To
accomplish 40/48 bit data transfers with the PX register, you must config-
ure the link data pins as additional data pins for external accesses. Full
width instruction mode (IPACK) must be enabled in the SYSCON register.
The 16 link data pins are configured as DATA pins and the processor fetches
the upper 32 bits of instruction on 32 DATA pins and lower 16 bits of
instruction on the link data pins.

To transfer both 48-bit instructions and 40-bit double precision data to a
register, you must swap the PX1 and PX2 registers. See the following code
examples:

Figure 5-5. PX Register-to-External Memory Transfers

Combined PX

DM (LW) or PM (LW)

03163

64 bits

03163

64 bits

Data Bus Transfer

Instruction Example

PX = PM (0xB8000)(LW);
ADSP-21161 SHARC Processor Hardware Reference 5-13

Buses
Example 1: To transfer 48-bits from external memory to internal memory,
use the following code:

PX = DM(EXT_MEMORY_LOC);

R0 = PX1;

PX1 = PX2;

PX2 = R0;

DM(INT_MEMORY_LOC) = PX;

Example 2: To transfer a 40-bit data from external memory to a register,
use the following code:

PX = DM(EXT_MEMORY_LOC);

R0 = PX1;

PX1 = PX2;

PX2 = R0;

R1 = PX;

All transfers between the PX register and the I/O processor LBUFx registers
are 48-bit transfers (most significant 48-bits of PX).

All transfers between the PX register (or any other internal register/mem-
ory) and any I/O processor register (other than the EPBx or LBUFx) are
32-bit transfers (least significant 32-bits of PX).

All transfers between the PX register and data registers (R0-R15 or S0-S15)
are 40-bit transfers. The most significant 40-bits are transferred as shown
in Figure 5-3 on page 5-11.

Figure 5-6 shows the transfer size between PX and internal memory over
the PM or DM data bus when using the long word (LW) option.
5-14 ADSP-21161 SHARC Processor Hardware Reference

Memory
The LW notation in Figure 5-6 draws attention to an important feature of
PX register-to-internal memory transfers over the PM or DM data bus for
the combined PX register. PX transfers to memory are 48-bit (3-column)
transfers on bits 0-31 of the PM or DM data bus, unless forced to be
64-bit (4-column) transfers with the LW (Long Word) mnemonic.

There is no implicit move when the combined PX register is used in SIMD
mode. For example, in SIMD mode, the following moves could occur:

PX1 = R0; /* R0 32-bit explicit move to PX1,

 and R1 32-bit implicit move to PX2 */

PX = R0; /* R0 40-bit explicit move to PX,

 but no implicit move for R1 */

Figure 5-6. PX Register-to-Memory Transfers on PM Data Bus

Combined PX

DM (LW) or PM (LW)

03163

64-bits

03163

64-bits

Data Bus Transfer

PX = PM (0x40200)LW;

Instruction Example
ADSP-21161 SHARC Processor Hardware Reference 5-15

ADSP-21161 Memory Map
ADSP-21161 Memory Map
The ADSP-21161’s memory map appears in Figure 5-7 and has three
memory spaces: internal memory space, multiprocessor memory space,
and external memory space. These spaces have the following definitions:

• Internal memory space. This space ranges from address
0x0000 0000 through 0x0005 3FFF (Normal word). Internal
memory space refers to the processor’s on-chip SRAM and memory
mapped registers.

• Multiprocessor memory space. This space ranges from address
0x0010 0000 through 0x001F FFFF (Normal word). Multiproces-
sor memory space refers to the internal memory space of other
DSPs that are connected in a multiprocessor system.

• External memory space. This space ranges from address
0x0200 0000 to 0x0CFF FFFF for Non-SDRAM and
0x0020 0000 through 0x0FFF FFFF (Normal word) for SDRAM.
External memory space refers to the off-chip memory or memory
mapped peripherals that are attached to the processor’s external
address (ADDR23-0) and data (DATA47-16) buses.

Internal Memory
The ADSP-21161’s internal memory space appears in Figure 5-7. This
memory space has four address regions.

• I/O processor memory mapped registers. This region ranges from
address 0x0000 0000 through 0x0000 01FF (Normal Word).

• Reserved memory. This region ranges from address 0x0000 0200
through 0x0001 FFFF. These addresses are not accessible.
5-16 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-7. ADSP-21161 Internal Memory Space

0X0005 00000X0002 8000 0X0005 0000 0X000A 0000
0X0002 1FFF 0X0004 3FFF 0X0008 7FFF0X0004 2AA9

0X0005 2AA90X0002 9FFF 0X0005 3FFF 0X000A 7FFF

0X0004 00000X0002 0000 0X0004 0000 0X0008 0000

EXT. PREC. NORMAL
WORD (40-BIT)

OR
INSTRUCTION
WORD (48-BIT)

LONG
WORD

(64-BIT)

NORMAL
WORD

(32-BIT)

SHORT
WORD
(16-BIT)

RESERVED
(I/O)

BLOCK 1

I/O PROCESSOR
REGISTERS

EACH OF THESE ADDRESSING TYPES ADDRESS THE
SAME PHYSICAL MEMORY BUT USE DIFFERENT
WORD WIDTHS.

BLOCK 0

0X0000 0000

0X0000 01FF
ADSP-21161 SHARC Processor Hardware Reference 5-17

ADSP-21161 Memory Map
• Block 0 memory. This region, typically PM, ranges from address
0x0004 0000 through 0x0004 3FFF (Normal Word). DAG2 gen-
erates PM data addresses.

• Block 1 memory. This region, typically DM, ranges from address
0x0005 0000 through 0x0005 3FFF (Normal Word). DAG1 gen-
erates DM data addresses.

The I/O processor’s memory-mapped registers control the system configu-
ration of the processor and I/O operations. For more information, see
“I/O Processor” on page 6-1. These registers occupy consecutive 32-bit
locations in this region.

If a program uses long word addressing (forced with the LW mnemonic) to
accesses this region, the access is only to the addressed 32-bit register,
rather than accessing two adjacent I/O processor registers. The register
contents are transferred on bits 31-0 of the data bus. There are a couple of
exceptions to this one-at-a-time I/O processor register access rule:

• Long word accesses to external port buffer (EPBx) or link port
buffer (LBUFx) locations using the PX register access two adjacent
32-bit I/O registers.

• Long word accesses to the external port data buffer locations (EPBx)
in SIMD mode access two adjacent 32-bit I/O registers.

As shown in Figure 5-7 on page 5-17, the processor can address memory
in the Block 0 and Block 1 using long word, normal word, or short word
addressing. The processor interprets the addressing mode from the address
range for the access. Though there are multiple addressing modes for each
memory region, these different modes are addressing the same physical
memory. For example, the long word address 0x0002 0000 corresponds to
the same locations as normal word addresses 0x0004 0000 and
0x0004 0001. This also corresponds to the same locations as short word
addresses 0x0008 0000, 0x0008 0001, 0x0008 0002, and 0x0008 0003.
5-18 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-7 on page 5-17 also shows that there are gaps in the processor’s
memory map when using normal word addressing for 48-bit (instruction
word) or 40-bit (extended-precision normal word) accesses. These gaps of
missing addresses stem from the arrangement of this 3-column data in
memory. For more information, see “Memory Organization and Word
Size” on page 5-25.

Multiprocessor Memory
The ADSP-21161’s multiprocessor memory space appears in Figure 5-8.
This memory space has seven address regions that correspond to the IOP
register space of the DSPs in a multiprocessing system. Each of the proces-
sors in such a system has a processor ID, which is set with the processor’s
ID2-0 pins. The address regions by processor ID are:

• Internal memory with ID=001. This region ranges from address
0x0010 0000 through 0x0011 FFFF.

• Internal memory with ID=010. This region ranges from address
0x0012 0000 through 0x0013 FFFF.

• Internal memory with ID=011. This region ranges from address
0x0014 0000 through 0x0015 FFFF.

• Internal memory with ID=100. This region ranges from address
0x0016 0000 through 0x0017 FFFF.

• Internal memory with ID=101. This region ranges from address
0x0018 0000 through 0x0019 FFFF.

• Internal memory with ID=110. This region ranges from address
0x001A 0000 through 0x001B FFFF.
ADSP-21161 SHARC Processor Hardware Reference 5-19

ADSP-21161 Memory Map
Figure 5-8. Multiprocessor Memory Map

Normal Word Addressing : 32-bit Data Words

Short Word Addressing : 16-bit Data Words

0x0010 0000

0x0012 0000

0x0014 0000

0x0016 0000

0x0018 0000

0x001A 0000

Reserved

0x001F FFFF

IOP Space
of ADSP-21161
with ID=001

of ADSP-21161
with ID=010

of ADSP-21161
with ID=011

of ADSP-21161
with ID=100

of ADSP-21161
with ID=101

of ADSP-21161
with ID=110

IOP Registers

Long Word Addressing

Normal Word Addressing

0x0000 0000

0x0002 0000

0x0004 0000

INTERNAL
MEMORY
SPACE

MULTIPROCESSOR
MEMORY SPACE

MS0
BANK 0

0x0020 0000

EXTERNAL
MEMORY
SPACE

BANK 1

BANK 2

BANK 3

MS1

MS2

MS3

Short Word Addressing
0x0008 0000

0x0400 0000

0x0800 0000

0x0C00 0000

0x0FFF FFFF

IOP Space

IOP Space

IOP Space

IOP Space

IOP Space

0x001C 0000
5-20 ADSP-21161 SHARC Processor Hardware Reference

Memory
It is important to note that programs may only use normal word address-
ing in multiprocessor memory space. Long or short word writes may
corrupt valid data, and long or short word reads return invalid data.

The address range of the access determines which processor’s internal
memory is the multiprocessor memory access source or destination.
Instead of using its own IOP register address range, a processor can access
its IOP space through the corresponding address range in multiprocessor
memory space. In this case, the processor reads or writes to its own IOP
registers and does not make an access on the external system bus. Note
that such self-accesses through multiprocessor memory space may only be
accomplished with processor-core-generated addresses, not I/O proces-
sor-generated addresses.

For more information on memory accesses in multiprocessor systems, see
“External Port” on page 7-1.

Table 5-3 shows how the processor decodes and routes memory addresses
over the DM and PM buses.

Table 5-3. Address Decoding For Memory Accesses

Address Bits1 Field Description

ADDR31-28 NA Reserved

ADDR27-24 V Virtual address. Drives MS3-0 as follows:
00 = Depends on E, S and M bits; address corresponds to
local processor’s internal or external memory bank 0
01 = External memory bank 1, local processor
10 = External memory bank 2, local processor
11 = External memory bank 3, local processor

ADDR23-21 E2 Memory address.
00000[00] = Address in local or remote processor’s internal
memory space.
xxxxx[xx] = Based on V bits; address in one of local proces-
sor’s four external memory banks.
ADSP-21161 SHARC Processor Hardware Reference 5-21

ADSP-21161 Memory Map
External Memory
The ADSP-21161’s external memory space appears in Figure 5-9. The
processor accesses external memory space through the external port, which
multiplexes the processor core’s PM and DM buses and the I/O proces-
sor’s EP bus. To address this space, the processor’s DAG1, DAG2, and
I/O processor generate 32-bit addresses over the DM, PM, and EP address
buses, allowing the processor to access to the complete 254 Mword mem-
ory map.

The program sequencer only generates 24-bit addresses over the
PM bus, limiting sequencing to the low 62 Mwords (for SDRAM)
or low 14 Mwords (for SRAM) of the memory map.

The external memory space has four banks (bank 0-3). The processor con-
trols access to the banked regions with memory select lines (MS3-0) in
addition to the memory address. Each region of external memory may be
configured for access modes and waitstates. For more information on con-

ADDR20 M2 Multiprocessor memory. If this bit is 1, the address is in
multiprocessor memory space. If this bit is 0, the address is
in IOP register space.

ADDR19-17 S2 IOP MMS accesses. Depends on M bit. When bit 20 is set
to 1, bits 19:17 indicate the following:
000 = Address is in IOP space of processor with ID1
001 = Address is in IOP space of processor with ID2
010 = Address is in IOP space of processor with ID3
100 = Address is in IOP space of processor with ID4
011 = Address is in IOP space of processor with ID5
101 = Address is in IOP space of processor with ID6

ADDR16-0 NA Internal memory and IOP register space.

1 Setup and hold times for these address lines are specified in the processor Data Sheet.
2 For a description of these address fields, see “Multiprocessor Memory” on page 5-19.

Table 5-3. Address Decoding For Memory Accesses (Cont’d)

Address Bits1 Field Description
5-22 ADSP-21161 SHARC Processor Hardware Reference

Memory
figuring external memory banks, see “Setting Data Access Modes” on
page 5-32. For more information on accessing external memory, see
“External Port” on page 7-1.

The external memory space can also accommodate an optional boot mem-
ory EPROM or FLASH. For more information, see “Using Boot
Memory” on page 5-35.

Figure 5-9. ADSP-21161 External Memory Space

0X0020 0000

EXTERNAL
MEMORY

BANK 0 MS0

MS1

MS2

MS3

BANK 1

BANK 2

BANK 4

ALWAYS ADDRESSED
AS NORMAL WORD

EPROM
(BOOT)

MEMORY

0X03FF FFFF (SDRAM)
0X00FF FFFF (NON-SDRAM)

0X0400 0000

0X07FF FFFF (SDRAM)
0X04FF FFFF (NON-SDRAM)

0X0800 0000

0X0BFF FFFF (SDRAM)
0X08FF FFFF (NON-SDRAM)

0X0C00 0000

0X0FFF FFFF (SDRAM)
0X0CFF FFFF (NON-SDRAM)

BMS
ADSP-21161 SHARC Processor Hardware Reference 5-23

ADSP-21161 Memory Map
Shadow Write FIFO
Because the processor’s internal memory operates at high speeds, writes to
the memory do not go directly into the memory array, but rather to a
two-deep FIFO called the shadow write FIFO. This FIFO uses a non-read
cycle (either a write cycle, or a cycle in which there is no access of internal
memory) to load data from the FIFO into internal memory. When an
internal memory write cycle occurs, the FIFO loads any data from a previ-
ous write into memory and accepts new data. FIFO operation is normally
transparent, but there is one case in which programs need to intervene in
the operation of the shadow write FIFO: mixing 48-bit and 32-bit word
accesses to the same locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and the mapping of 32-bit words. Examples of these mappings
appear in Figure 5-10 through Figure 5-13. If a program writes a 48-bit
word to memory and then tries to read the data with a 16-, 32- or 64-bit
word access or writes a 16-, 32- or 64-bit word to memory and tries to
read the data with a 48-bit access, the shadow FIFO does not intercept the
read. It returns incorrect data.

If a program must mix 48-bit or 40-bit accesses and 16-, 32-, or 64-bit
accesses to the same locations, the program must ensure that the FIFO is
flushed before attempting to read the data. The program flushes the FIFO
by performing two dummy writes or executing two instructions that do
not access the internal memory. These operations force the FIFO to auto-
matically use the non-access cycles to push the write data.
5-24 ADSP-21161 SHARC Processor Hardware Reference

Memory
Memory Organization and Word Size
The processor’s internal memory is organized as four 16-bit wide by 8K
high columns. These columns of memory are addressable as a variety of
word sizes:

• 64-bit long word data (4-columns)

• 48-bit instruction words or 40-bit extended-precision normal word
data (3-columns)

• 32-bit normal word data (2-columns)

• 16-bit short word data (1-column)

Extended precision normal word data is only accessible if the IMDWx
bit is set in the SYSCON register. It is left-justified within a three col-
umn location, using bits 47-8 of the location.

Placing 32-Bit Words and 48-Bit Words

When the processor core or I/O processor addresses memory, the word
width of the access determines which columns within the memory are
accessed. For instruction words (48-bit) or extended-precision normal
word data (40-bit), the word width is 48 bits, and the processor accesses
from the memory’s 16-bit columns in groups of three. Because these sets
of three column accesses are packed into a four column matrix, there are
four rotations of the columns for storing 40/48-bit data. The 3-column
word rotations within the 4-column matrix appear in Figure 5-10.

 For long word (64-bit), normal word (32-bit), and short word (16-bit)
memory accesses, The processor selects from fixed columns in memory.
No rotations of words within columns occur for these data types.
ADSP-21161 SHARC Processor Hardware Reference 5-25

ADSP-21161 Memory Map
Figure 5-7 on page 5-17 shows the memory ranges for each data size in the
processor’s internal memory.

Mixing 32-Bit and 48-Bit Words

The processor’s memory organization lets programs freely place memory
words of all sizes (see “Memory Organization and Word Size” on
page 5-25) with few restrictions (see “Restrictions on Mixing 32-Bit and
48-Bit Words” on page 5-28). This memory organization also lets pro-
grams mix (place in adjacent addresses) words of all sizes. This section
discusses how to mix odd (3-column) and even (4-column) data words in
the processor’s memory.

Transition boundaries between 48-bit (3-column) data and any other data
size, can only occur at any 64-bit address boundary within either internal
memory block. Depending on the ending address of the 48-bit words,
there are zero, one, or two empty locations at the transition between the
48-bit (3-column) words and the 64-bit (4-column) words. These empty
locations result from the column rotation for storing 48-bit words. The
three possible transition arrangements appear in Figure 5-11, Figure 5-12,
and Figure 5-13.

Figure 5-10. 48-bit Word Rotations

Column 0Column 1Column 2Column 3

150150150150

Rotation 0Rotation 1

Rotation 1Rotation 2

Rotation 2Rotation 3

A
dd

re
ss

es
5-26 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-11. Mixed Instructions and Data With No Unused Locations

Column 0Column 1Column 2Column 3

150150150150

48-bit word top-348-bit word top-2

48-bit word top-248-bit word top-1

48-bit word top-148-bit word top

A
dd

re
ss

es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit
data with zero empty locations:

(48-bit word top address)
ADSP-21161 SHARC Processor Hardware Reference 5-27

ADSP-21161 Memory Map
Restrictions on Mixing 32-Bit and 48-Bit Words

There are some restrictions that stem from the memory column rotations
for 3-column data (48- or 40-bit words) and relate to the way that 3-col-
umn data can mix with 4-column data (32-bit words) in memory. These
restrictions apply to mixing 48- and 32-bit words, because the processor
uses a normal word address to access both of these types of data even
though 48-bit data maps onto 3-columns of memory and 32-bit data maps
onto 2-columns of memory.

Figure 5-12. Mixed Instructions and Data With One Unused Location

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-1 48-bit word top-2

48-bit word top-2 48-bit word top-3

A
dd

re
ss

es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit
data with one empty locations:

(48-bit word top address)
5-28 ADSP-21161 SHARC Processor Hardware Reference

Memory
When a system has a range of 3-column (48-bit) words followed by a
range of 2-column (32-bit) words, there is often a gap of empty 16-bit
locations between the two address ranges. The size of the address gap var-
ies with the ending address of the range of 48-bit words. Because the
addresses within the gap alias to both 48- and 32-bit words, a 48-bit write
into the gap corrupts 32-bit locations, and a 32-bit write into the gap cor-
rupts 48-bit locations. The locations within the gap are only accessible
with short word (16-bit) accesses.

Figure 5-13. Mixed Instructions and Data With One Unused Location

Column 0Column 1Column 2Column 3

150150150150

48-bit word topEmpty

48-bit word top-148-bit word top

48-bit word top-2

A
dd

re
ss

es

32-bit word 232-bit word 3

32-bit word 032-bit word 1

Transitioning from 48-bit to 32-bit
data with two empty locations:

(48-bit word top address)

Empty

48-bit word top-3
ADSP-21161 SHARC Processor Hardware Reference 5-29

ADSP-21161 Memory Map
Calculating the starting address for 4-column data that minimizes the gap
after 3-column data is a useful calculation for programs that are mixing 3-
and 4-column data. Given the last address of the 3-column (48-bit) data,
the starting address of the 32-bit range that most efficiently uses memory
can be determined by the equation shown in Listing 5-1:

Listing 5-1. Starting Address

m = B + 2 [(n MOD 10,922) – TRUNC((n MOD 10,922) / 4)]

where:

• n is the number of contiguous 48-bit words allocated in the inter-
nal memory block (n < 21845)

• B is the base normal word address of the internal memory block; if
{0 < n < 10,922} then B = 0x40000 (Block 0) else B = 0x50000
(Block 1)

• m is the first 32-bit normal word address to use after the end of
48-bit words

Example 1: Calculating a starting address for a 32-bit addresses

The last valid address is 0x42694. The number of 48-bit words (n) is
given as follows:

n = 0x42694 - 0x40000+1= 0x2695

When you convert 0x2695 to decimal representation, the result is 9877.

The base (B) Normal word address of the internal memory block is
0x40000 since the condition: 0 < 10922 is TRUE.
5-30 ADSP-21161 SHARC Processor Hardware Reference

Memory
The first 32-bit Normal word address to use after the end of the 48-bit
words is given by:

m = 0x40000 + 2 [(9877 MOD 10922)- TRUNC (9877 MOD 10922)/4]

m = 0x40000 + 14816decimal

Convert to a hexadecimal address:

14816decimal = 0x39E0

m = 0x40000 + 0x39E0 = 0x439E0

The first valid starting 32-bit address is 0x439E0. The starting address
must begin on an even address.

48-Bit Word Allocation

Another useful calculation for programs that are mixing 3- and 4-column
data is to calculate the amount of 3-column data that minimizes the gap
before starting 4-column data. Given the starting address of the 4-column
(32-bit) data, the number of 48-bit words to allocate that most efficiently
uses memory can be determined as shown in Listing 5-2:

Listing 5-2. 48-bit Word Allocation

m = TRUNC{(4/3)[(1/2)(m-b)]} + W

where

• m is the first 32-bit normal word address after the end of 48-bit
words (0x3FFFF < m < 0x44000 for block 1, 0x4FFFF < m <
0x54000 for block 2)

• B is the base normal word address of the internal memory block; if
{0x3FFFF < m < 0x50000} then B = 0x40000 else B = 0x50000
(Block 1)
ADSP-21161 SHARC Processor Hardware Reference 5-31

Setting Data Access Modes
• W is the number of offset words; if {B = 0x50000} then
W = 43,690 else W = 0

• n is the number of contiguous 48-bit words the system should allo-
cate in the internal memory block

Setting Data Access Modes
The SYSCON, MODE1, MODE2, and WAIT registers control the operating mode
of the processor’s memory. Table A-18 on page A-60 lists all the bits in
SYSCON, Table A-2 on page A-3 lists all the bits in MODE1, Table A-2 on
page A-3 lists all the bits in MODE2, and Table A-20 on page A-66 lists all
the bits in WAIT.

SYSCON Register Control Bits
Figure 5-14 shows the control bits for the SYSCON register. The following
bits in the SYSCON register control memory access modes:

• Boot Select Override. SYSCON Bit 1 (BSO). This bit overrides
normal usage of MSx chip select lines in favor of the BMS select line
for access to boot memory instead of external memory (if 1) or
allows normal access to external memory with the MSx chip select
lines (if 0).

• Internal Interrupt Vector Table. SYSCON Bit 2 (IIVT). This bit
forces placement of the interrupt vector table at address
0x0004 0000 regardless of booting mode (if 1) or allows placement
of the interrupt vector table as selected by the booting mode (if 0).

• Internal Memory Block Data Width. SYSCON Bit 9 (IMDW0) and
Bit 10 (IMDW1). These bits select the normal word data access size
for internal memory Block 0 and Block1. A block’s normal word
access size is fixed as 32-bit (2-column, IMDWx=0) or 40-bit
(3-column, IMDWx=1).
5-32 ADSP-21161 SHARC Processor Hardware Reference

Memory

r

• Instruction Packing Mode. SYSCON Bits 30 and 31 (IPACK1 and
IPACK0). These bits select the external packing instruction execu-
tion as 8- to 48-bit, 16- to 48-bit, 32- to 48-bit or no pack mode.

• External Bus Priority. SYSCON Bits 18-17 (EBPRx). This bit field
selects the priority for the I/O processor’s EP bus when both the
core and the IOP attempt to access external memory.

Figure 5-14. Syscon Register – Control Bits Only

BSO
Boot Select Override

IIVT
Internal Interrupt Vector Table

IMDW1

IMDW0
Internal Memory Block 0 Data Width

0=32 -bit data, 1=40 -bit data

Internal Memory Block 1 Data Width
0=32 -bit data, 1=40 -bit data

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(“no boot” mode)

SYSCON
(0x0000)

EBPR
External Bus Priority
00=even priority between core processo

10= I/O processor priority
and IOP bus 01=core processor priority,

IPACK
External Packed Instruction Execution Mode
00 = 32-to-48 packed instruction execution

01 = Full 48-bit instruction execution /
No-Packing Mode

10 = 16 -to-48 packed instruction execution
11 = 8- to-48 packed instruction execution

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
ADSP-21161 SHARC Processor Hardware Reference 5-33

Setting Data Access Modes
Mode 1 Register Control Bits
The following bits in the MODE1 register control memory access modes:

• Secondary Processor Element (PEy). MODE1 Bit 21 (PEYEN) enables
computations in PEy—SIMD mode—(if 1) or disables PEy—SISD
mode—(if 0).

• Broadcast Register Loads. Mode1 Bit 22 (BDCST9) and Bit 23
(BDCST1) enable broadcast register loads for memory transfers
indexed with I1 (if BDCST1 = 1) or indexed with I9 (if BDCST9 =1).

Mode 2 Register Control Bits
The following bits in the MODE2 register control memory access modes:

• Illegal IOP Register Access Enable. MODE2 Bit 20 (IIRAE) enables
detection of I/O processor register access (if 1) or disables detection
(if 0).

• Unaligned 64-bit Memory Access Enable. MODE2 Bit 21 (U64MAE)
enables detection of uneven address memory access (if 1) or dis-
ables detection (if 0).

Wait Register Control Bits
The following bits in the WAIT register control memory access modes:

• External Bank X Access Mode. WAIT Bits 1-0 (EB0AM), Bits 6-5
(EB1AM), Bits 11-10 (EB2AM), Bits 16-15 (EB3AM), and Bits 21-20
(RBAM). These bit fields select the access modes (synchronous, asyn-
chronous, SDRAM, SBSRAM) for the external memory banks.
5-34 ADSP-21161 SHARC Processor Hardware Reference

Memory
• External Bank X Waitstates. WAIT Bits 4-2 (EB0WS), Bits 9-7
(EB1WS), Bits 14-12 (EB2WS), Bits 19-17 (EB3WS) and Bits 24-22
(RBWS). These bit fields independently select the number of wait-
states for each of the external memory banks. After reset, the
default number of waitstates is seven.

Using Boot Memory
As shown in Figure 5-9 on page 5-23, the processor supports an external
boot EPROM mapped to external memory and selected with the BMS pin.
The boot EPROM provides one of the methods for automatically loading
a program in to the internal memory of the processor after power-up or
after a software reset. This process is called booting. For information on
boot options and the booting process, see the following sections:

• “Bootloading Through The External Port” on page 6-70

• “Bootloading Through The Link Port” on page 6-88

• “Bootloading Through the SPI Port” on page 6-113

For information on systems with a boot EPROM, see “Booting Single and
Multiple Processors” on page 13-71.

Reading From Boot Memory

When the processor boots from an EPROM, the processor’s I/O processor
is hard-wired to load 256 instructions automatically from EPROM (via
DMA). Once the initial 256-word DMA is complete, the processor typi-
cally needs to maintain access to boot memory. The processor does this by
setting the Boot Select Override (BSO) bit in the SYSCON register.

Setting (=1) the BSO bit overrides the external memory selects and asserts
the processor’s BMS pin for an external memory DMA transfer. For access-
ing boot memory, the program first sets the BSO bit in SYSCON then sets up
an external port DMA channel to read the EPROM’s contents. The pro-
ADSP-21161 SHARC Processor Hardware Reference 5-35

Setting Data Access Modes
gram must unmask the DMA channel’s interrupt in the IMASK register; if
using external port DMA buffer zero (EP0I), the program could enable
this interrupt by setting the EPOI bit to 1 in the IMASK register. For more
information on external port DMA, see “External Port DMA” on
page 6-29.

While a program may use any external port DMA channel for accessing
boot memory, it is important to note that only DMA channel 10 has a
fixed 8- to 48-bit packing mode for boot memory reads. By using DMA
channel 10 to complete initial program loading, a program can take
advantage of this special packing mode.

When a program sets BSO, the processor ignores the DMA channel’s pack-
ing mode (PMODE) bits for DMA channel 10 and forces 8- to 48-bit
packing for reads. This 8-bit packing mode is used on DMA channel 10
during EPROM booting or on DMA reads when BSO is set. While one of
the external port DMA channels is making a DMA access to boot memory
with the BSO bit set, none of the other three channels may make a DMA
access to external (not boot) memory.

Only external port DMA transfers assert BMS when BSO is set; processor
core accesses to external memory always use the MSx pins. Because the pro-
cessor core only accesses external (not boot) memory, programs can access
external memory in between DMA accesses to boot memory.

Writing to Boot Memory

In systems using write-able EEPROM or FLASH memory for boot mem-
ory, programs can write new data to the processor’s boot memory using
the boot select override (BSO) pin. As described in “Reading From Boot
Memory” on page 5-35, setting (=1) the BSO bit overrides the external
memory selects and asserts the processor’s BMS pin for an external memory
DMA transfer.
5-36 ADSP-21161 SHARC Processor Hardware Reference

Memory
To write to boot memory using the BMS signal, programs must use DMA
channels 11, 12 or 13, but not DMA channel 10. With the BSO bit set,
programs should only use DMA channel 10 for reads.

When BSO is set, programs can use DMA channels 11-13 with any settings
in channel’s the DMACx register, any packing mode, and any data or
instruction.

Internal Interrupt Vector Table
The default location of the ADSP-21161’s interrupt vector table depends
on the processor’s booting mode. When the processor boots from an exter-
nal source (EPROM, host port, SPI port or link port booting), the vector
table starts at address 0x0004 0000 (normal word). When the processor is
in “no boot” mode (runs from external memory location 0x0020 0000
without loading), the interrupt vector table starts at address 0x0020 0000.

The Internal Interrupt Vector Table (IIVT) bit in the SYSCON register over-
rides the default placement of the vector table. If IIVT is set (=1), the
interrupt table starts at address 0x0004 0000 (internal memory) regardless
of the booting mode.

Internal Memory Data Width
The processor’s internal memory blocks use normal word addressing to
access either single-precision 32-bit data or extended-precision 40-bit
data. Programs select the data width independently for each internal
memory block using the Internal Memory Data Width (IMDW0 and IMDW1)
bits in the SYSCON register. If a block’s IMDWx bit is cleared (=0), normal
word addressed accesses to the block access 32-bit data. If a block’s IMDWx
bit is set (=1), normal word addressed accesses to the block access 40-bit
extended-precision data. Reading or writing 40-bit data using a normal
word access to a memory block whose IMDWx bit is cleared (=0) has the fol-
lowing results.
ADSP-21161 SHARC Processor Hardware Reference 5-37

Setting Data Access Modes
• If a program tries to write 40-bit data (for example, a data regis-
ter-to-memory transfer), the transfer truncates the lower 8-bits
from the register; only writing 32 most significant bits.

• If a program tries to read 40-bit data (for example, a mem-
ory-to-data register transfer), the transfer zero-fills the lower 8 bits
of the register; only reading the 32 most significant bits.

The Program Memory Bus Exchange (PX) register is the only exception to
these transfer rules—all loads/stores of the PX register are performed as
48-bit accesses unless forced to 64-bit access with the LW mnemonic. If any
40-bit data must be stored in a memory block configured for 32-bit
words, the program should use the PX register to access the 40-bit data in
48-bit words. Programs should take care not to corrupt any 32-bit data
with this type of access. For more information, see “Restrictions on Mix-
ing 32-Bit and 48-Bit Words” on page 5-28.

The Long word (LW) mnemonic only effects normal word address
accesses and overrides all other factors (SIMD, IMDWx).

Memory Bank Size
The processor’s external memory space has four banks of equal, fixed size.
Mapping peripherals into different banks lets systems accommodate I/O
devices with different timing requirements, because the banked regions
have associated waitstate and access mode settings. This processor permits
a glueless interface to multiple devices because each bank has a indepen-
dent memory select signal associated with it. For more information, see
“External Bank X Access Mode” on page 5-42 and “External Bank X
Waitstates” on page 5-45.

As shown in Figure 5-9 on page 5-23, bank 0 starts at address
0x0020 0000 in external memory, and the banks 1, 2, and 3 regions fol-
low. Whenever the processor generates an address that is located within
5-38 ADSP-21161 SHARC Processor Hardware Reference

Memory
one of the four banks, the processor asserts the corresponding memory
select line (MS3-0).The size of the memory banks is 3.67 Mwords (SRAM)
or 15.67 Mwords (SDRAM).

External Bus Priority
The processor’s internal bus architecture lets the PM bus, DM bus, and
IOP bus try to access multiprocessor memory space or external memory
space in the same cycle. This contending access produces a conflict that
the processor resolves with a two level arbitration policy. The processor
core’s DM bus always has priority over the PM bus. External Bus Priority
(EBPRx) bits in the SYSCON register control the further arbitration between
the winning core bus and the I/O processor. The EBPRx field assigns prior-
ity as follows:

• If EBPR is 00, priority rotates between core and I/O processor buses.
Priority is evaluated and switched in each cycle in which the con-
flict exists. For example, if the IOP was transferring data to the
external port and the core tried to read from the external memory
four times consecutively, the core and IOP would take turns access-
ing external memory for eight cycles.

• If EBPR is 01, the winning core bus has priority over the I/O proces-
sor bus.

• If EBPR is 10, the I/O processor bus has priority over the winning
core bus.

Secondary Processor Element (PEy)
When the PEYEN bit in the MODE1 register is set (=1), the processor is in
Single-Instruction, Multiple-Data (SIMD) mode. In SIMD mode, many
data access operations differ from the processor’s default Single-Instruc-
tion, Single-Data (SISD) mode. These differences relate to doubling the
amount of data transferred for each data access.
ADSP-21161 SHARC Processor Hardware Reference 5-39

Setting Data Access Modes
 Accesses in SIMD mode transfer both an explicit (named) location and an
implicit (un-named, complementary) location. The explicit transfers is a
data transfers between the explicit register and the explicit address, and
the implicit transfer is between the implicit register and the implicit
address.

For information on complementary (implicit) registers in SIMD mode
accesses, see “Secondary Processing Element (PEy)” on page 2-37. For
more information on complementary (implicit) memory locations in
SIMD mode accesses, see “Accessing Memory” on page 5-46.

Broadcast Register Loads
The processor’s BDCST1 and BDCST9 bits in the MODE1 register control
broadcast register loading. When broadcast loading is enabled, the proces-
sor writes to complementary registers or complementary register pairs in
each processing element on writes that are indexed with DAG1 register I1
(if BDCST1 =1) or DAG2 register I9 (if BDCST9 =1). Broadcast load accesses
are similar to SIMD mode accesses in that the processor transfers both an
explicit (named) location and an implicit (un-named, complementary)
location, but broadcast loading only influences writes to registers and
write identical data to these registers. Broadcast mode is independent of
SIMD mode.

Table 5-4 shows examples of explicit and implicit effects of broadcast reg-
ister loads to both processing elements. Note that broadcast loading only
effects loads of data registers (register file); broadcast loading does not
effect register stores or loads to other system registers. And, broadcast
loads only work on register loads; broadcast loading cannot be used for
memory writes. For more information on broadcast loading, see “Access-
ing Memory” on page 5-46.
5-40 ADSP-21161 SHARC Processor Hardware Reference

Memory
Illegal I/O Processor Register Access
The processor monitors I/O processor register access when the Illegal I/O
processor Register Access (IIRAE) bit in the MODE2 register is set (=1). If
access to the IOP registers is detected, an Illegal Input Condition
Detected (IICDI) interrupt occurs. The interrupt is enabled in the IMASK
register in the following cases:

• A core access to an IOP register occurs.

• A host external port access to an IOP register occurs.

The I/O processor’s DMA controller cannot generate the IICDI
interrupt. For more information, see “Mode Control 2 Register
(MODE2)” on page A-10.

Unaligned 64-Bit Memory Access
The processor monitors for unaligned 64-bit memory accesses if the
Unaligned 64-bit Memory Accesses (U64MAE) bit in the MODE2 register (bit
21) is set (=1). An unaligned access is an odd numbered address normal
word access that is forced to 64-bit with the LW mnemonic. When
detected, this condition is an input that can cause an Illegal Input Condi-

Table 5-4. Register Load Dual PE Broadcast Operation

Instruction

(Explicit, PEx Operation)1 (Implicit, PEy operation)

Rx = dm(i1,ma);
Rx = pm(i9,mb);
Rx = dm(i1,ma), Ry = pm(i9,mb);

Sx = dm(i1,ma);
Sx = pm(i9,mb);
Sx = dm(i1,ma), Sy = pm(i9,mb);

1 The post increment in the explicit operation is performed before the implicit instructions are
executed.
ADSP-21161 SHARC Processor Hardware Reference 5-41

Setting Data Access Modes
tion Detected (IICDI) interrupt if the interrupt is enabled in the IMASK
register. For more information, see “Mode Control 2 Register (MODE2)”
on page A-10.

The following code example shows the access for even and odd addresses.
When accessing an odd address, the sticky bit is set to indicate the
unaligned access.

bit set mode2 U64MAE; //set testbit for align or unaligned 64

bit access

r0=0x11111111;

r1=0x22222222;

pm(0x4e800)=r0(lw); //even address in 32 bit, access is aligned

pm(0x4e803)=r0(lw); //odd address in 32 bit, sticky bit is set

External Bank X Access Mode
The processor has four modes for accessing external memory space. The
External Bank Access Mode (EBxAM) fields in the WAIT register select how
the processor uses waitstates and the acknowledge (ACK) pin to access each
external memory bank region. ACK has a 20 kΩ internal pull-up resistor
5-42 ADSP-21161 SHARC Processor Hardware Reference

Memory
that is enabled during reset or on DSPs with ID2-0=00x. The external
bank access modes appear in Table 5-5. The WAIT register bit descriptions
appear in Figure 5-15.

Table 5-5. External Bank Access Mode

EBxAM
Field

External Bank Access Mode

00 Asynchronous

RD and WR strobes change before CLKOUT’s edge.
Accesses use the waitstate count setting from EBxWS AND require external
acknowledge (ACK), allowing a de-asserted ACK to extend the access time.

01 Synchronous

RD and WR strobes change on CLKOUT’s edge.
Accesses use the waitstate count setting from EBxWS (minimum EBxWS=001)
AND require external acknowledge (ACK), allowing a de-asserted ACK to extend
the read access time.

Writes are 0-wait state.

10 Synchronous

RD and WR strobes change on CLKOUT’s edge.
Accesses use the waitstate count setting from EBxWS (minimum EBxWS=001)
AND require external acknowledge (ACK), allowing a de-asserted ACK to extend
the read access time.

Writes are 1-wait state.

11 Reserved
ADSP-21161 SHARC Processor Hardware Reference 5-43

Setting Data Access Modes

e)

e)
)

Figure 5-15. WAIT Register

WAIT
(0x0002)

EB3AM

EB3WS

RBAM
ROM Boot Access Mode

EB0AM
External Bank 0 Access Mode

External Bank 3
waitstates

EB0WS
External Bank 0 Waitstates
000= 0 waitstates , no hold time cycle
001=1 waitstate, no hold time cycle, minimum for sync
010=2 waitstates, hold time cycle
011=3 waitstates, hold time cycle
100=4 waitstates, hold time cycle
101=5 waitstates, hold time cycle
110=6 waitstates, hold time cycle
111=7 waitstates, hold time cycle
(hold time cycles for Async Mode only)

External Bank 3
Access Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0

00=Async, uses both internal waitstate& ext ACK
01=Sync (RD~ and WR~ change on CLKOUT’sedg

min 2 cycle reads, 1 cycle writes (EP0WS=001)
10=Sync (RD~ and WR~ change on CLKOUT’sedg

min 2 cycle reads, 2 cycles writes (EP0WS=001
11= reserved

HIDMA
Handshake and Idle for
DMA enable

RBWS
ROM Boot Waitstates

EB2WS
External Bank 2
waitstates
EB2AM
External Bank 2 Access Mode

EB1WS
External Bank 1
waitstates
EB1AM
External Bank 1 Access Mode

0 =no idle cycle
1=adds an idle cycle after
every handshake DMA
DMAG asserted longer reduces
bus contention for slower devices
5-44 ADSP-21161 SHARC Processor Hardware Reference

Memory
External Bank X Waitstates
The processor applies waitstates to each external memory access depend-
ing on the bank’s external memory access mode (EBxAM). The External
Bank Waitstate (EBxWS) field in the WAIT register sets the number of wait-
states for each bank as shown in Table 5-6.

Table 5-6 lists the hold time settings that EBxWS associates with external
memory accesses. A hold time cycle is an inactive bus cycle that the pro-
cessor inserts automatically at the end of a read or write, allowing a longer
hold time for address and data. The address and data remain unchanged
and are driven for one cycle after the processor deasserts the read or write
strobes.

The processor applies hold time cycles regardless of the external
bank access mode (EBxAM). For example, the asynchronous (ACK
plus waitstate) mode could also have an associated hold time cycle.

Table 5-6. External Bank Waitstates

EBxWS # of Waitstates Hold Time Cycle?1

1 Hold cycle applies to asynchronous mode only.

000 0 no

001 1 no

010 2 yes

011 3 yes

100 4 yes

101 5 yes

110 6 yes

111 7 yes
ADSP-21161 SHARC Processor Hardware Reference 5-45

Using Memory Access Status
Using Memory Access Status
As described in “Illegal I/O Processor Register Access” on page 5-41 and
“Unaligned 64-Bit Memory Access” on page 5-41, the processor can pro-
vide illegal access information for long word or I/O register accesses.
When these conditions occur, the processor updates an illegal condition
flag in a sticky status (STKYx) register. Either of these two conditions can
also generate a maskable interrupt. Two ways to use illegal access informa-
tion are:

• Interrupts. Enable interrupts and use an interrupt service routine
to handle the illegal access condition immediately. This method is
appropriate if it is important to handle all illegal accesses as they
occur.

• STKYx registers. Sticky registers hold a value that can be checked
for a specific condition at a later time. Use the Bit Tst instruction
to examine illegal condition flags in the STKY register after an inter-
rupt to determine which illegal access condition occurred.

Accessing Memory
The word width of the processor core accesses to internal memory include
the following:

48-bit access for instruction words, extended-precision normal word
(40-bit) data, and PX register

• 64-bit access for long word data, and normal word (32-bit) or PX
register data with the LW mnemonic

• 32-bit access for normal word (32-bit) data

• 16-bit access for short word data
5-46 ADSP-21161 SHARC Processor Hardware Reference

Memory
The processor determines whether a normal word access is 32- or 40-bit
from the internal memory block’s IMDWx setting. For more information,
see “Internal Memory Data Width” on page 5-37. While mixed accesses of
48-bit words and 16-, 32-, or 64-bit words at the same address are not
allowed, mixed read/writes of 16-, 32-, and 64-bit words to the same
address are allowed. For more information, see “Restrictions on Mixing
32-Bit and 48-Bit Words” on page 5-28.

The processor’s DM and PM buses support 24 combinations of regis-
ter-to-memory data access options. The following factors influence the
data access type:

• Size of words: short word, normal word, extended-precision nor-
mal word, or long word

• Number of words: single- or dual-data move

• Mode of processor: SISD, SIMD, or broadcast load

Access Word Size
The processor’s internal memory accommodates the following word sizes:

• 64-bit word data

• 48-bit instruction words

• 40-bit extended-precision normal word data

• 32-bit normal word data

• 16-bit short word data
ADSP-21161 SHARC Processor Hardware Reference 5-47

Accessing Memory
The processor’s external memory accommodates the following word sizes:

• 48-bit instruction words

• 40-bit extended-precision normal word data (accessed as
48-bit via PX)

• 32-bit normal word data

Long Word (64-Bit) Accesses

A program makes a long word (64-bit) access to internal memory, using
an access to a long word address. Programs can also make a 64-bit access
through normal word addressing with the LW mnemonic or through a PX
register move with the LW mnemonic. Programs may not use long word
addressing to access multiprocessor memory space or external memory.
The address ranges for internal memory accesses appear in Figure 5-7 on
page 5-17.

Since the ADSP-21161 processor external port is 32 bits wide, the
SIMD and long word accesses are not supported.

When data is accessed using long word addressing, the data is always long
word aligned on 64-bit boundaries in internal memory space. When data
is accessed using normal word addressing and the LW mnemonic, the pro-
gram should maintain this alignment by using an even normal word
address (least significant bit of address =0). This register selection aligns
the normal word address with a 64-bit boundary (long word address).

All long word accesses load or store two consecutive 32-bit data values.
The register file source or destination of a long word access is a set of two
neighboring data registers in a processing element. In a forced long word
access (uses the LW mnemonic), the even (normal word address) location
moves to or from the explicit register in the neighbor-pair, and the odd
5-48 ADSP-21161 SHARC Processor Hardware Reference

Memory
(normal word address) location moves to or from the implicit register in
the neighbor-pair. For example, the following long word moves could
occur:

DM(0x40000) = R0 (LW);

/* The data in R0 moves to location DM(0x40000),

 and the data in R1 moves to location DM(0x40001) */

R0 (LW) = DM(0x40003)(LW);

/* The data at location DM(0x40002) moves to R0,

 and the data at location DM(0x40003) moves to R1 */

The example shows that R0 and R1 are a neighbor registers in the same
processing element. Table 5-7 lists the other neighbor register assignments
that apply to long word accesses.

In un-forced long word accesses (accesses to LW memory space), the proces-
sor places the lower 32-bits of the long word in the named (explicit)
register and places the upper 32-bits of the long word in the neighbor
(implicit) register.

Table 5-7. Neighbor Registers for Long Word Accesses

PEx neighbor registers PEy neighbor registers

r0 neighbors r1 s0 neighbors s1

r2 neighbors r3 s2 neighbors s3

r4 neighbors r5 s4 neighbors s5

r6 neighbors r7 s6 neighbors s7

r8 neighbors r9 s8 neighbors s9

r10 neighbors r11 s10 neighbors s11

r12 neighbors r13 s12 neighbors s13

r14 neighbors r15 s14 neighbors s15
ADSP-21161 SHARC Processor Hardware Reference 5-49

Accessing Memory
Programs can monitor for unaligned 64-bit accesses by enabling the
U64MAE bit. For more information, see “Unaligned 64-Bit Memory Access”
on page 5-41.

The Long word (LW) mnemonic only effects normal word address
accesses and overrides all other factors (PEYEN, IMDWx).

Instruction Word (48-Bit) and Extended-Precision Normal
Word (40-Bit) Accesses

The sequencer uses 48-bit memory accesses for instruction fetches. Pro-
gram can make 48-bit accesses with PX register moves, which default to
48-bit.

A program makes an extended-precision normal word (40-bit) access to
internal memory using an access to a normal word address when that
internal memory block’s IMDWx bit is set (=1) for 40-bit words. Programs
may not use extended-precision normal word addressing to access multi-
processor memory space or external memory. The address ranges for
internal memory accesses appear in Figure 5-7 on page 5-17. For more
information on configuring memory for extended-precision normal word
accesses, see “Internal Memory Data Width” on page 5-37.

The processor transfers the 40-bit data to internal memory as a 48-bit
value, zero-filling the least significant 8 bits on stores and truncating these
8 bits on loads. The register file source or destination of such an access is a
single 40-bit data register.

Normal Word (32-Bit) Accesses

A program makes a normal word (32-bit) access to internal memory using
an access to a normal word address when that internal memory block’s
IMDWx bit is cleared (=0) for 32-bit words. Programs use normal word
addressing to access all processor memory spaces: internal, multiprocessor,
and external memory space. The address ranges for memory accesses
appear in Figure 5-7 on page 5-17, and Figure 5-9 on page 5-23.
5-50 ADSP-21161 SHARC Processor Hardware Reference

Memory
The register file source or destination of a normal word access is a single
40-bit data register. The processor zero-fills the least significant 8 bits on
loads and truncates these bits on stores.

External memory space accesses using normal word addressing and
the LW mnemonic perform a 32-bit accesses, not a 64-bit access.

Short Word (16-Bit) Accesses

A program makes a short word (16-bit) access to internal memory, using
an access to a short word address. Programs may not use short word
addressing to access multiprocessor memory space or external memory.
The address ranges for internal memory accesses appear in Figure 5-7 on
page 5-17.

The register file source or destination of such an access is a single 40-bit
data register. The processor zero-fills the least significant 8 bits on loads
and truncates these bits on stores. Depending on the value of the SSE bit
in the MODE1 system register, the processor loads the register’s upper 16
bits by either:

• Zero-filling these bits if SSE=0

• Sign-extending these bits if SSE=1

SISD, SIMD, and Broadcast Load Modes
These three processing element modes influence memory accesses. For a
comparison of their effects, see the examples in “Data Access Options” on
page 5-52. For more information on SISD and SIMD modes, see “Sec-
ondary Processing Element (PEy)” on page 2-37.

Broadcast load mode is a hybrid between SISD and SIMD modes, trans-
ferring dual-data under special conditions. For examples of broadcast
transfers, see “Data Access Options” on page 5-52. For more information
on broadcast load mode, see “Broadcast Register Loads” on page 5-40.
ADSP-21161 SHARC Processor Hardware Reference 5-51

Accessing Memory
Single and Dual Data Accesses
The number of transfers that occur in a cycle influences the data access
operation. As described on page 5-5, the processor supports single-cycle,
dual-data accesses to and from internal memory for register-to-memory
and memory-to-register transfers. Dual-data accesses occur over the PM
and DM bus and act independent of SIMD/SISD. Though only available
for transfers between memory and data registers, dual-data transfers are
extremely useful because they double the data throughput over single-data
transfers.

Instruction Examples

R8 = DM (I4,M3), PM (I12,M13) = R0; /* Dual access */

R0 = DM (I5,M5); / * Single access */

For examples of data flow paths for single- and dual-data transfers, see
“Data Access Options” on page 5-52.

Data Access Options
Table 5-8 on page 5-53 lists the processor’s possible memory transfer
modes and provides a cross reference to examples of each memory access
option that stems from the processor’s data access options.

Table 5-8 shows the transfer modes that stem from the following data
access options:

• The mode of the processor: SISD, SIMD, or Broadcast Load

• The size of access words: long, extended-precision normal word,
normal word, or short word

• The number of transferred words: single- or dual-data

Note that long and short word addressing may not target multiprocessor
memory space or external memory space.
5-52 ADSP-21161 SHARC Processor Hardware Reference

Memory
Table 5-8. Memory Transfer Modes Cross Reference

Access
Type

 Mode Address Space

Long Word Extended
Precision

Normal Word Short Word

Single
Data
Access

SISD
mode

LW
page 5-76

EW
page 5-70

NW
page 5-62

SW
page 5-54

SIMD
mode

LW
page 5-76

EW
page 5-70

LW
page 5-64

SWx2
page 5-56

B-cast
Load

LW
Figure 5-38

EW
Figure 5-36

NW
Figure 5-34

SW
Figure 5-32

Dual Data
Access

SISD
mode

LW
page 5-78

EW
page 5-72

NW
page 5-66

SW
page 5-58

SIMD
mode

LW
page 5-80

EW
page 5-74

LW
page 5-68

SWx2
page 5-60

B-cast
Load

LW
Figure 5-35

EW
Figure 5-37

NW
Figure 5-35

SW
Figure 5-33

Symbols:LW = 64-bit data value (two 32-bit values), EW = 40-bit data value (48-bit value),
NW = 32-bit data value, SW = 16-bit data value, and SWx2 = two 16-bit data values.
ADSP-21161 SHARC Processor Hardware Reference 5-53

Accessing Memory
Short Word Addressing of Single Data in SISD Mode

Figure 5-16 displays one possible SISD mode, single data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The 16-bit value for the short word
access transfers using the least significant short word lane of the PM or
DM data bus. The processor drives the other short word lanes of the data
buses with zeros.

In SISD mode, the instruction accesses PEx registers to transfer data from
memory. This instruction accesses WORD X0 whose short word address has
“00” for its least significant two bits of address. Other locations within
this row have addresses with least significant two bits of “01”, “10”, or
“11” and select WORD X1, WORD X2, or WORD X3 from memory respectively.
The syntax targets register, RX, in PEx. The example would target a PEy
register if using the syntax SX.

The cross (†) in the PEx registers in Figure 5-16 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODE1 system register. For SW
transfers, the least significant 8 bits of the data register are always zero.
5-54 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-16. Short Word Addressing of Single Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000 0X0000

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES. DUAL DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-55

Accessing Memory
Short Word Addressing of Single Data in SIMD Mode

Figure 5-17 displays one possible SIMD mode, single data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The explicitly addressed (named in
the instruction) 16-bit value transfers using the least significant short
word lane of the PM or DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word value transfers using the 47-32 bit short word lane of the PM
or DM data bus. The processor drives the other short word lanes of the
PM or DM data buses with zeros.

The instruction explicitly accesses the register, RX, and implicitly accesses
that register’s complementary register, SX. This instruction uses a PEx reg-
ister with an RX mnemonic. If the syntax named a PEy register SX as the
explicit target the processor would use that register’s complement RX as the
implicit target. For more information on complementary registers, see
“Secondary Processing Element (PEy)” on page 2-37.

The cross (†) in the PEx and PEy registers in Figure 5-17 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
register while loading the short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODE1 system register. For short
word accesses, the least significant 8 bits of the data register are always
zero.

Figure 5-17 shows the data path for one transfer. The processor accesses
short words sequentially in memory. Table 5-9 shows the pattern of
SIMD mode short word accesses. For more information on arranging data
in memory to take advantage of this access pattern, see “Arranging Data in
Memory” on page 5-100.
5-56 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-17. Short Word Addressing of Single Data in SIMD Mode

WORD Y10WORD Y11 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

A
D

D
R

E
S

S

…

…

…

…

…

…

…

…

…

…

…

…

A
D

D
R

E
S

S

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X2 0X00000X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X20X0000† 0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL DATA ACCESSES.
DUAL DATA ACCESSES CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-57

Accessing Memory
Short Word Addressing of Dual-Data in SISD Mode

Figure 5-18 displays one possible SISD mode, dual-data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The 16-bit values for short word
accesses transfer using the least significant short word lanes of the PM and
DM data buses. The processor drives the other short word lanes of the
data buses with zeros. Note that the accesses on both buses do not have to
be the same word width. SISD mode dual-data accesses can handle any
combination of short word, normal word, extended-precision normal
word, or long word accesses. For more information, see “Mixed Word
Width Addressing of Dual Data in SISD Mode” on page 5-82.

In SISD mode, the instruction explicitly accesses PEx registers. This
instruction accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a short word address with “00” for its least significant two
bits of address. Other accesses within these 4-column location have the
addresses with least significant two bits of “01”, “10”, or “11” and select
WORD X1/Y1, WORD X2/Y2, or WORD X3/Y3 from memory respectively. The
syntax explicitly accesses registers, RX and RY, in PEx. The example would
target PEy registers if using the syntax SX or SY.

Table 5-9. Short Word Addressing in SIMD Mode

Explicit Short Word Accessed Implicit Short Word Accessed

Word X0 (Address two LSBs = 00) Word X2 (Address two LSBs = 10)

Word X1 (Address two LSBs = 01) Word X3 (Address two LSBs = 11)

Word X2 (Address two LSBs = 10) Word X4 (Address two LSBs = 00)

Word X3 (Address two LSBs = 11) Word X5 (Address two LSBs = 01)
5-58 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-18. Short Word Addressing of Dual-Data in SISD Mode

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

WORD Y0 0X0000

WORD Y00X0000† 0X00

0X00000X0000 0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-59

Accessing Memory
The cross (†) in the PEx registers in Figure 5-18 indicates that the proces-
sor zero-fills or sign-extends the most significant 16 bits of the data
register while loading a short word value into a 40-bit data register. This
depends on the state of the SSE bit in the MODE1 system register. For short
word accesses, the least significant 8 bits of the data register are always
zero.

Short Word Addressing of Dual-Data in SIMD Mode

Figure 5-19 displays one possible SIMD mode, dual-data, short word
addressed access. For short word addressing, the processor treats the data
buses as four 16-bit short word lanes. The explicitly addressed (named in
the instruction) 16-bit values transfer using the least significant short
word lanes of the PM and DM data bus. The implicitly addressed (not
named in the instruction, but inferred from the address in SIMD mode)
short word values transfer using the 47-32 bit short word lanes of the PM
and DM data buses. The processor drives the other short word lanes of the
PM and DM data buses with zeros.

The accesses on both buses do not have to be the same word width.
SIMD mode dual-data accesses can handle combinations of short
word and normal word or extended-precision normal word and
long word accesses. For more information, see “Mixed Word
Width Addressing of Dual Data in SIMD Mode” on page 5-84.

The instruction explicitly accesses registers RX and RA, and implicitly
accesses the complementary registers, SX and SA. This instruction uses a
PEx registers with the RX and RA mnemonics. If the syntax named PEy reg-
isters SX and SA as the explicit targets, the processor would use those
registers’ complements, RX and RA, as the implicit targets. For more infor-
mation on complementary registers, see “Secondary Processing Element
(PEy)” on page 2-37.
5-60 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-19. Short Word Addressing of Dual-Data in SIMD Mode

7-023-839-24

WORD Y00X0000† 0X00

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, SHORT WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

WORD Y2

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-24

RARB

SXSYPEY REGISTERS

7-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM (SHORT WORD X0 ADDRESS), RA = PM (SHORT WORD Y0 ADDRESS);

WORD Y0 0X00000X00000X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

WORD X2

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.

7-023-839-24

WORD Y20X0000† 0X00 WORD X20X0000† 0X00

7-023-839-24
ADSP-21161 SHARC Processor Hardware Reference 5-61

Accessing Memory
The cross (†) in the PEx and PEy registers in Figure 5-19 indicates that the
processor zero-fills or sign-extends the most significant 16 bits of the data
registers while loading the short word values into the 40-bit data registers.
For short word accesses, this depends on the state of the SSE bit in the
MODE1 system register. For the short word accesses, the least significant 8
bits of the data register are always zero.

Figure 5-19 shows the data path for one transfer. For short word accesses,
the processor accesses short words sequentially in memory. Table 5-9 on
page 5-58 shows the pattern of SIMD mode short word accesses. For more
information on arranging data in memory to take advantage of this access
pattern, see “Arranging Data in Memory” on page 5-100.

32-Bit Normal Word Addressing of Single Data in SISD Mode

Figure 5-20 displays one possible SISD mode, single data, 32-bit normal
word addressed access. For normal word addressing, the processor treats
the data buses as two 32-bit normal word lanes. The 32-bit value for the
normal word access transfers using the least significant normal word lane
of the PM or DM data bus. The processor drives the other normal word
lanes of the data buses with zeros.

In SISD mode, the instruction accesses a PEx register. This mode accesses
WORD X0 whose normal word address has “0” for its least significant address
bit. The other access within this 4-column location has an addresses with a
least significant bit of “1” and selects WORD X1 from memory. The syntax
targets register RX in PEx. The example would target a PEy register if using
the syntax SX.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.
5-62 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-20. 32-Bit Normal Word Addressing of Single Data in SISD
Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

0X0000

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-63

Accessing Memory
32-Bit Normal Word Addressing of Single Data in SIMD Mode

Figure 5-21 displays one possible SIMD mode, single data, normal word
addressed access. For normal word addressing, the processor treats the
data buses as two 32-bit normal word lanes. The explicitly addressed
(named in the instruction) 32-bit value transfers using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) Normal word value transfers using the most significant normal
word lane of the PM or DM data bus.

In Figure 5-21, the explicit access targets the named register RX, and the
implicit access targets that register’s complementary register SX. This case
uses a PEx register with an RX mnemonic. If the syntax named a PEy regis-
ter SX as the explicit target, the processor would use that register’s
complement, RX, as the implicit target. For more information on comple-
mentary registers, see “Secondary Processing Element (PEy)” on
page 2-37.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-21 shows the data path for one transfer. For normal word
accesses, the processor accesses normal words sequentially in memory.
Table 5-9 shows the pattern of SIMD mode normal word accesses. For
more information on arranging data in memory to take advantage of this
access pattern, see “Arranging Data in Memory” on page 5-100.
5-64 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-21. 32-Bit Normal Word Addressing of Single Data in SIMD
Mode

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PEY
REGISTER S

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X1

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X1 0X00

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-65

Accessing Memory
32-Bit Normal Word Addressing of Dual Data in SISD Mode

Figure 5-22 displays one possible SISD mode, dual data, 32-bit normal
word addressed access. For normal word addressing, the processor treats
the data buses as two 32-bit normal word lanes. The 32-bit values for nor-
mal word accesses transfer using the least significant normal word lanes of
the PM and DM data buses. The processor drives the other normal word
lanes of the data buses with zeros. Note that the accesses on both buses do
not have to be the same word width. SISD mode dual-data accesses can
handle any combination of short word, normal word, extended-precision
normal word, or long word accesses. For more information, see “Mixed
Word Width Addressing of Dual Data in SISD Mode” on page 5-82.

In Figure 5-22, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 in block 1 and WORD Y0 in block 0. Each of
these words has a normal word address with “0” for its least significant
address bit. Other accesses within these 4-column locations have the
addresses with the least significant bit of “1” and select WORD X1/Y1 from
memory. The syntax targets registers RX and RY in PEx. The example would
target PEy registers if using the syntax SX or SY.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Table 5-10. Normal Word Addressing in SIMD Mode

Explicit Normal Word Accessed Implicit Normal Word Accessed

Word X0 (Address LSB = 0) Word X1 (Address LSB = 1)

Word X1 (Address LSB = 1) Word X2 (Address LSB = 0)
5-66 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-22. 32-Bit Normal Word Addressing of Dual Data in SISD Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-67

Accessing Memory
32-Bit Normal Word Addressing of Dual Data in SIMD Mode

Figure 5-23 displays one possible SIMD mode, dual data, 32-bit normal
word addressed access. For normal word addressing, the processor treats
the data buses as two 32-bit normal word lanes. The explicitly addressed
(named in the instruction) 32-bit values transfer using the least significant
normal word lane of the PM or DM data bus. The implicitly addressed
(not named in the instruction, but inferred from the address in SIMD
mode) normal word values transfer using the most significant normal
word lanes of the PM and DM data bus. Note that the accesses on both
buses do not have to be the same word width. SIMD mode dual-data
accesses can handle combinations of short word and normal word or
extended-precision normal word and long word accesses. For more infor-
mation, see “Mixed Word Width Addressing of Dual Data in SIMD
Mode” on page 5-84.

In Figure 5-23, the explicit access targets the named registers RX and RA,
and the implicit access targets those register’s complementary registers SX
and SA. This case uses a PEx registers with the RX and RA mnemonics. If the
syntax named PEy registers SX and SA as the explicit targets, the processor
would use those registers’ complements RX and RA as the implicit targets.
For more information on complementary registers, see “Secondary Pro-
cessing Element (PEy)” on page 2-37.

For normal word accesses, the processor zero-fills least significant 8 bits of
the data register on loads and truncates these bits on stores to memory.

Figure 5-23 shows the data path for one transfer. For normal word
accesses, the processor accesses normal words sequentially in memory.
Table 5-9 on page 5-58 shows the pattern of SIMD mode normal word
accesses. For more information on arranging data in memory to take
advantage of this access pattern, see “Arranging Data in Memory” on
page 5-100.
5-68 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-23. 32-Bit Normal Word Addressing of Dual Data in SIMD
Mode

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

WORD X0

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y0 WORD X1

WORD Y0 0X00

WORD X1WORD Y1

WORD Y1

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-69

Accessing Memory
Extended Precision Normal Word Addressing of Single Data

Figure 5-24 displays one possible single data, 40-bit extended-precision
normal word addressed access. For extended-precision normal word
addressing, the processor treats each data bus as a 40-bit extended-preci-
sion normal word lane. The 40-bit value for the extended-precision
normal word access transfers using the most significant 40 bits of the PM
or DM data bus. The processor drives the lower 24 bits of the data buses
with zeros.

In Figure 5-24, the access targets a PEx register in a SISD or SIMD mode
operation; extended-precision normal word single-data access operate the
same in SISD or SIMD mode. This case accesses WORD X0 with syntax that
targets register RX in PEx. The example would target a PEy register if using
the syntax SX.
5-70 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-24. Extended Precision Normal Word Addressing of Single Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-71

Accessing Memory
Extended Precision Normal Word Addressing of Dual Data in
SISD Mode

Figure 5-25 displays one possible SISD mode, dual data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane. The 40-bit values for the
extended-precision normal word accesses transfer using the most signifi-
cant 40 bits of the PM and DM data bus. The processor drives the lower
24 bits of the data buses with zeros. Note that the accesses on both buses
do not have to be the same word width. SISD mode dual-data accesses can
handle any combination of short word, normal word, extended-precision
normal word, or long word accesses. For more information, see “Mixed
Word Width Addressing of Dual Data in SISD Mode” on page 5-82.

In Figure 5-25, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 in block 1 and WORD Y0 in block 0 with syntax
that targets registers RX and RY in PEx. The example would target a PEy reg-
isters if using the syntax SX or SY.
5-72 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-25. Extended-Precision Normal Word Addressing of Dual Data
in SISD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, EXTENDED PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(EXT. PREC. NORMAL WORD ADDRESS), DREG = DM(EXT. PREC. NORMAL WORD ADDRESS);
PM(EXT. PREC. NORMAL WORD ADDRESS) = DREG, DM(EXT. PREC. NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-73

Accessing Memory
Extended-Precision Normal Word Addressing of Dual Data in
SIMD Mode

Figure 5-26 displays one possible SIMD mode, dual data, 40-bit
extended-precision normal word addressed access. For extended-precision
normal word addressing, the processor treats each data bus as a 40-bit
extended-precision normal word lane.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 40-bit values transferred over the DM bus must source or sink a PEx
data register, and the explicitly addressed (named in the instruction)
40-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode. The 40-bit values for
the extended-precision normal word accesses transfer using the most sig-
nificant 40 bits of the PM and DM data bus. The processor drives the
lower 24 bits of the data buses with zeros.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word
accesses. For more information, see “Mixed Word Width Address-
ing of Dual Data in SIMD Mode” on page 5-84.

In Figure 5-26, the access targets PEx and PEy registers in a SIMD mode
operation. This case accesses WORD X0 in block 1 with syntax that targets
register RX in PEx and accesses WORD Y0 in block 0 with syntax that targets
register SX in PEy.
5-74 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-26. Extended-Precision Normal Word Addressing of Dual Data
in SIMD Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, EXTENDED-PRECISION NORMAL WORD,
DUAL-DATA TRANSFERS ARE:

PEY DREG = PM(EP NORMAL WORD ADDRESS), PEX DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = PEY DREG, DM(EP NORMAL WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), SX = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

WORD Y0

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X0000 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-75

Accessing Memory
Long Word Addressing of Single Data

Figure 5-27 displays one possible single data, long word addressed access.
For long word addressing, the processor treats each data bus as a 64-bit
long word lane. The 64-bit value for the long word access transfers using
the full width of the PM or DM data bus.

In Figure 5-27, the access targets a PEx register in a SISD or SIMD mode
operation; long word single-data access operate the same in SISD or
SIMD mode. This case accesses WORD X0 with syntax that explicitly targets
register RX and implicitly targets its neighbor register RY in PEx. The exam-
ple would target PEy registers if using the syntax SX. For more information
on how neighbor registers (listed in Table 5-7 on page 5-49) work, see
“Long Word (64-Bit) Accesses” on page 5-48.
5-76 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-27. Long Word Addressing of Single Data

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD OR SIMD, LONG WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-77

Accessing Memory
Long Word Addressing of Dual Data in SISD Mode

Figure 5-28 displays one possible SISD mode, dual data, long word
addressed access. For long word addressing, the processor treats each data
bus as a 64-bit long word lane. The 64-bit values for the long word
accesses transfer using the full width of the PM or DM data bus.

In Figure 5-28, the access targets PEx registers in a SISD mode operation.
This case accesses WORD X0 and WORD Y0 with syntax that explicitly targets
registers RX registers RA and implicitly targets their neighbor registers RY
and RB in PEx. The example would target PEy registers if using the syntax
SX and SA. For more information on how neighbor registers (listed in
Table 5-7 on page 5-49) work, see “Long Word (64-Bit) Accesses” on
page 5-48.

Programs must be careful not to explicitly target neighbor registers in this
case. While the syntax lets programs target these registers, one of the
explicit accesses targets the other access’s implicit target. The processor
resolves this conflict by performing only the access with higher priority.
For more information on the priority order of data register file accesses,
see “Data Register File” on page 2-30.
5-78 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-28. Long Word Addressing of Dual Data in SISD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, LONG WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-320X00WORD Y0, 31-0WORD Y0, 63-32 0X00 0X0
0

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-79

Accessing Memory
Long Word Addressing of Dual Data in SIMD Mode

Figure 5-29 displays one possible SIMD mode, dual data, long word
addressed access targeting internal memory space. For long word address-
ing, the processor treats each data bus as a 64-bit long word lane. The
64-bit values for the long word accesses transfer using the full width of the
PM or DM data bus.

Because this word size approaches the limit of the data buses capacity, this
SIMD mode transfer only moves the explicitly addressed locations and
restricts data bus usage. The explicitly addressed (named in the instruc-
tion) 64-bit values transferred over the DM bus must source or sink a PEx
data register, and the explicitly addressed (named in the instruction)
64-bit values transferred over the PM bus must source or sink a PEy data
register; there are no implicit transfers in this mode.

In Figure 5-29, the access targets PEx and PEy registers in a SIMD mode
operation. This case accesses WORD X0 in block 1 with syntax that targets
register RX and its neighbor register RY in PEx and accesses WORD Y0 in
block 0 with syntax that targets register SX and its neighbor register SY in
PEy. For more information on how neighbor registers (listed in Table 5-7
on page 5-49) work, see “Long Word (64-Bit) Accesses” on page 5-48.

The accesses on both buses do not have to be the same word width.
This special case of SIMD mode dual-data accesses can handle any
combination of extended-precision normal word or long word
accesses. For more information, see “Mixed Word Width Address-
ing of Dual Data in SIMD Mode” on page 5-84.
5-80 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-29. Long Word Addressing of Dual Data in SIMD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, LONG WORD, DUAL-DATA TRANSFERS ARE:
PEY DREG = PM(LONG WORD ADDRESS), PEX DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = PEY DREG, DM(LONG WORD ADDRESS) = PEX DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(LONG WORD Y0 ADDRESS);

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32 0X00

WORD Y0, 31-0WORD Y0, 63-32

0X00

0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-81

Accessing Memory
Mixed Word Width Addressing of Dual Data in SISD Mode

Figure 5-30 displays an example of a mixed word width, dual data, SISD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers a short word access on the PM bus.
The memory architecture permits mixing all other combinations of
dual-data SISD mode short word, normal word, extended-precision nor-
mal word, and long word accesses.

In case of conflicting dual access to the data register file, the pro-
cessor only performs the access with higher priority. For more
information on how the processor prioritizes accesses, see “Data
Register File” on page 2-30.
5-82 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-30. Mixed Word Width Addressing of Dual Data in SISD Mode

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SISD, MIXED-WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(SHORT, NORMAL, EP NORMAL, LONG ADD), DREG = DM(SHORT, NORMAL, EP NORMAL, LONG ADD);
PM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG, DM(SHORT, NORMAL, EP NORMAL, LONG ADD) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(SHORT WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1 WORD Y0

WORD Y00X0000

WORD Y00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-83

Accessing Memory
Mixed Word Width Addressing of Dual Data in SIMD Mode

Figure 5-31 displays an example of a mixed word width, dual data, SIMD
mode access. This example shows how the processor transfers a long word
access on the DM bus and transfers an extended-precision normal word
access on the PM bus.

The memory architecture permits mixing SIMD mode dual data
short word and normal word accesses or extended-precision normal
word and long word accesses. No other combinations of mixed
word dual-data SIMD mode accesses are permissible.
5-84 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-31. Mixed Word Width Addressing of Dual Data in SIMD
Mode

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR SIMD, MIXED-WORD,
DUAL-DATA TRANSFERS ARE:

DREG = PM(ADDRESS), DREG = DM(ADDRESS);
PM(ADDRESS) = DREG, DM(ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), SX = PM(EP NORMAL WORD Y0 ADDRESS);

LONG WORD ACCESS

0X00

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0WORD X0, 63-32 0X00

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

WORD Y0 0X00000X00

WORD Y0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
ADSP-21161 SHARC Processor Hardware Reference 5-85

Accessing Memory
Broadcast Load Access

Figure 5-32 through Figure 5-39 provide examples of broadcast load
accesses for single- and dual-data transfers. These examples show that the
broadcast load’s memory and register access is a hybrid of the correspond-
ing non-broadcast SISD and SIMD mode accesses. The exceptions to this
relation are broadcast load dual-data, extended-precision normal word and
long word accesses. These broadcast accesses differ from their correspond-
ing non-broadcast mode accesses.
5-86 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-32. Short Word Addressing of Single Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

NO ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, SHORT WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(SHORT WORD ADDRESS);
UREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = UREG;
DM(SHORT WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS);

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000† 0X00

0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-87

Accessing Memory
Figure 5-33. Short Word Addressing of Dual Data in Broadcast Load

WORD Y11 WORD Y10 WORD Y9 WORD Y8

WORD Y7 WORD Y6 WORD Y5 WORD Y4

WORD Y3 WORD Y2 WORD Y1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD Y0

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST,
SHORT WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(SHORT WORD ADDRESS), DREG = DM(SHORT WORD ADDRESS);
PM(SHORT WORD ADDRESS) = DREG, DM(SHORT WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X11 WORD X10 WORD X9 WORD X8

WORD X7 WORD X6 WORD X5 WORD X4

WORD X3 WORD X2 WORD X1

SHORT WORD ACCESS

15-031-1647-3263-48

WORD X0

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(SHORT WORD X0 ADDRESS), RY = PM(SHORT WORD Y0 ADDRESS);

WORD Y00X0000

WORD X00X0000† 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y00X0000† 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X00X0000†WORD Y00X0000†

0X0000 0X0000 0X0000 0X0000

0X00 0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
5-88 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-34. Normal Word Addressing of Single Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, SINGLE-DATA TRANSFERS ARE:
UREG = PM(NORMAL WORD ADDRESS);
UREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = UREG;
DM(NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

0X0000

THE ABOVE EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS);

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0 0X00

0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-89

Accessing Memory
Figure 5-35. Normal Word Addressing of Dual Data in Broadcast Load

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

WORD X0

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, NORMAL WORD, DUAL-DATA TRANSFERS ARE:
DREG = PM(NORMAL WORD ADDRESS), DREG = DM(NORMAL WORD ADDRESS);
PM(NORMAL WORD ADDRESS) = DREG, DM(NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

NORMAL WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(NORMAL WORD X0 ADDRESS), RY = PM(NORMAL WORD Y0 ADDRESS);

WORD Y00X0000

WORD X0 0X00

7-023-839-24

RXRYPEX REGISTERS

WORD Y0 0X00

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X5 WORD X4

WORD X3 WORD X2

WORD X1 WORD X0

WORD Y5 WORD Y4

WORD Y3 WORD Y2

WORD Y1 WORD Y0

WORD X0 0X00WORD Y0 0X00

0X0000 0X0000 0X0000

A
D

D
R

E
S

S

A
D

D
R

E
S

S

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
5-90 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-36. Extended Precision Normal Word Addressing of Single Data
in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(EP NORMAL WORD ADDRESS);
UREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = UREG;
DM(EP NORMAL WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EXTENDED-PRECISION NORMAL WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00

WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-91

Accessing Memory
Figure 5-37. Extended Precision Normal Word Addressing of Dual Data
in Broadcast Load

EXTENDED PRECISION NORMAL
WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, EXTENDED-PRECISION
NORMAL WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(EP NORMAL WORD ADDRESS), DREG = DM(EP NORMAL WORD ADDRESS);
PM(EP NORMAL WORD ADDRESS) = DREG, DM(EP NORMAL WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(EP NORMAL WORD X0 ADDR.), RY = PM(EP NORMAL WORD Y0 ADDR.);

WORD Y0

7-023-839-24

RXRYPEX REGISTERS

WORD Y0

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2 WORD X1

WORD X0WORD X1

WORD X2WORD X3

WORD Y2 WORD Y1

WORD Y0WORD Y1

WORD Y2WORD Y3

EXTENDED PRECISION NORMAL
WORD ACCESS

0X0000

WORD X0

0X00000X00 0X00

WORD Y0 WORD X0

A
D

D
R

E
S

S

A
D

D
R

E
S

S

WORD

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
5-92 ADSP-21161 SHARC Processor Hardware Reference

Memory
Figure 5-38. Long Word Addressing of Single Data in Broadcast Load

NO ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, SINGLE-DATA TRANSFERS ARE:

UREG = PM(LONG WORD ADDRESS);
UREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = UREG;
DM(LONG WORD ADDRESS) = UREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32

LONG WORD ACCESS

0X000X00

WORD X0, 31-0WORD X0, 63-32 0X000X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

ADSP-21161 SHARC Processor Hardware Reference 5-93

Accessing Memory
Figure 5-39. Long Word Addressing of Dual Data in Broadcast Load

LONG WORD ACCESS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

PM DATA
BUS

MEMORY

OTHER INSTRUCTIONS WITH SIMILAR DATA FLOWS FOR BROADCAST, LONG WORD, DUAL-DATA TRANSFERS ARE:

DREG = PM(LONG WORD ADDRESS), DREG = DM(LONG WORD ADDRESS);
PM(LONG WORD ADDRESS) = DREG, DM(LONG WORD ADDRESS) = DREG;

BLOCK 1 (DM)BLOCK 0 (PM)

DM DATA
BUS

15-031-1647-3263-48

…

…

…

…

…

…

…

…

…

…

…

…

THIS EXAMPLE SHOWS THE DATA FLOW FOR INSTRUCTION:
RX = DM(LONG WORD X0 ADDRESS), RA = PM(LONG WORD Y0 ADDRESS);

7-023-839-24

RXRYPEX REGISTERS

7-023-839-247-023-839-247-023-839-24

RARB

7-023-839-24

SXSYPEY REGISTERS

7-023-839-247-023-839-247-023-839-24

SASB

LONG WORD ACCESS

WORD Y0 WORD X0

WORD X2

WORD X0

WORD X1

WORD X0, 31-0

WORD Y2

WORD Y0

WORD Y1

WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

WORD X0, 31-0WORD X0, 63-32WORD Y0, 31-0WORD Y0, 63-32 0X00

0X00

0X00 0X00

0X00

0X00

A
D

D
R

E
S

S

A
D

D
R

E
S

S

0X00

NOTE: DIRECT ADDRESSING IS NOT SUPPORTED FOR DUAL-DATA ACCESSES. DUAL-DATA ACCESSES
CAN BE ACCOMPLISHED BY INDIRECT ADDRESSING USING THE DAG REGISTERS.
5-94 ADSP-21161 SHARC Processor Hardware Reference

Memory
Shadow Write FIFO Considerations in SIMD Mode
The shadow write FIFOs is located between the internal memory array of
the ADSP-21161 and core and the IOP busses that access the memory.

When performing SIMD reads that cross long word address boundaries
and the data read resides in the shadow write FIFO, the read in SIMD
mode causes unpredictable results for explicit accesses of odd normal word
addresses in internal memory. The implicit part of this SIMD mode trans-
fer incorrectly accesses the previous sequential even address when the data
is in the shadow write FIFO.

When the read data resides in internal memory, a SIMD mode explicit
access to normal word address 0x40001 results in an implicit access to the
next sequential even address value. As shown in Table 5-11, a SIMD
mode explicit access to normal word address 0x40001 result in an implicit
access to normal word address 0x40002.

Table 5-12 illustrates operation when the previously written data still
resides in the shadow write FIFO. For example, from a previous memory
write instruction. A SIMD mode explicit access to normal word address
0x40001 results in an implicit access to normal word address 0x40000 if

Table 5-11. Data Resides In Internal Memory

Explicit “R0” R0=dm(I0,M0); Explicit “S0” S0=dm(I0,M0);

Explicit
Address (I0)

R0 S0 R0 S0

0x40001 32-bit word at
0x40001

32-bit word at
0x40002

32-bit word at
0x40002

32-bit word at
0x40001
ADSP-21161 SHARC Processor Hardware Reference 5-95

Accessing Memory
the reading of the data from 0x40001 occurs while the data is still in the
shadow write FIFO. This access type results in an implicit access to the
next sequential even address value.

To better demonstrate what results if the read data is in the shadow write
FIFO versus internal memory, Table 5-13 shows the failing cases for a
SIMD shadow aligned and non-aligned access when a SIMD read imme-
diately follows a SIMD write.

Table 5-12. Data Resides In Shadow Write FIFO

Explicit “R0” R0=dm(I0,M0); Explicit “S0” S0=dm(I0,M0);

Explicit
Address (I0)

R0 S0 R0 S0

0x40001 32-bit word at
0x40001

32-bit word at
0x40000

32-bit word at
0x40000

32-bit word at
0x40001

Table 5-13. SIMD Write - SIMD Read Illegal Cases

Address of
Write Data in
Shadow Write
FIFO

Immediate Read after
Write

Result Resultant Register Address
Contents

0x500011 r0=dm(0x50000) Incorrect r0=(0x50002), s0=(0x50001)

 r0=dm(0x50001) Correct r0=(0x50001), s0=(0x50002)

r0=dm(0x50002) Incorrect r0=(0x50002)2, s0=(0x50003)

0x500021 r0=dm(0x50001) Incorrect r0=(0x50001), s0=(0x50002)2

 r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)

r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)

0xA0002 3 r0=dm(0xA0000) Incorrect r0=(0xA0004), s0=(0xA0002)

 r0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)

r0=dm(0xA0002) Correct r0=(0xA0002), s0=(0xA0004)
5-96 ADSP-21161 SHARC Processor Hardware Reference

Memory
 r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)

r0=dm(0xA0004) Incorrect r0=(0xA0004)2, s0=(0xA0006)

0xA00033 r0=dm(0xA0001) Incorrect r0=(0xA0005), s0=(0xA0003)

 r0=dm(0xA0002) Correct r0=(0xA0002), s0=(0xA0004)

r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)2

 r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)

r0=dm(0xA0005) Incorrect r0=(0xA0005)2, s0=(0xA0007)

0xA00043 r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2

 r0=dm(0xA0003) Correct r0=(0xA0003), s0=(0xA0005)

r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)

 r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)

r0=dm(0xA0006) Incorrect r0=(0xA0006)2, s0=(0xA0004)

0xA00053 r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2

 r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)

r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)

 r0=dm(0xA0006) Correct r0=(0xA0006), s0=(0xA0008)

r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)

0x28001 r0=dm(0x50000) Correct r0=(0x50000), s0=(0x50001)

r0=dm(0x50001) Incorrect r0=(0x50001), s0=(0x50002)2

r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)

r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)

r0=dm(0x50004) Correct r0=(0x50004), s0=(0x50005)

 0x28001 r0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)

Table 5-13. SIMD Write - SIMD Read Illegal Cases (Cont’d)

Address of
Write Data in
Shadow Write
FIFO

Immediate Read after
Write

Result Resultant Register Address
Contents
ADSP-21161 SHARC Processor Hardware Reference 5-97

Accessing Memory
 r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2

 r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2

 r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)

 r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)

 r0=dm(0xA0006) Incorrect r0=(0xA0006), s0=(0xA0004)

 r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)

 r0=dm(0xA0008) Correct r0=(0xA0008), s0=(0xA000A)

0x50002 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)

r0=dm(0x28001) Correct r0=(0x50002), r1=(0x50003)

r0=dm(0x28002) Correct r0=(0x50004), r1=(0x50005)

0x50003 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)

r0=dm(0x28001) Incorrect r0=(0x50004), r1=(0x50003)

r0=dm(0x28002) Incorrect r0=(0x50004)2, r1=(0x50005)

r0=dm(0x28003) Correct r0=(0x50006), r1=(0x50007)

 0x50002 r0=dm(0xA0001) Correct r0=(0xA0001), s0=(0xA0003)

r0=dm(0xA0002) Incorrect r0=(0xA0002), s0=(0xA0004)2

r0=dm(0xA0003) Incorrect r0=(0xA0003), s0=(0xA0005)2

r0=dm(0xA0004) Correct r0=(0xA0004), s0=(0xA0006)

r0=dm(0xA0005) Correct r0=(0xA0005), s0=(0xA0007)

r0=dm(0xA0006) Incorrect r0=(0xA0006), s0=(0xA0004)

r0=dm(0xA0007) Incorrect r0=(0xA0007), s0=(0xA0005)

r0=dm(0xA0008) Correct r0=(0xA0008), s0=(0xA000A)

 0xA0004 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)

Table 5-13. SIMD Write - SIMD Read Illegal Cases (Cont’d)

Address of
Write Data in
Shadow Write
FIFO

Immediate Read after
Write

Result Resultant Register Address
Contents
5-98 ADSP-21161 SHARC Processor Hardware Reference

Memory
If the new written data resides in shadow write FIFO, then for nor-
mal and short word SIMD accesses, a write access to an even
address followed by a read access to the adjacent (higher or lower)
odd address results in incorrect SIMD access operation. Similarly, a
write access to an odd address followed by a read access to the adja-
cent (higher or lower) even address results in incorrect SIMD
access operation.

r0=dm(0x28001) Correct r0=(0x50002), r1=(0x50003)

r0=dm(0x28002) Correct r0=(0x50004), r1=(0x50005)

0xA0006 r0=dm(0x28000) Correct r0=(0x50000), r1=(0x50001)

r0=dm(0x28001) Incorrect r0=(0x50002)4, r1=(0x50003)

r0=dm(0x28002) Incorrect r0=(0x50004)2, r1=(0x50005)

r0=dm(0x28003) Correct r0=(0x50006), r1=(0x50007)

0xA0004 r0=dm(0x50000) Correct r0=(0x50000), s0=(0x50001)

r0=dm(0x50001) Incorrect r0=(0x50001), s0=(0x50002)2

r0=dm(0x50002) Correct r0=(0x50002), s0=(0x50003)

r0=dm(0x50003) Incorrect r0=(0x50003), s0=(0x50002)4

r0=dm(0x50004) Correct r0=(0x50004), s0=(0x50005)

1 Normal word accesses
2 Old data from memory is accessed instead of new data in Shadow Write FIFO
3 Short word accesses
4 PEx and PEy data is partly from shadow and partly from memory

Table 5-13. SIMD Write - SIMD Read Illegal Cases (Cont’d)

Address of
Write Data in
Shadow Write
FIFO

Immediate Read after
Write

Result Resultant Register Address
Contents
ADSP-21161 SHARC Processor Hardware Reference 5-99

Arranging Data in Memory
To prevent unexpected SIMD read results when a write is followed by a
read from the same long word boundary addresses, two options are recom-
mended. These two suggestions are independent of one another and can
be used to work around the SIMD shadow write FIFO.

• Align all variables and arrays in memory to long word address
boundaries using the .ALIGN assembler directive. Do not explicitly
access odd normal word addresses or non-long word boundary
aligned short word addresses in SIMD mode. Note that for pro-
gram generated addresses which are odd, you cannot use the .ALIGN
workaround. For example, this workaround cannot be used for
indirect addressing using the index or pointer DAG registers.

OR

• Include two NOPs or non-memory access instructions to clear the
shadow write FIFO.

Arranging Data in Memory
Each processor’s access to internal memory gets data from 4-columns
(long, word) or 3-columns (instruction or extended-precision normal
word), 2-column (normal word), or 1-column (short word) memory loca-
tion. For more information on how the processor accesses 4- or 3-column
data, see “Memory Organization and Word Size” on page 5-25.

To take advantage of the processor’s data accesses to 4- and 3-column
locations, programs must adjust the interleaving of data into memory
locations to accommodate the memory access mode.
5-100 ADSP-21161 SHARC Processor Hardware Reference

Memory
The following guidelines provide an overview of how programs should
interleave data in memory locations. For more information and examples,
see the ADSP-21160 SHARC DSP Instruction Set Reference:

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer in single-or dual-data, SISD or Broadcast load
mode regardless of the data word size (long word, extended-preci-
sion normal word, normal word, or short word).

• Programs should use multiple of 4 modify values (4, 8, 12, …) to
step through a buffer of short word data in single-or dual-data,
SIMD mode. Programs must step through a buffer twice, once for
addressing even short word addresses and once for addressing odd
short word addresses.

• Programs should use multiple of 2 modify values (2, 4, 6, …) to
step through a buffer of normal word data in single- or dual-data
SIMD mode.

• Programs can use odd or even modify values (1, 2, 3, …) to step
through a buffer of long word or extended-precision normal word
data in single- or dual-data, SIMD mode.

Executing Instructions From External
Memory

The ADSP-21161 supports the execution of 48-bit wide program instruc-
tions from external memory devices of various widths. The processor can
transparently pack and execute 8-bit, 16-bit or 32-bit external memory or
execute 48-bit non-packed instructions. This requires that instructions be
packed into external memory in a way that differs from the normal pack-
ing modes that exist for DMA accesses or host accesses.
ADSP-21161 SHARC Processor Hardware Reference 5-101

Executing Instructions From External Memory
This automatic instruction packing is performed only when the Program
Sequencer initiates an external access to fetch an instruction with one of
four instruction packing modes enabled in the SYSCON register: 8- to
48-bit, 16- to 48-bit, 32- to 48-bit or 48- to 48-bit packing.

Note that the processor only supports program execution from
external memory bank 0.

The default packing mode the ADSP-21161 processor is 32- to 48-bit
packing. Packed instruction execution for 8-, 16-, 32-, or 48-bit wide
external memory is also supported and controlled by the IPACK[1:0] bits of
the SYSCON register. Table 5-14 summarizes the packing mode configura-
tions controlled by IPACK[1:0] bits.

There is a no packing 48-bit bus width mode available on the processor
which assumes the EPD bus is 48 bits wide. This full instruction width
execution from external memory is made possible by multiplexing 16 link
port pins with DATA[15:0] enabling the program execution to run at
full-rate. These additional 16 data lines should only be enabled when the
link ports are not used. Data lines DATA[15:8] multiplex with L1DAT[7:0]
and data lines DATA[7:0] multiplex with L0DAT[7:0]. Set the IPACK bits
[1:0] of the SYSCON register to 01 in order to enable DATA[15:0] pins for a
48-bit wide external bus.

There are four boot and one no boot modes available on the processor. In
the no-boot mode, the processor fetches instructions using a 32- to 48-bit
packing. In a boot mode, the packing mode can be changed by writing the
new execution packing mode to the IPACK bits before a fetch from external
memory occurs. A host can write the new values into the processor or the
software loader kernel can change the values during booting.
5-102 ADSP-21161 SHARC Processor Hardware Reference

Memory
Table 5-14. External Instruction Execution Packing Modes

IPACK1 IPACK0 Packing Mode Description

0 0 32- to 48-bit packed instruction execution

0 1 Full 48-bit instruction execution / No-Pack mode
(DATA[15:0] enabled) with unused L1DAT[7:0] and
L0DAT[7:0].

1 0 16- to 48-bit packed instruction execution

1 1 8- to 48-bit packed instruction execution

Figure 5-40. ADSP-21161 External Data Alignment Options

07815162324313239 40 47

 Float or Fixed, D31-D0 DMA

48-bit Instruction Fetch
(No Packing)

 16-bit Packed DMA Data

16-bit Packed Instruction Execution

PROM
BOOT

DATA 47-16

L1DATA[7:0] L0DATA[7:0]
DATA 15-8 DATA 7-0

8-bit Packed DMA Data
8-bit Packed Instruction Execution

 32-bit Packed Instruction

Extra Data Lines DATA[15-0]
Are Only Accessible If Link

Ports Are Disabled. Enabled
by setting IPACK [1:0] to the
no instruction pack mode in

the SYSCON register

DATA 15-0
ADSP-21161 SHARC Processor Hardware Reference 5-103

Executing Instructions From External Memory
When writing to bits 30 and 31(IPACK[1:0]) in the SYSCON register to
enable the packed instruction mode, delay the instruction fetch from
external memory by two instructions. This can be done by inserting two
NOPs after a write to SYSCON register or by following the execution sequence
shown in the code segment.

ext_isr_tabl_seg_dma10:

 jump int_codeaddr (db);

 ustatx = 0x80000000 ; /* change packing from 32-48 to 16-48 */

 dm(syscon) = ustatx;

 int_codeaddr:
 jump ext_codeaddr (db);

 ustatx = new_wait_value;

 dm(WAIT) = ustatx;

The following tables show the addresses for instructions packed in two,
three or six consecutive locations in external memory:

• “48- to 48-Bit External Instruction Packing” on page 5-104

• “32- to 48-Bit External Instruction Packing” on page 5-105

• “16- to 48-Bit External Instruction Packing” on page 5-106

• “8- to 48-Bit External Instruction Packing” on page 5-107

For more information on instruction packing in external memory, see the
VisualDSP++ User’s Guide for ADSP-21xxx Family DSPs.

Table 5-15. 48- to 48-Bit External Instruction Packing

ADDRESS DATA[47:0]

0x200000 Instr0[47:0]

0x200001 Instr1[47:0]

0x200002 Instr2[47:0]
5-104 ADSP-21161 SHARC Processor Hardware Reference

Memory
For 48- to 48-bit full instruction width packing, the processor stores one
instruction in every 48-bit word memory location. In this packing mode,
no address translation is performed by the program sequencer. Instruc-
tions are executed from SDRAM at the core clock rate. By enabling
IPACK[1:0], the link port data pins L1DAT[7:0] and L0DAT[7:0] are acti-
vated as DATA[15:0].

For 32- to 48-bit instruction packing, the processor stores an instruction
in two consecutive memory locations. In this packing mode, the first 32
bits of the 48-bit instruction are stored in an even location and the lower
16 bits of the 48-bit opcode are stored in the adjacent odd location in
memory. The program sequencer automatically generates the correct
external addresses based on the IPACK bits in the SYSCON register. The pro-
gram sequencer generates addresses in groups of two physical locations.

0x200003 Instr3[47:0]

0x200004

Table 5-16. 32- to 48-Bit External Instruction Packing

ADDRESS DATA[47: 2] DATA[31:16]

0x200000 Instr0[47:16]

0x200001 Instr0[15:0]

0x200002 Instr1[47:16]

0x200003 Instr1[15:0]

0x200004

Table 5-15. 48- to 48-Bit External Instruction Packing (Cont’d)

ADDRESS DATA[47:0]
ADSP-21161 SHARC Processor Hardware Reference 5-105

Executing Instructions From External Memory
To generate a corresponding address in external memory for the second
part of the 48-bit instruction, the processor increments the internal logical
address of the previous access by 1.

Similarly, for 16- to 48-bit instruction packing, the first 16 bits are stored
at an even address and the remaining 16 bit segments are stored in consec-
utive locations. The program sequencer generates addresses in groups of
four physical locations. For the remaining accesses, the previous internal
logical address is incremented by 1. However, this leaves an unused 16-bit
location after every three 16-bit valid instruction segments in the external
memory. For example, the three 16 bit segments may be placed at
0x0200000, 0x0200001 and 0x0200002 respectively. The next instruc-
tion sixteen bit segments should be placed from address 0x200004 to
0x200007 and so on.

Table 5-17. 16- to 48-Bit External Instruction Packing

ADDRESS DATA[31:16]

0x200000 Instr0[47:32]

0x200001 Instr0[31:16]

0x200002 Instr0[15:0]

0x200003 Unused Memory Space

0x200004 Instr1[47:32]

0x200005 Instr1[31:16]

0x200006 Instr1[15:0]

0x200007 Unused Memory Space
5-106 ADSP-21161 SHARC Processor Hardware Reference

Memory
For 8- to 48-bit instruction packing, the first 8 bits are stored at an even
address and the remaining 8-bit segments are stored in consecutive loca-
tions. The program sequencer generate addresses in groups of eight
physical locations. For the remaining accesses, the previous internal logical

Table 5-18. 8- to 48-Bit External Instruction Packing

Address DATA[23:16]

0x200000 Instr0[47:40]

0x200001 Instr0[39:32]

0x200002 Instr0[31:24]

0x200003 Instr0[23:16]

0x200004 Instr0[15:8]

0x200005 Instr0[7:0]

0x200006 Unused Memory Space

0x200007 Unused Memory Space

0x200008 Instr1[47:40]

0x200009 Instr1[39:32]

0x20000A Instr1[31:24]

0x20000B Instr1[23:16]

0x20000C Instr1[15:8]

0x20000D Instr1[7:0]

0x20000E Unused Memory Space

0x20000F Unused Memory Space
ADSP-21161 SHARC Processor Hardware Reference 5-107

Executing Instructions From External Memory
address is incremented by 1. However, this leaves two unused 8-bit loca-
tions after every six 8-bit internal logical segments in the external memory.
For example, the six 8-bit segments may be placed at 0x0200000,
0x0200001, 0x0200002, 0x0200003, 0x0200004 and 0x0200005 respec-
tively. The next instruction eight bit segments should be placed from
address 0x200008 to 0x20000D and so on.

In 32- to 48-bit packing mode, each access of external memory to fetch an
instruction translates into two accesses to successive locations. In 16- to
48-bit packing mode, each access of external memory to fetch an instruc-
tion translates into three accesses to successive locations. In 8- to 48-bit
packing mode, each access of external memory to fetch an instruction
translates into six accesses to successive locations.

The processor core speed for instruction execution is affected by the type
of external memory (SDRAM or non-SDRAM) and external memory
width.

• For packed execution modes of 32- to 48-bit, 16- to 48-bit and 8-
to 48-bit, with the SDCKR bit in the SDCTL register set (=1) and the
program executing from SDRAM, the core instruction rate is 2, 3
or 6 times slower than executing from internal memory.

• When SDCKR=0, the core instruction rate is 4, 6 or 12 times slower.
If the program is executing from SRAM or FLASH with a
CLKIN-core clock ratio of 2:1, the core speed is reduced by the
number of waitstates and a factor of 4, 6 or 12.

The effect of external memory accesses on core speed is shown in
Table 5-19.
5-108 ADSP-21161 SHARC Processor Hardware Reference

Memory
In summary, instruction access to external memory translate to one (full
48-bit data bus mode), two, three, or six accesses to successive locations
depending on the instruction packing mode selected in bits 30 and 31 in
the SYSCON register.

For 16- to 48-bit packing, one external address space (two bytes) is unused
for every single instruction. Similarly, for 8- to 48-bit packing two exter-
nal address spaces (two bytes) are unused for every single instruction. For
32- to 48-bit packing, every external address contains valid data. The next
sections examine the addressing schemes and unused addresses for all three
packing mode cases.

32- to 48-Bit Packing Address Generation Scheme
To generate a corresponding address in external memory for the first part
of the instruction, the processor left-shifts the lower bits [19:0] to generate
[20:1] bits (ADDR20-0)in external memory, while the processor leaves bits
[23:21] unaltered.

ADDR[0] is 0 for the first access and 1 for the second in the case of operat-
ing in 32- to 48-bit packing mode. In this way, internal address 0x200000
on the PM address bus aligns with the beginning of external memory at
address 0x200000.

Table 5-19. External Memory Width Versus Core Speeds

External
Memory
Width

SDRAM Non SDRAM
(FLASH, SRAM, SBSRAM)
for CLKIN-core clock ratio of 2:1SDCKR = 1 SDCKR = 0

8-bit Core Speed ÷ 6 Core Speed ÷ 12 Core Speed ÷ 12 x number of waitstates

16-bit Core Speed ÷ 3 Core Speed ÷ 6 Core Speed ÷ 6 x number of waitstates

32-bit Core Speed ÷ 2 Core Speed ÷ 4 Core Speed ÷ 4 x number of waitstates

48-bit Core Speed Core Speed ÷ 2 Core Speed ÷ 2 x number of waitstates
ADSP-21161 SHARC Processor Hardware Reference 5-109

Executing Instructions From External Memory
Total Program Size (32- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62
Mwords (SDRAM). Given that one instruction takes two external mem-
ory locations, the external program memory is 7 Mwords non-SDRAM
space and 31 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 1 Mword. There are seven of
these segments in bank 0 non-SDRAM space and 30 segments in bank 0
SDRAM space. See Table 5-22 on page 5-112 for a comparison of total
program sizes based on different packing modes.

Table 5-20. Address Generation Scheme for 32- to 48-bit Packing1

Segment PM ADDR Bus External Address - ADDR23-0

Seg 1 0x0200000
0x0200001
0x0200002

0x02FFFFF

0x0200000/1
 0x0200002/3
 0x0200004/5

 0x03FFFFE/F

Seg 2 0x0400000
0x0400001
0x0400002
.......
0x04FFFFF

0x0400000/1
0x0400002/3
0x0400004/5

 0x05FFFFE/F

Seg 3 0x0600000
 0x0600001
 0x0600002

 0x06FFFFF

0x0600000/1
0x0600002/3
0x0600004/5

0x07FFFFE/F

1 Note that segmented internal address ranges allows continuous addresses in external memory
for 48- to 32-bit packing.
5-110 ADSP-21161 SHARC Processor Hardware Reference

Memory
16- to 48-Bit Packing Address Generation Scheme
For a 16- to 48-bit packing the lower [18:0] bits of the address are left
shifted by two positions to generate [20:2] bits of ADDR (address in external
memory) while bits [23:21] are unaltered. ADDR1-0 is 00 for the first access
and 01 for the next access and 10 for the third access.

Total Program Size (16- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62
Mwords (SDRAM). Given that one instruction takes four external mem-
ory locations, the external program memory is 3.5 Mwords non-SDRAM
space and 15.5 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 0.5M. There are seven of these

Table 5-21. Address Generation Scheme for 16- to 48-Bit Packing

Segment PM ADDR Bus External Address - ADDR23-0

Seg 1 0x0200000
0x0200001
0x0200002

0x027FFFF

0x0200000/1/2
0x0200004/5/6
0x0200008/9/A

 0x03FFFFC/D/E

Seg 2 0x0400000
0x0400001
0x0400002

0x047FFFF

0x0400000/1/2
0x0400004/5/6
0x0400008/9/A

 0x05FFFFC/D/E

Seg 3 0x0600000
0x0600001
0x0600002

0x067FFFF

0x0600000/1/2
0x0600004/5/6
0x0600008/9/A

0x07FFFFC/D/E

......
ADSP-21161 SHARC Processor Hardware Reference 5-111

Executing Instructions From External Memory
segments in bank 0 non-SDRAM space and 30 segments in bank 0
SDRAM space. See Table 5-23 on page 5-113 for a comparison of total
program sizes based on different packing modes.

8- to 48-Bit Packing Address Generation Scheme
Similarly, for a 8- to 48-bit packing the lower [17:0] bits of the address are
left shifted by three positions to generate [20:3] bits of ADDR while bits
[23:21] are unaltered. This way internal address 0x200000 aligns with the
beginning of external memory at 0x200000. However, this sort of execu-
tion packing gives variable maximum program lengths in external memory
for different packing.

Table 5-22. Address Generation Scheme for 8- to 48-Bit Packing

Segment PM ADDR Bus External Address - ADDR23-0

Seg 1 0x0200000
0x0200001
0x0200002

0x023FFFF

0x0200000/1/2/3/4/5
0x0200008/9/A/B/C/D
0x0200010/1/2/3/4/5

0x03FFFF8/9/A/B/C/D

Seg 2 0x0400000
0x0400001
0x0400002

0x043FFFF

0x0400000/1/2/3/4/5
0x0400008/9/A/B/C/D
0x0400010/1/2/3/4/5

 0x05FFFF8/9/A/B/C/D

Seg 3 0x0600000
0x0600001
0x0600002

0x063FFFF

0x0600000/1/2/3/4/5
0x0600008/9/A/B/C/D
 0x0600010/1/2/3/4/5

0x07FFFF8/9/A/B/C/D

......
5-112 ADSP-21161 SHARC Processor Hardware Reference

Memory
Total Program Size (8- to 48-Bit Packing)

Total external memory available is 14 Mwords (non-SDRAM) and 62
Mwords (SDRAM). Given that one instruction takes eight external mem-
ory locations, the external program memory is 1.75 Mwords non-SDRAM
space and 7.75 Mwords SDRAM space. This scheme limits the size of the
contiguous program segment (internal) to 0.25 Mwords. There are seven
of these segments in bank 0 non-SDRAM space and 30 segments in bank
0 SDRAM space.

No Packing (48- to 48-Bit) Address Generation
Scheme

In no-packing 48- to 48-bit mode, execution at full-rate is supported and
the size of the external program memory can be 14 Mwords non-SDRAM
space or 62 Mwords SDRAM space. No packing is performed for data
accesses to external memory.

Table 5-23. Total Program Size Comparison

48- to 48-bit
(Mwords)

32- to 48-bit
(Mwords)

16- to 48-bit
(Mwords)

8- to 48-bit
(Mwords)

SRAM 14 7 3.5 1.75

SDRAM 62 31.34 15.67 7.83
ADSP-21161 SHARC Processor Hardware Reference 5-113

Executing Instructions From External Memory
5-114 ADSP-21161 SHARC Processor Hardware Reference

6 I/O PROCESSOR

The processor’s I/O processor manages Direct Memory Accessing (DMA)

of processor memory through the external, SPI, link, and serial ports.
Each DMA operation transfers an entire block of data. By managing
DMA, the I/O processor lets programs move data as a background task
while using the processor core for other processor operations. The I/O
processor’s architecture supports a number of DMA operations. These
operations include the following transfer types:

Internal memory ↔ external memory or external peripherals

• Internal memory ↔ internal memory of other processors

• Internal memory ↔ host processor

• Internal memory ↔ serial port I/O

• Internal memory ↔ link port I/O

• Internal memory ↔ SPI I/O

• External memory ↔ external peripherals

This chapter describes the I/O processor and how it controls external port,
link port, SPI port, and serial port operations.

DMA transfers between internal memory and external memory, multipro-
cessor memory, or a host use the processor’s external port. For these types
of transfers, a program provides the DMA controller with the internal
memory buffer size and address, the address modifier, and the direction of
ADSP-21161 SHARC Processor Hardware Reference 6-1

transfer. After setup, the DMA transfers begin when the program enables
the channel and continues until the I/O processor transfers the entire
buffer to or from processor memory.

Similarly, DMA transfers between internal memory and link, serial, or SPI
port have DMA parameters. When the I/O processor performs DMA
between internal memory and one of these ports, the program sets up the
parameters, and the I/O uses the port instead of the external bus.

The direction (receive or transmit) of the I/O port determines the direc-
tion of data transfer. When the port receives data, the I/O processor
automatically transfers the data to internal memory. When the port needs
to transmit a word, the I/O processor automatically fetches the data from
internal memory.

The I/O processor also lets the processor system perform DMA transfers
between an external device and external memory. This external to external
transfer only uses the external port and I/O processor. External devices
can control external port DMA transfers in two ways. If the external
device can handle bus mastership, the external device master reads or
writes to DMA buffers on the processor. External devices also can assert a
DMA Request input (DMARx) to request service.

To further minimize loading on the processor core, the I/O processor sup-
ports chained DMA operations. When using chained DMA, a program
initiates a DMA transfer to automatically set up and start the next DMA
transfer after the current one completes.

External bus packing and unpacking of 16-, 32-, 48-, or 64- bit words in
internal memory is performed during DMA transfers from either 8-, 16-,
or 32- bit wide external memory. Fourteen channels of DMA are available
on the ADSP-21161; two channels are shared between the SPI interface
and the link ports, eight channels are available via the serial ports, and
four channels are available via the processor's external port for host pro-
cessor, other ADSP-21161s, memory, or I/O transfers. Asynchronous
off-chip peripherals can control two DMA channels using DMA
6-2 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Request/Grant lines (DMAR1-2, DMAG1-2). Other DMA features include
interrupt generation upon completion of DMA transfers and DMA chain-
ing for automatic linked DMA transfers.

 For information on connecting external devices to the external
port, link ports, SPI port, or serial ports, see “External Port” on
page 7-1, “Link Ports” on page 9-1, “Serial Peripheral Interface
(SPI)” on page 11-1 or “Serial Ports” on page 10-1.

Figure 6-1 shows the processor’s I/O processor, related ports, and buses.
Figure 6-5 on page 6-23 shows more detail on DMA channel data paths.

Figure 6-1. I/O Processor Block Diagram

Link Port Buffer FIFOs
(2 deep x 48-bits)

Serial Port Buffer FIFOs
(2 deep x 32-bits)

Internal Memory
Addr Data Addr DataCore

Processor

External Port Buffer FIFOs
(8 deep x 64-bits)

DM Data

DM Addr
PM Addr

PM Data

DMA Controller
External Address

Generator

DMA Controller
Internal Address

Generator

Link Ports (2)

Serial Ports (4)

Addr (24-bit)

Data (32-bit)

External
Port

I/O Address
Bus (IOA)

18 I/O Data
Bus (IOD)

64
Ext. Port
Data Bus

(EPD)

48
Ext. Port
Addr Bus

(EPA)

32

Slave Write FIFO
(Async writes 4-deep)
(Sync writes 2- deep)

SPI Port Buffer FIFOs
(2 deep x 32-bits)

SPI Port (1)
ADSP-21161 SHARC Processor Hardware Reference 6-3

The Data Buffer Registers column in Figure 6-2 shows the data buffer reg-
isters for each port. These registers include:

• External Port Buffer (EBPx). These 64-bit buffers for the external
port have eight-position FIFOs for transmitting or receiving data
when interfacing with a host or external devices such as memory
and memory mapped devices.

• Link Port Buffer (LBUFx). These buffers for the link ports have
two-position FIFOs for transmitting or receiving DMA data when
connected to another link port.

• Serial Port Receive Buffer (RXx). These receive buffers for the serial
ports have two-position FIFOs for receiving data when connected
to another serial device.

• Serial Port Transmit Buffer (TXx). These transmit buffers for the
serial ports have two position FIFOs for transmitting data when
connected to another serial device.

• SPI Receive Buffer (SPIRX). This receive buffer for the SPI port has
two-position FIFOs for receiving data when connected to another
serial device.

• SPI Transmit Buffer (SPITX). This transmit buffer for the SPI port
has two position FIFOs for transmitting data when connected to
another serial device.
6-4 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Figure 6-2. I/O Processor Registers

LINK
PORTS 1-0

SERIAL
PORTS 3-0

EXTERNAL
PORT

ADDRESS

EXTERNAL
PORT DATA

EPB3-0

LBUF1-0

TX3A-0A,
TX3B-0B,
RX3A-0A,
RX3B-0B

IOD BUS

IIEP3-0, IMEP3-0,
CEP3-0, CPEP3-0,
GPEP3-0, EIEP3-0,
EMEP3-0,
ECEP3-0

IILB1-0, IMLB1-0,
CLB1-0, CPLB1-0,
GPLB1-0

IISRX, IISTX, IMSTX,
IMSRX, CSRX,
CSTX, GPSTX,
GPSRX

II3A-0A, II3B- 0B,
IM3A-0A, IM3B-0B
C3A-0A,C3B-0B,
CP3A-0A, CP3B-0B,
GP3A-0A, GP3B-0B

IOA BUS

SPCTL3-0

SPICTL

SYSCON,
WAIT,

DMAC13-10,

DMA
PARAMETER
REGISTERS

PORT, BUFFER, &
DMA CONTROL

REGISTERS

DATA
BUFFER

REGISTERS

INTERNAL MEMORY DATAINTERNAL MEMORY ADDRESS

IRPTL, LIRPTL

DMARx
DMAGx

SPIRX, SPITX

SPI
PORT

LCTL
ADSP-21161 SHARC Processor Hardware Reference 6-5

The Port, Buffer, and DMA Control Registers column in Figure 6-2
shows the control registers for the ports and DMA channels. These regis-
ters include:

• System Configuration register (SYSCON). This register configures
packing, priority, and word order for the external port.

• Waitstate and Access Mode register (WAIT). This register config-
ures handshake, idle cycle insertion, and waitstate insertion for
external memory DMA accesses.

• External Port DMA Control registers (DMACx). These control regis-
ters for each external port DMA channel select the direction,
format, handshake, and enable chaining, transfer mode, and DMA
start.

• Link Port Control register (LCTL). This control register selects the
direction, word width, transfer rate, and enable chaining and DMA
start. This register assigns link buffers to link ports for link port
operations. This register indicates link buffer packing and error sta-
tus for link port operations.

• Serial Port Control registers (SPCTLx). These control registers for
each port select the receive or transmit format, monitor FIFO sta-
tus, enable chaining, and start DMA.

• SPI Port Control register (SPICTL). This control register config-
ures and enables the SPI interface, selects the device as master or
slave, and determines the data transfer and word size.
6-6 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The DMA Parameter Registers column in Figure 6-2 shows the parameter
registers for each DMA channel. These registers function similarly to data
address generator registers and include:

• Internal Index registers (IIx). Index registers provide an internal
memory address, acting as a pointer to the next internal memory
DMA read or write location. These registers are 18 bits wide and
are offset 0x40000 for internal addressing in normal word space.

• Internal Modify registers (IMx). Modify registers provide the
signed increment by which the DMA controller post-modifies the
corresponding internal memory index register after the DMA read
or write. These registers are 16 bits wide.

• Count registers (Cx). Count registers indicate the number of words
remaining to be transferred to or from internal memory on the cor-
responding DMA channel. These registers are 16 bits wide.

• Chain Pointer registers (CPx). Chain pointer registers hold the
starting address of the Transfer Control Block (parameter register
values) for the next DMA operation on the corresponding channel.
These registers also control whether the I/O processor generates an
interrupt when the current DMA process ends. These registers are
19 bits wide and are offset 0x40000 for internal addressing in nor-
mal word space.

• General Purpose registers (GPx). General purpose DMA registers
hold an address or other value. These registers are 17 bits wide.

• External Index registers (EIEPx). Index registers provide an exter-
nal memory address, acting as a pointer to the next external
memory DMA read or write location. These registers only apply to
external port EPBx DMA. These External Port DMA registers are
32 bits wide.
ADSP-21161 SHARC Processor Hardware Reference 6-7

• External Modify registers (EMEPx). Modify registers provide the
increment by which the DMA controller post-modifies the corre-
sponding external memory index register after the DMA read or
write. These registers only apply to external port EPBx DMA. These
External Port DMA registers are 32 bits wide.

• External Count registers (ECEPx). External count registers indicate
the number of words remaining to be transferred to or from exter-
nal memory on the corresponding DMA channel. These registers
only apply to external port EPBx DMA. These External Port DMA
registers are 32 bits wide.

Figure 6-3 shows a block diagram of the I/O processor’s address generator
(DMA controller). Table 6-1 lists the parameter registers for each DMA
channel. The parameter registers are uninitialized following a processor
reset.
6-8 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The I/O processor generates addresses for DMA channels much the same
way that the Data Address Generators (DAGs) generate addresses for data
memory accesses. Each channel has a set of parameter registers (shown in
Figure 6-4) including an index register (IIx) and modify register (IMx)

Figure 6-3. DMA Address Generator

LOCAL BUS

IMX
MODIFIER

MUX

INTERNAL
MEMORY
ADDRESS

DMA ADDRESS GENERATOR (INTERNAL ADDRESSES)

LOCAL BUS

CX
COUNT

CPX
CHAIN POINTER

GPX
GENERAL PURPOSE

MUX

DMA WORD COUNTER

– 1

WORKING REGISTER

LOCAL BUS

EMEPX
EXT. MODIFIER

ECEPX
EXT. COUNT

+– 1

EXTERNAL
MEMORY
ADDRESS

+
POST-MODIFY

EIEPX
EXT. INDEX (ADDR ESS)

DMA ADDRESS GENERATOR (EXTERNAL ADDRESSES)

+

I IX
INDEX (ADDRESS)

+
POST-MODIFY
ADSP-21161 SHARC Processor Hardware Reference 6-9

that the I/O processor uses to address a data buffer in internal memory.
The index register must be initialized with a starting address for the data
buffer. As part of the DMA operation, the I/O processor outputs the
address in the index register onto the processor’s I/O address bus and
applies the address to internal memory during each DMA cycle—a clock
cycle in which a DMA transfer is taking place.

Figure 6-4. IOP Parameter Registers

PCI Bit
Program -Controlled Interrupt Bit
If this bit is set, the I/O processor will generate a DMA
interrupt on completion of a chained DMA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IIx

IMx

Cx

CPx

GPx

EIEPx

EMEPx

ECEPx
(Reserved bits must always be set to zero when programming DMA parameter registers)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
6-10 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
All addresses in the index (IIx) registers are offset by a value matching the
processor’s first internal Normal word addressed RAM location, before the
I/O processor uses the addresses. For the ADSP-21161, this offset value is
0x0004 0000.

While DMA addresses must always be Normal word (32-bit) memory, the
internal memory data transfer sizes may be 64-, 48-, or 32-bits. External
memory data transfer sizes may be 32-, 16 or 8-bits. The I/O processor
can transfer Short word data (16-bit) using the packing capability of the
external port, serial port and SPI port DMA channels.

After transferring each data word to or from internal memory, the I/O
processor adds the modify value to the index register to generate the
address for the next DMA transfer and writes the modified index value to
the index register. The modify value in the IMx register is a signed integer,
which allows both increment and decrement modifies. The modify value
IMx (which was fixed to 1 on the ADSP-21065L) can now have any posi-
tive or negative integer value because of SIMD mode.

If the I/O processor modifies the index register past the maximum
18-bit value to indicate an address out of internal memory, the
index wraps around to zero. With the offset for the ADSP-21161,
the wrap around address is 0x0004 0000.

Each DMA channel has a count register (Cx) that loads the programs with
a word count to be transferred. The I/O processor decrements the count
register after each DMA transfer on that channel. When the count reaches
zero, the I/O processor generates the interrupt for that DMA channel. For
more information on DMA interrupts, see “Using I/O Processor Status”
on page 6-121.

If a program loads the count (Cx) register with zero, the I/O proces-
sor does not disable DMA transfers on that channel. The I/O
processor interprets the zero as a request for 216 transfers. This
count occurs because the I/O processor starts the first transfer
before the testing the count value. The only way to disable a DMA
ADSP-21161 SHARC Processor Hardware Reference 6-11

channel is to clear its DMA enable bit. For more information, see
“External Port Channel Transfer Modes” on page 6-46, “Link Port
Channel Transfer Modes” on page 6-85, or “Serial Port Channel
Transfer Modes” on page 6-99.

Each DMA channel also has a chain pointer register (CPx) and a gen-
eral-purpose register (GPx). Chained DMA sequences are a set of multiple
DMA sequences, each autoinitializing the next in line. The location of the
parameters for the next sequence comes from the CPx register. These
parameters are called a Transfer Control Block (TCB), and they set up
DMA parameter values for autoinitializing the next DMA sequence in the
chain. Programs can use the GP register for any purpose, but usually pro-
grams store the address of the previous TCB in this register during
chained DMA. For more information, see “Chaining DMA Processes” on
page 6-25.

The external port DMA channels each contain three additional parameter
registers, the external index register (EIEPx), external modify register
(EMEPx), and external count register (ECEPx). These three registers are not
available for the serial port, SPI port and link port DMA channels. The
I/O processor generates 32-bit external memory addresses using the EIEPx,
EMEPx, and ECEPx registers, during DMA transfers between internal mem-
ory and external memory or devices.

Programs must load the ECEPx register with the count of external
bus transfers in the DMA. If the external port is using word pack-
ing, the ECEPx count differs from the number of words transferred
in the DMA.

Memory mapped devices can communicate with the I/O processor using
an internal DMA request/grant handshake on an external port DMA
channel. Each channel has a single request and a single grant. When a par-
ticular I/O port needs to perform transfers to or from internal memory,
the channel asserts a request. The I/O processor prioritizes this request
with all other valid DMA requests. The default channel priority is DMA
6-12 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
channel 0 as highest and DMA channel 13 as lowest. Table 6-1 lists the
DMA channels in priority order. For more information, see “Managing
DMA Channel Priority” on page 6-22.

When a channel becomes the highest priority requester, the I/O processor
services the channel’s request. In the next clock cycle, the I/O processor
starts the DMA transfer.

If a DMA channel is disabled, the I/O processor does not service
requests for that channel, whether or not the channel has data to
transfer.

The processor’s 14 DMA channels are numbered as shown in Table 6-1.
This table also shows the control, parameter, and data buffer registers that
correspond to each channel.

Table 6-1. DMA Channel Registers: Controls, Parameters,
and Buffers

DMA
Chan#

Control
Registers

Parameter Registers Buffer
Register

Description

0 SPCTL0 II0A, IM0A, C0A, CP0A, GP0A RX0A, TX0A Serial Port 0
A Data

1 II0B, IM0B, C0B, CP0B, GP0B RX0B, TX0B Serial Port 0
B Data

2 SPCTL1 II1A, IM1A, C1A, CP1A, GP1A RX1A, TX1A Serial Port 1
A Data

3 II1B, IM1B, C1B, CP1B, GP1B RX1B, TX1B Serial Port 1
B Data

4 SPCTL2 II2A, IM2A, C2A, CP2A, GP2A RX2A, TX2A Serial Port 2
A Data

5 II2B, IM2B, C2B, CP2B, GP2B RX2B, TX2B Serial Port 2
B Data
ADSP-21161 SHARC Processor Hardware Reference 6-13

6 SPCTL3 II3A, IM3A, C3A, CP3A, GP3A RX3A, TX3A Serial Port 3
A Data

7 II3B, IM3B, C3B, CP3B, GP3B RX3B, TX3B Serial Port 3
B Data

8 LCTL,
SPICTL1

IILB0, IMLB0, CLB0, CPLB0,
GPLB0
IISRX, IMSRX, CSRX, GPSRX

LBUF0,
SPIRX

Link Buffer 0
SPI Receive

9 IILB1, IMLB1, CLB1, CPLB1,
GPLB1
IISTX, IMSTX, CSTX, GPSTX

LBUF1
SPITX

Link Buffer 1
SPI Transmit

10 DMAC10 IIEP0, IMEP0, CEP0, CPEP0,
GPEP0, EIEP0, EMEP0,
ECEP0

EPB0 External Port
FIFO Buffer 0

112 DMAC11 IIEP1, IMEP1, CEP1, CPEP1,
GPEP1, EIEP1, EMEP1,
ECEP1

EPB1 External Port
FIFO Buffer 1

123 DMAC12 IIEP2, IMEP2, CEP2, CPEP2,
GPEP2, EIEP2, EMEP2,
ECEP2

EPB2 External Port
FIFO Buffer 2

13 DMAC13 IIEP3, IMEP3, CEP3, CPEP3,
GPEP3, EIEP3, EMEP3,
ECEP3

EPB3 External Port
FIFO Buffer 3

1 Link port and SPI DMA parameter register names correspond to the same IOP addresses since
these peripherals share DMA channels 8 and 9. Since chaining is not supported for SPI DMA, a
chain pointer register cannot be use for DMA operation.

2 The DMAR1 and DMAG1 pins are handshake controls for DMA channel 11.
3 The DMAR2 and DMAG2 pins are handshake controls for DMA channel 12.

Table 6-1. DMA Channel Registers: Controls, Parameters,
and Buffers (Cont’d)

DMA
Chan#

Control
Registers

Parameter Registers Buffer
Register

Description
6-14 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
All of the I/O processor’s registers are memory-mapped in the processor’s
internal memory, ranging from address 0x0000 0000 to 0x0000 01FF.
For more information on these registers, see “I/O Processor Registers” on
page A-47.

Because the I/O processor registers are memory-mapped, the processor
and external processors (host or multiprocessors) have access to program
DMA operations. A processor sets up a DMA channel by writing the
transfer’s parameters to the DMA parameter registers. After the IIx, IMx,
and Cx registers (among others) are loaded with a starting source or desti-
nation address, an address modifier, and a word count, the processor is
ready to start the DMA.

The external ports, link ports, SPI port, and serial ports each have a DMA
enable bit (DEN, LxDEN, SPIEN, or SDEN) in their channel control register.
Setting this bit for a DMA channel with configured DMA parameters
starts the DMA on that channel. If the parameters configure the channel
to receive, the I/O processor transfers data words received at the buffer to
the destination in internal memory. If the parameters configure the chan-
nel to transmit, the I/O processor transfers a word automatically from the
source memory to the channel’s buffer register. These transfers continue
until the I/O processor transfers the selected number of words as deter-
mined by the count parameter.

To start a new (non-chained) DMA sequence after the current one
is finished, programs must disable the channel (clear its DEN bit);
write new parameters to the IIx, IMx, and CEPx registers; then
enable the channel (set its DEN bit). For chained DMA operations,
this disable-enable process is not necessary. For more information,
see “Chaining DMA Processes” on page 6-25.
ADSP-21161 SHARC Processor Hardware Reference 6-15

DMA Channel Allocation and Priorities
DMA Channel Allocation and Priorities
ADSP-21161 has 14 DMA channels including eight channels accessible
via the serial ports, four via the external port and two via the link ports.
SPI shares the link port channels for receive and transmit. It is assumed
that if DMA is enabled in SPI, then link ports cannot use any of the DMA
channels.Table 6-2 shows the DMA channel allocation for the
ADSP-21161.

Table 6-2. DMA Channel Allocation and Parameter
Register Assignments

DMA
Channel #

Data Buffer Parameter Registers IOP Address of
DMA Parameter
Register

Description

0 RX0A or TX0A II0A, IM0A, C0A,
CP0A, GP0A

0x60 to 0x64 Serial Port 0
A data

1 RX0B or TX0B II0B, IM0B, C0B,
CP0B, GP0B

0x80 to 0x84 Serial Port 0
B data

2 RX1A or TX1A II1A, IM1A, C1A,
CP1A, GP1A

0x68 to 0x6C Serial Port 1
A data

3 RX1B or TX1B II1B, IM1B, C1B,
CP1B, GP1B

0x88 to 0x8C Serial Port 1
B data

4 RX2A or TX2A II2A, IM2A, C2A,
CP2A, GP2A

0x70 to 0x74 Serial Port 2
A data

5 RX2B or TX2B II2B, IM2B, C2B,
CP2B, GP2B

0x90 to 0x94 Serial Port 2
B data

6 RX3A or TX3A II3A, IM3A, C3A,
CP3A, GP3A

0x78 to 0x7C Serial Port 3
A data

7 RX3B or TX3B II3B, IM3B,C3B,
CP3B, GP3B

0x98 to 0x9C Serial Port 3
B dara
6-16 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
DMA channel 0 has the highest priority and DMA channel 13 has the
lowest priority.

8 LBUF0/SPIRX IILB0,IMLB0,CLB0,
CPLB0,GPLB0
IISRX, IMSRX,
CSRX, GPSRX
(no CPx)

0x30 to 0x34 Link Buffer 0 /
SPI Receive

9 LBUF1/SPITX IILB1, IMLB1,
CLB1, CPLB1,
GPLB1
IISTX, IMSTX,
CSTX, GPSTX
(no CPx)

0x38 to 0x3C Link Buffer 1 /
SPI Transmit

10 EPB0 IIEP0, IMEP0, CEP0,
CPEP0, GPEP0,
EIEP0, EMEP0,
ECEP0

0x40 to 0x47 External Port
FIFO Buffer 0

111 EPB1 IIEP1, IMEP1, CEP1,
CPEP1, GPEP1,
EIEP1, EMEP1,
ECEP1

0x48 to 0x4F External Port
FIFO Buffer 1

122 EPB2 IIEP2, IMEP2, CEP2,
CPEP2, GPEP2,
EIEP2, EMEP2,
ECEP2

0x50 to 0x57 External Port
FIFO Buffer 2

13 EPB3 IIEP3, IMEP3, CEP3,
CPEP3, GPEP3,
EIEP3, EMEP3,
ECEP3

0x58 to 0x5F External Port
FIFO Buffer 3

1 DMAR1 and DMAG1 are handshake controls for DMA channel 11
2 DMAR2 and DMAG2 are handshake controls for DMA channel 12.

Table 6-2. DMA Channel Allocation and Parameter
Register Assignments (Cont’d)

DMA
Channel #

Data Buffer Parameter Registers IOP Address of
DMA Parameter
Register

Description
ADSP-21161 SHARC Processor Hardware Reference 6-17

DMA Interrupt Vector Locations
The DMA channel arbitration feature allows the link port or SPI channel
group to rotate priority with the external port channels. This feature may
be enabled by setting the PRROT bit in the SYSCON IOP register. The DMA
controller can be programmed to use a rotating priority scheme for the
four external port channels by setting the DCPR bit in the SYSCON register.
The DMA controller can be programmed to use a rotating priority scheme
for the two link port DMA channels (channels 8 and 9) by setting the
LDCPR bit in the SYSCON register.

Each channel has a set of parameter registers (II, IM, C, CP, GP etc.) which
are used to setup DMA transfers. DMA parameter register assignments for
the various channels are shown in Table 6-2.

For ADSP-21160 programs to run on ADSP-21161 processor with no
modifications, note that previously used mnemonics and the new mne-
monics map to the same addresses whenever appropriate.

DMA Interrupt Vector Locations
Interrupts on the ADSP-21161 are generated at the end of a DMA trans-
fer. This happens when the count register Cx for that channel decrements
to zero. The interrupt vector locations for the each channel is listed in
Table 6-3. The Link Port Interrupt vector locations and channels are
listed in Table 6-4. The interrupt register diagram and bit descriptions are
given in “Interrupt Mask Pointer Register (IMASKP)” on page A-32

Table 6-3. Interrupt Vector Locations

IRPTL/IMASK Bit # Vector Address DMA Channel Data Buffer

10 0x28 0 RX0A or TX0A

11 0x2C 2 RX1A or TX1A

12 0x30 4 RX2A or TX2A

13 0x34 6 RX3A or TX3A
6-18 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
10 0x28 1 RX0B or TX0B

11 0x2C 3 RX1B or TX1B

12 0x30 5 RX2B or TX2B

13 0x34 7 RX3B or TX3B

15 0x50 10 EPB0

16 0x54 11 EPB1

17 0x58 12 EPB2

18 0x5C 13 EPB3

Table 6-4. Link Port Interrupt Vector Locations

LIRPTL Bits
Ptr/Mask/Latch

Vector Address DMA Channel Data Buffer

24/16/0 0x38 8 LBUF0

26/18/2 0x40 SPIRX

25/17/1 0x3C 9 LBUF1

27/19/3 0x44 SPITX

Table 6-3. Interrupt Vector Locations (Cont’d)

IRPTL/IMASK Bit # Vector Address DMA Channel Data Buffer
ADSP-21161 SHARC Processor Hardware Reference 6-19

Booting Modes
Booting Modes
The booting modes that are supported by the ADSP-21161 processor are
given in Table 6-5.

DMA Controller Operation
DMA sequences start in different ways depending on whether DMA
chaining is enabled. When chaining is not enabled, only the DMA enable
bit (DEN) allows DMA transfers to occur. A DMA sequence starts when
one of the following occurs:

• Chaining is disabled and the DMA enable bit (DEN) transitions
from low to high.

• Chaining is enabled, DMA is enabled (DEN=1), and the CPx register
address field is written with a non-zero value. In this case, TCB
chain loading of the channel parameter registers occurs first.

Table 6-5. Booting Modes for ADSP-21161

EBOOT LBOOT BMS Booting Mode

1 0 output EPROM Boot (connect BMS to EPROM chip
select)1

1 For the Host and EPROM boots, the DMA channel 10 (EPB0) is used.

0 0 1 (input) Host Boot1

0 1 1 (input) Link Boot2

2 For the link boot, the DMA channel 8 (LBUF0) is used.

0 1 0 (input) Serial Boot (SPI)3

3 Serial boot (SPI) uses DMA channel 8 (its mutually exclusive with the link ports).

0 0 0 (input) No Booting (processor executes from the external
memory)
6-20 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• Chaining is enabled, the CPx register address field is non-zero, and
the current DMA sequence finishes. Again, TCB chain loading
occurs.

A DMA sequence ends when one of the following occurs:

• The count register Cx decrements to zero (both CEPx and ECEPx for
external port channels).

• Chaining is disabled and the channel’s DEN bit transitions from
high to low. If the DEN bit goes low (=0) and chaining is enabled,
the channel enters chain insertion mode and the DMA sequence
continues. For more information, see “Inserting a TCB in an
Active Chain” on page 6-28.

When a program sets the DEN bit (=1) after a single DMA finishes,
the DMA sequence continues from where it left off (for
non-chained operations only). To start a new DMA sequence after
the current one is finished, a program must first clear the DEN
enable bit, write new parameters to the IIx, IMx, and Cx registers,
then set the DEN bit to re-enable DMA. For chained DMA opera-
tions, these steps are not necessary. For more information, see
“Chaining DMA Processes” on page 6-25.

If a DMA operation completes and the count register is rewritten
before the DMA enable bit is cleared, the DMA transfer restarts at
the new count.

Once a program starts a DMA process, the process is influenced by two
external controls: DMA channel priority and DMA chaining. For more
information, see “Managing DMA Channel Priority” on page 6-22 or
“Chaining DMA Processes” on page 6-25.
ADSP-21161 SHARC Processor Hardware Reference 6-21

DMA Controller Operation
Managing DMA Channel Priority
The DMA channels for each of the processor’s I/O ports negotiate chan-
nel priority with the I/O processor using an internal DMA request/grant
handshake. Each I/O port (link ports, serial port, SPI port, and external
port) has one or more DMA channels, with each channel having a single
request and a single grant. When a particular channel needs to read or
write data to internal memory, the channel asserts an internal DMA
request. The I/O processor prioritizes the request with all other valid
DMA requests. When a channel becomes the highest priority requester,
the I/O processor asserts the channel’s internal DMA grant. In the next
clock cycle, the DMA transfer starts. Figure 6-5 shows the paths for inter-
nal DMA requests within the I/O processor.

If a DMA channel is disabled (DEN, LxDEN, SPIEN, or SDEN bit =0),
the I/O processor does not issue internal DMA grants to that chan-
nel, whether or not the channel has data to transfer.

Because more than one DMA channel can make a DMA request in a par-
ticular cycle, the I/O processor prioritizes DMA channel service. DMA
channel prioritization determines which channel can use the IOD (I/O
Data) bus to access memory. Default DMA channel priority is fixed prior-
itization by DMA channel type (serial ports, SPI port, link ports, or
external port). Within the DMA channel types, the serial port DMA chan-
nels are always fixed priority, the external port DMA channels may be
either fixed or rotated priority, and the link port DMA channels may be
either fixed or rotated priority. Table 6-1 on page 6-13 lists the DMA
channels in descending order of priority.

• For information on programming external port priority modes, see
“External Port Channel Priority Modes” on page 6-43.

• For information on programming link port priority modes, see
“Link Port Channel Priority Modes” on page 6-83.
6-22 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Figure 6-5. I/O Processor Request and Grant Paths

EXTERNAL PORT
FIFOS

EPB (8 DEEP)

LINK PORT FIFOS
LBUF (2 DEEP)

SERIAL PORT FIFOS
RX,TX (2 DEEP)

OTHER IOP
REGISTERS

ADDR

DATA DATA

ADDR

ADDR DATA

18

I/O ADDRESS BUS (IOA)

ADDR
24

32
DATA

PM ADDRESS

DM ADDRESS

PM DATA
DM DATA

SLAVE WRITE
FIFO

(2/4 DEEP)

BUFFER
64

I/O DATA BUS (IOD)

64 32

PMA
DMA

DMD
PMD

IOA IODPMD DMD

EXT. PORT DATA BUS (EPD)

EPA

EPD

EXT. PORT ADDR BUS (EPA)

DMAR

DMAG

I/O PROCESSOR

SPI PORT BUFFER
FIF OS (2 DEEP)

INTERNAL MEMORYDSP CORE

DMA CONTROLLER

LINK PORTS

SERIAL PORTSDMA CONTROLLER

EXTERNAL PORT

ON ASYNCHRONOUS WRITES, THE SLAVE
WRITE FIFO IS 2 DEEP.

ON SYNCHRONOUS WRITES, THE SLAVE
WRITE FIFO IS 4 DEEP.

14

14

EXTERNAL DMA
ADDRESS

GENERATORS

EXTERNAL DMA
PRIORITZER

REQUESTS
GRANTS

REQ.SGRNTS

INTERNAL DMA
ADDRESS

GENERATORS

INTERNAL DMA
PRIORITZER

REQUESTS
GRANTS

REQ.SGRNTS

SPI PORT
ADSP-21161 SHARC Processor Hardware Reference 6-23

DMA Controller Operation
• For information on programming serial port priority modes, see
“Serial Port Channel Priority Modes” on page 6-99.

• For information on programming SPI port priority modes, see
“SPI DMA Channel Priority” on page 6-112.

The SPI port does not support DMA chaining.

The I/O processor determines which DMA channel has the highest prior-
ity internal DMA request during every cycle between each data transfer.
Internal DMA channel arbitration differs from external bus arbitration.
For more information on external bus arbitration, see “Multiprocessor Bus
Arbitration” on page 7-93.

Processor core accesses of I/O processor registers and TCB chain loading
are subject to the same prioritization scheme as the DMA channels.
Applying this scheme uniformly prevents I/O bus contention, because
these accesses are also performed over the internal I/O bus. TCB chain
loading has a higher priority than external port accesses and link port/SPI
port DMA accesses. This TCB priority permits chained serial port DMA,
even when the external port is attempting an access in every cycle. For
more information, see “Chaining DMA Processes” on page 6-25.

If a processor has the link ports enabled and active at the same time, the
default priority scheme could hold off external port DMA channels for
extended periods of time. Because this hold off could have a significant
negative impact on external bus performance, the I/O processor permits
rotating DMA channel priority between the link port channel group and
external port channel group. For more information on using the PRROT bit
to rotate priority between link ports and the external port, see “Link Port
Channel Priority Modes” on page 6-83.
6-24 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Chaining DMA Processes
DMA chaining lets the I/O processor automatically load DMA parameters
and start the next DMA when the current DMA finishes. This feature per-
mits unlimited multiple DMA transfers without processor core
intervention. Using chaining, programs can set up multiple DMA opera-
tions with each operation can have different attributes.

To chain together multiple DMA operations, the I/O processor must load
the next Transfer Control Block (DMA parameters) into the DMA
parameter registers when the current DMA finishes (DMA count =0). The
chain pointer register (CPx) points to the next set of DMA parameters,
which are stored in internal memory. This process of loading the TCB
into the parameter registers is called TCB chain loading.

Two controls enable chained DMA. Each DMA channel has a chaining
enable bit (CHEN) in the channel’s control register. When set, the CHEN bit
directs the I/O processor to use the CPx register for chained DMA. Pro-
grams start the chained DMA by writing a non-zero address to the CPx
register, directing the I/O processor to start the DMA with TCB chain
loading. Programs can disable chained DMA by writing all zeros to the
address field of the CPx register.

Chained DMA operations may only occur within the same chan-
nel. The processor does not support cross-channel chaining and the
SPI port does not support DMA chaining

The CPx register is 19 bits wide, of which the lower 18 bits are the memory
address field. Like other I/O processor address registers, the CPx registers
value is offset to match the starting address of internal memory before
being used by the I/O processor. On the ADSP-21161, this offset value is
0x0004 0000.
ADSP-21161 SHARC Processor Hardware Reference 6-25

DMA Controller Operation
Bit 18 of the CPx register (shown in Figure 6-6) is the Program Controlled
Interrupts (PCI) bit. If set, the PCI bit enables a DMA channel interrupt to
occurs at the completion of the current DMA sequence.

The PCI bit only effects DMA channels that have chaining enabled
(CHEN =1). Also, interrupt requests enabled by the PCI bit are
maskable with the IMASK register.

Because the PCI bit is not part of the memory address in the CPx
register, programs must be careful when writing and reading
addresses to and from the register. To prevent errors, programs
should mask out the PCI bit (bit 18) when copying the address in
CPx to another address register.

During chained DMA, the channel’s General Purpose (GP) register is a
useful place to point to the last completed DMA sequence. This practice
lets programs determine where the last full (or empty) data buffer is
located.

Transfer Control Block (TCB) Chain Loading

During TCB chain loading, the I/O processor loads the DMA channel
parameter registers with values retrieved from internal memory. The
address in the CPx register points to the highest address of the TCB (con-
taining the IIx or IIEPx parameter). The TCB values reside in consecutive
memory locations.

Figure 6-6. CPX Register

PCI Bit
Program -Controlled Interrupt Bit
If this bit is set, the I/O processor will generate a DMA
interrupt on completion of a chained DMA

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CPx
6-26 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Table 6-6 shows the TCB-to-register loading sequence for the external
port, link port, and serial port DMA channels. The I/O processor reads
each word of the TCB and loads it into the corresponding register. Pro-
grams must set up the TCB in memory in the order shown in Table 6-6,
placing the IIx parameter at the address pointed to by the CPx register of
the previous DMA operation of the chain.

A TCB chain load request is prioritized like all other DMA operations.
The I/O processor latches a TCB loading request and holds it until the
load request has the highest priority. If multiple chaining requests are
present, the I/O processor services the TCB registers for the highest prior-
ity DMA channel first. A channel which is in the process of chain loading
cannot be interrupted by a higher priority channel. For a list of DMA
channels in priority order, see Table 6-1 on page 6-13. For more informa-
tion on DMA priority, see “Managing DMA Channel Priority” on
page 6-22.

Table 6-6. TCB Chain Loading Sequence

Address1

1 An “x” denotes the DMA channel used. Link, SPI, and serial ports use the first five locations
only.

External Port Link and Serial Ports

CPx + 0x0004 0000 IIEPx IIx

CPx – 1 + 0x0004 0000 IMEPx IMx

CPx – 2 + 0x0004 0000 CEPx Cx

CPx – 3 + 0x0004 0000 CPEPx CPx

CPx – 4 + 0x0004 0000 GPEPx GPx

CPx – 5 + 0x0004 0000 EIEPx

CPx – 6 + 0x0004 0000 EMEPx

CPx – 7 + 0x0004 0000 ECEPx

CPx – 8 + 0x0004 0000 –
ADSP-21161 SHARC Processor Hardware Reference 6-27

DMA Controller Operation
Setting Up and Starting the Chain

To setup and initiate a chain of DMA operations, use the following steps:

1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, setting the DEN
DMA enable bit to 1 and the CHEN chaining enable bit to 1.

3. Write the address containing the IIx register value of the first TCB
to the CPx register, starting the chain.

The I/O processor responds by autoinitializing the channel’s parameter
registers with the first TCB and starting the first transfer. When the trans-
fer finishes, the I/O processor begins the next TCB chain load if the
current chain pointer address is non-zero. The CPx address points to the
next TCB.

The address field of the CPx registers is only 18 bits wide. If a pro-
gram writes a symbolic address to bit 18 of CPx, there may be a
conflict with the PCI bit. Programs should clear the upper bits of
the address, then AND the PCI bit separately, if needed.

Inserting a TCB in an Active Chain

It is possible to insert a single DMA operation or another DMA chain
within an active DMA chain. Programs may need to perform insertion
when a high priority DMA requires service and cannot wait for the cur-
rent chain to finish.
6-28 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
When DMA on a channel is disabled (DEN=0) and chaining on the channel
is enabled (CHEN=1), the DMA channel is in chain insertion mode. This
mode lets a program insert a new DMA or DMA chain within the current
chain without effecting the current DMA transfer. Use the following
sequence to insert a DMA subchain while another chain is active:

1. Enter chain insertion mode by setting CHEN=1 and DEN=0 in the
channel’s DMA control register. The DMA interrupt indicates
when the current DMA sequence has completed.

2. Write the CPx register value into the CP position of the last TCB in
the new chain.

3. Enter chained DMA mode by setting DEN=1 and CHEN=1.

4. Write the start address of the first TCB of the new chain into the
CPx register.

Chain insertion mode operates the same as chained DMA mode (DEN=1,
CHEN=1), except that when the current DMA transfer ends, automatic
chaining is disabled and an interrupt request occurs. This interrupt
request is independent of the PCI bit state.

Chain insertion should not be set up as an initial mode of opera-
tion. This mode should only be used to insert a DMA within an
active DMA chaining operation.

External Port DMA
There are four external port DMA channels available on the
ADSP-21161: channels 10, 11, 12 and 13. These DMA channels enable
efficient data transfers between the processor's internal memory and exter-
nal memory, peripherals, host processor, or other SHARCs. DMA
transfers between the processor and any external devices that do not have
ADSP-21161 SHARC Processor Hardware Reference 6-29

External Port DMA
bus master capability use these channels. Channels 10, 11, 12, and 13 are
assigned to EPB0, EBP1, EPB2 and EPB3 buffers respectively, and are con-
trolled by DMAC10, DMAC11, DMAC12 and DMAC13 DMA control registers.

The ADSP-21161 processor supports a number of DMA modes for exter-
nal port DMA. The following sections describes typical external port
DMA processes:

• “Setting Up External Port DMA” on page 6-68

• “Bootloading Through The External Port” on page 6-70

• “Boot Memory DMA Mode” on page 6-42

• “External Port Buffer Modes” on page 6-42

• “External Port Channel Priority Modes” on page 6-43

• “External Port Channel Transfer Modes” on page 6-46

• “External Port Channel Handshake Modes” on page 6-47

External Port Registers
The SYSCON, WAIT, and DMACx registers control the external port operating
mode for the I/O processor. The following tables and figures describe the
external port registers:

• Table A-10 on page A-34 lists all the bits in SYSCON

• Table A-11 on page A-37 lists all the bits in WAIT

• Table A-13 on page A-43 and Figure 6-8 on page 6-41 lists all the
bits in DMACx

The following bits control external port I/O processor modes. Except for
the FLSH bit, the control bits in the DMACx registers have a one cycle effect
latency. The FLSH bit has a two cycle effect latency. Programs should not
modify an active DMA channel’s DMACx register other than to disable the
6-30 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
channel by clearing the DEN bit. For information on verifying a channel’s
status with the DMASTAT register, see “Using I/O Processor Status” on
page 6-121. Some other bits in SYSCON, WAIT, and DMACx setup non-DMA
external port features. For information on these features, see “Setting
External Port Modes” on page 7-3.

• Boot Select Override. SYSCON Bit 1 (BSO). This bit enables (if set,
=1) or disables (if cleared, =0) access to Boot Memory Space. When
BSO is set, the processor uses the BMS select line (instead of MS3-0) to
perform DMA channel 10 accesses to external memory.

• Host Bus Width. SYSCON Bits 5-4 (HBW). These bits select the host
bus width as follows: 00=32-bit width, 01=16-bit width, 10=8-bit
width (reset value).

• Host Most Significant Word First Packing Select. SYSCON Bit 7
(HMSWF). This bit selects the word packing order for host accesses as
most-significant-word first (if set, =1) or least-significant-word first
(if cleared, =0).

• Buffer Hang Disable. SYSCON Bit 16 (BHD). This bit controls
whether the processor core proceeds (hang disabled if set, =1) or is
held-off (hang enabled if cleared, =0) when the core tries to read
from an empty EPBx, RXx, LBUFx or SPIRX buffer or tries to write to
a full EPBx, TXx, LBUFx or SPITX buffer.

• External Port DMA Channel Priority Rotation Enable. SYSCON
Bit 19 (DCPR). This bit enables (rotates if set, =1) or disables (fixed
if cleared, =0) priority rotation among external port DMA channels
(channel 10-13).

• Handshake and Idle for DMA Enable. WAIT Bit 30 (HIDMA). This
bit enables (if set, =1) or disables (if cleared, =0) adding an idle
cycle after every memory access for DMAs with handshaking
(DMARx-DMAGx).
ADSP-21161 SHARC Processor Hardware Reference 6-31

External Port DMA
• External Port DMA Enable. DMACx Bit 0 (DEN). This bit enables (if
set, =1) or disables (if cleared, =0) DMA for the corresponding
external port FIFO buffer (EPBx).

• External Port DMA Chaining Enable. DMACx Bit 1 (CHEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA chaining for
the corresponding external port FIFO buffer (EPBx).

• External Port Transmit/Receive Select. DMACx Bit 2 (TRAN). This
bit selects the transfer direction for the corresponding external port
FIFO buffer (EPBx). If set (=1), the port transmits data from inter-
nal memory. If cleared (=0), the port receives data from external
memory.

• External Port Data Type Select. DMACx Bit 5 (DTYPE). This bit
selects the transfer data type (40/48=bit, 3-column if set, =1)
(32/64-bit, 4-column if cleared, =0) for the corresponding external
port FIFO buffer (EPBx).

• External Port Packing Mode. DMACx Bits 8-6 (PMODE). These bits
select the packing mode for the corresponding external port FIFO
buffer (EPBx) as follows: 000=reserved, 001=16 external to 32/64
internal packing, 010=16 external to 48 internal packing, 011=32
external to 48 internal packing, 100= no packing, 101=8 external
to 48 internal packing, 110= 8 external to 32/64 internal packing,
111=reserved. During reset, the default is PMODE = 101.

• Most Significant Word First. DMACx Bit 9 (MSWF). When the
buffer’s PMODE is 001 or 010, this bit selects the packing order of
8-bit or 16-bit words (most significant first if set, =1) (least signifi-
cant first if cleared, =0) for the corresponding external port FIFO
buffer (EPBx).

• Master Mode Enable. DMACx Bit 10 (MASTER). This bit enables (if
set, =1) or disables (if cleared, =0) master mode for the correspond-
ing external port FIFO buffer (EPBx).
6-32 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• Handshake Mode Enable. DMACx Bit 11 (HSHAKE) This bit enables
(if set, =1) or disables (if cleared, =0) handshake mode for the cor-
responding external port FIFO buffer (EPBx).

• External Handshake Mode Enable. DMACx Bit 13 (EXTERN). This bit
enables (if set, =1) or disables (if cleared, =0) external handshake
mode for the corresponding external port FIFO buffer (EPBx).

• External Port Bus Priority. DMACx Bit 15 (PRIO). This bit selects
the external bus access priority level (high if set, =1) (low if cleared,
=0) for the corresponding external port FIFO buffer (EPBx).

External Port FIFO Buffers
DMA channels 10, 11, 12 and 13 are associated with the external port
FIFO data buffers EPB0, EPB1, EPB2, and EPB3. Each buffer acts as an
eight-location FIFO that has two ports: a read port and a write port. Each
port can connect to either the EPD (External Port Data) or one of the fol-
lowing buses: the IOD (I/O Data) bus, the PM Data bus, or the DM Data
bus.

The FIFO structure enables DMA transfers at full processor clock fre-
quency with SDRAM or at the CLKIN system clock rate for host and other
memories. This is possible because reads and writes for the same data can
occur simultaneously through the FIFO's separate read and write ports.
You can also use the external port FIFO buffers for non-DMA, single
word data transfers too.

Do not attempt to make core reads or writes to or from an EPBx
buffer when a DMA operation using that buffer is in progress. This
corrupts the DMA data.
ADSP-21161 SHARC Processor Hardware Reference 6-33

External Port DMA
To flush (clear) an external port buffer, write 1 to the FLSH bit in the
appropriate DMACx control register. The DMA for the channel must be dis-
abled during the write operation. The FLSH bit is not latched internally
and always reads as 0. Status can change in the following cycle. Do not
enable and flush an external port buffer in the same cycle.

For DMA transfers between the processor’s internal memory and external
memory, the DMA controller must generate addresses in both memories.
The external port DMA channels contain both EIEPx (External Index) and
EMEPx (External Modify) registers to generate external addresses. The
EIEPx register provides the external port address for the current DMA
cycle. It is updated with the modifier value in EMEPx for the next external
memory access.

External Port DMA Data Packing
Each external port buffer contains data packing logic to pack 8-, 16-, or
32-bit external bus words into 32/64 or 48-bit internal words. The pack-
ing logic works in reverse to unpack 32/64-bit data or 48-bit internal data
into 8-, 16-, or 32-bit external data.

The external port data alignment is shown in Figure 6-7.

To support the wide range of data packing options provided for external
DMA transfers, the EIEPx and EMEPx registers can generate addresses at a
different rate than the internal address generating registers IIEPx and
IMEPx. For this reason, the internal and external address generators operate
independently, and the ECEPx (External Count) register serves as the exter-
nal DMA word counter.

For example, when a 16-bit DMA device reads data from the processor’s
internal memory, two external 16-bit transfers occur for each 32-bit inter-
nal memory word. The ECEPx (external) word count is twice the value of
the CEPx (internal) word count.
6-34 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The PMODE bits in the DMACx control registers determine the packing mode
for internal bus words while the HBW bits in the SYSCON register determine
the packing mode for external bus words. Table 6-7 shows the packing
modes of operation for the PMODE[2:0] that correspond to bits 8, 7, and 6
in the DMACx register.

During reset, the default value PMODE in DMAC10 is 101 (8- to 48-bit
packing for PROM or Host booting)

Figure 6-7. External Port Data Alignment

16-bit Packed InstructionExecution

078151623243132394047

Float or Fixed, D31-D0, 32-bit PackedDMA

48-bit InstructionFetch
(NoPacking)

16-bit PackedDMAData

PROM
BOOT

DATA47-16

L1DATA[7:0] L0DATA[7:0]
DATA15-8 DATA7-0

8-bit PackedDMAData
8-bit Packed InstructionExecution

32-bit PackedInstructionExecution

DATA15-0
ADSP-21161 SHARC Processor Hardware Reference 6-35

External Port DMA
Each external port DMA control register contains a three bit PS field that
indicates the number of short words currently packed in the EPBx buffer.
The PS status field behaves the same way during packing and unpacking
operations. All packing functions are available for all types of DMA trans-
fers. Table 6-8 shows the values of PS[2:0] that correspond to bits 23, 22,
and 21 of the DMACx register.

Packing mode bit settings depend on whether the host access is proces-
sor-to-processor or processor-to-memory. To access another ADSP-21161
or memory, you must set the PMODE bits only (HBW bits have no effect) to
pack and unpack individual data words for the following modes: master
mode, paced master mode and handshake mode DMA.

Table 6-7. Packing Mode Combinations

PMODE HBW
8/16/32

Host Packing Mode (External:Internal)

IOP Buffers
Internal Packing
Fixed to 32-bit

Link Ports Buffers
Internal Packing
Fixed to 48-bit

External Port Buffers
Uses PMODE,
INT32 and DTYPE
(1=48/40, 0=32/64)

000 - Reserved

001 01 (16-bit) 16 : 32 16 : 48 16 : 32/64

010 01 (16-bit) 16 : 32 16 : 48 16 : 48

011 00 (32-bit) 32 : 32 32 : 48 32 : 48

100 00 (32-bit) 32 : 32 32 : 48 32 : 32/64

101 10 (8-bit) 8 : 32 8 : 48 8 : 48

110 10 (8-bit) 8 : 32 8 : 48 8 : 32/64

111 - Reserved
6-36 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
For host accesses, to pack and unpack individual data words, you must set
both the PMODE bits in the appropriate DMACx control register and the
HBW bits in the SYSCON register. Table 6-7 shows the packing mode bit
settings for access to IOP, link port and external port buffers.

For transfers to or from the EPBx data buffers, the packing mode is
determined by the setting of the HBW bits of the SYSCON register
AND the PMODE bits in the DMACx control register of each external
port buffer.

The external port buffer can pack data in most significant word first
(MSWF) order or in least significant word first (LSWF) order. Setting the bit
MSWF to 1 in the DMACx control register selects MSW mode for both pack-
ing and unpacking operations. The MSWF bit has no effect when PMODE=111
or PMODE=000.

32-Bit Bus Downloading

The packing sequence for downloading processor instruction from a
32-bit bus (PMODE=011, HBW=00) takes three cycles for every two words, as
shown in Table 6-9.

Table 6-8. External Port FIFO Buffer Packing Status (Read Only)

PS[2:0] EPBx Packing Status

000 Packing complete

001 1st stage

010 2nd stage

011 3rd stage

100 fifth stage of 8/48
ADSP-21161 SHARC Processor Hardware Reference 6-37

External Port DMA
For host transfers to or from the EPBx buffers, you must set the HBW bits in
the SYSCON register to correspond to the external bus width. Note that the
processor transfers 32-bit data on data bus lines DATA[47-16]. To transfer
an odd number of instruction words, you must write a dummy access to
flush the packing buffer and remove the unused word.

For 32- to 48-bit host packing, the processor ignores the HMSWF bit
in the SYSCON register and the MSWF bit in the DMACx control register.
For non-host accesses (for example, DMA master mode accesses to
external memory) the processor uses the MSWF bit for packing and
ignores the value of HMSWF in SYSCON.

16-Bit Bus Downloading

Table 6-10 and Table 6-11 show the packing sequence for downloading
processor instructions from a 16-bit bus (PMODE=010, HBW=01). When
interfacing to a host processor, the HMSWF bit determines whether the I/O
processor packs to most significant 16-bit word first (=1) or least signifi-
cant 16-bit word first (=0).

Table 6-9. Download Packing Sequence From a 32-Bit Bus

Transfer Data Bus Pins 47-32 Data Bus Pins 31-16

First Word 1; bits 47-32 Word 1; bits 31-16

Second Word 2; bits 15-0 Word 1; bits 15-0

Third Word 2; bits 47-32 Word 2; bits 31-16

Table 6-10. Download Packing sequence for 16-bit bus (MSW first)

Transfer Data Bus Pins 31-16

First Word 1; bits 47-32

Second Word 1; bits 31-16

Third Word 1; bits 15-0
6-38 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
8-Bit Bus Downloading

The packing sequence for downloading processor instructions from an
8-bit host (PMODE=101, HBW=10) takes six cycles for each word, as shown in
Table 6-12 and Table 6-13. The HMSWF bit in SYSCON determines whether
the I/O processor packs the most significant (=1) or least significant 8-bit
word first (=0).

Table 6-11. Download Packing Sequence For 16-Bit Bus (LSW first)

Transfer Data Bus Pins

First Word 1; bits 15-0

Second Word 1; bits 31-16

Third Word 1; bits 47-32

Table 6-12. Download Packing Sequence From 8-Bit Bus (MSW first)

Transfer Data Bus Pins 23-16

First Word 1; bits 47-40

Second Word 1; bits 39-32

Third Word 1; bits 31-24

Fourth Word 1; bits 23-16

Fifth Word 1; bits 15-8

Sixth Word 1; bits 7-0
ADSP-21161 SHARC Processor Hardware Reference 6-39

External Port DMA
Table 6-13. Download Packing Sequence From 8-bit Bus (LSW first)

Transfer Data Bus Pins 23-16

First Word 1; bits 7-0

Second Word 1; bits 15-8

Third Word 1; bits 23-16

Fourth Word 1; bits 31-24

Fifth Word 1; bits 39-32

Sixth Word 1; bits 47-40
6-40 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor

only)

elect
th
th

lect
ory

de

t)

lect
Figure 6-8. DMAC Register

DMAC10 0x1c
DMAC11 0x1d
DMAC12 0x1e
DMAC13 0x1f

FS
Ext. Port FIFO Buffer Status (read-
00=buffer empty
01=buffer-not- full
10=buffer-not - empty
11=buffer full

MAXBL
Maximum Burst Length Select

00=burst disabled
01=burst limit of 4

10=11=reserved

INT32
Internal Memory 32 -bit Transfers S
1=32-bit transfers/EPBx access wid
0=64-bit transfers/EPBx access wid

DEN

TRAN

DTYPE

PMODE

Ext. Port DMA Enable
1=enable, 0=disable

CHEN
Ext. Port DMA Chaining Enable
1=enable, 0=disable

Ext. Port EPBx Transmit/Rcv. Se
1=transmit data from intern mem
0=receive data from ext memory

Ext Port EPBx FIFO Packing Mo
000, 111= reserved
001=16 ext- to-32/64 int
010=16 ext-to-48 int
011=32 ext- to -48 int
100=no pack (32 ext -to- 32/64 in
101=8 ext-to -48int
110=8 ext - to-32/64int

EPBx FIFO Buffer Data Type Se
1=40/48 - bit, 3-column data
0=32/64 - bit, 4- column data

EXTERN
External Handshake Mode Enable

1=enable, external devices to external memory
0=disable

Single Word Interrupts for EPBx FIFO Buffers
-wd non -DMA interrupt-driven xfers

0=disabled, FIFO fully enabled
1=enable single

INTIO

HSHAKE
EPBx DMA Handshake Mode Enable

1=enable, 0=disable

MASTER
EPBx DMA Master Mode Enable

1=enable, 0=disable

MSWF
Most Significant Word First During Packing

1=enable, MSW first
0=disable, LSW first

FLSH
Flush EPBx FIFO Buffers & Status

1=flush EPBx

PRIO
External Port Bus Priority Access

0=PA~ not asserted
1=DSP asserts PA~ for external bus access

PS

001=1st stage pack/unpack
010=2nd stage pack/unpack

011=3rd stage
100=5th stage of 8 to 48 -bit packing

101=110=111=reserved

000=packing complete

Ext Port EPBx FIFO Buffer Packing Status
(read-only)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference 6-41

External Port DMA
Boot Memory DMA Mode
The BSO bit in the SYSCON register enables Boot Memory Select Override, a
mode in which the I/O processor supports DMA access to boot memory
space. When BSO is set, the processor uses the BMS select line (instead of
MS3-0) to perform DMA channel 10 accesses to external memory.

When reading from 8-bit boot memory space, the processor uses 8- to
48-bit packing. Programs most often use this feature to finish loading pro-
grams and data after the processor completes its automatic
256-instruction bootload.

External Port Buffer Modes
The HBW, HMSWF, PMODE, MSWF, and BHD bits in the SYSCON and DMACx regis-
ters select a buffer’s packing mode and disable buffer not-ready processor
core stalls. The packing mode bits PMODE for processor and HBW for host
select the external bus width and word size for transfers. Packed data or
instructions are arranged in external memory according to the memory
address that stems from their word size. For more information, see “Mem-
ory Organization and Word Size” on page 5-25. When data or
instructions in external memory are not packed, the words are arranged in
memory according to the external bus’ data alignment. This data align-
ment appears in Figure 7-1 on page 7-2.

During reset, the default value for the PMODE bits in the DMAC10 register is
101 (8- to 48-bit packing for PROM/Host boot).

When the packing mode (PMODE or HBW) is set for a 16-bit bus, programs
should set up the 16-bit word order. The 16-bit word order bits (MSWF for
processor and HMSWF for host) control the order of 16-bit words being
packed or unpacked in the 32-, 48-, or 64-bit word being transferred. If
the MSWF or HMSWF bit is set (=1), the packing and unpacking is most signif-
icant 16-bit word first.
6-42 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
In addition to selecting the packing mode for external port processor
transfers, programs must indicate the type of data in the transfer, using the
Data Type (DTYPE) bit. For more information, see “External Port Channel
Transfer Modes” on page 6-46.

The Buffer Hang Disable (BHD) bit lets the processor core proceed if the
core tries to read from an empty EPBx, TXx, LBUFx or SPIRX buffer or tries
to write to a full EPBx, RXx, LBUFx or SPITX buffer. The processor core still
performs buffer accesses when buffer hang is disabled (FBHD=1). If the pro-
cessor core attempts to read from an empty receive buffer, the core gets a
repeat of the last value that was in the buffer. If the processor core
attempts to write to a full buffer, the core overwrites the last value that was
written to the buffer. Because these buffers are not initialized at reset, a
read from a buffer that hasn't been filled since the reset returns an unde-
fined value.

If an external port buffer’s INTIO bit is set and DMA for that chan-
nel is not enabled, the external port channel is in single-word,
interrupt-driven transfer mode. For more information, see “Using
I/O Processor Status” on page 6-121.

External Port Channel Priority Modes
The DCPR and PRIO bits in the SYSCON and DMACx registers influence prior-
ity levels for an external port buffer and the external port in relation to
external port DMA channels and external bus arbitration. For more infor-
mation on prioritization operations, see “Managing DMA Channel
Priority” on page 6-22.

Priority for DMA requests from external port channels can be fixed or
rotated. When the DMA Channel Priority Rotate (DCPR) bit is cleared, the
lowest number external port channel has the highest priority, ranging
from highest-priority channel 10 to lowest-priority channel 13.
ADSP-21161 SHARC Processor Hardware Reference 6-43

External Port DMA
When the DCPR bit is set, the priority levels rotate. High priority shifts to a
new channel after each packed single-word transfer. The I/O processor
services a single-word transfer then rotates priority to the next higher
numbered channel. Rotation continues until the I/O processor services all
four external port channels. Figure 6-9 illustrates this process as described
in the following steps:

1. At reset, external port channels have priority order—from high to
low—10, 11, 12, and 13.

2. The external port performs a single transfer on channel 11.

3. The I/O processor rotates channel priority, changing it to 12, 13,
10, and 11 (because rotating priority is enabled for this example,
DCPR=1).

Figure 6-9. Rotating External Port DMA Channel Priority

HIGHEST
PRIORITY

HIGHEST
PRIORITY

LOWEST
PRIORITY

LOWEST
PRIORITY

10

1113

12

11 13

10

12

ONE TRANSFER OCCURS ON CHANNEL 11 (STEP 2),
ROTATING CHANNEL 11'S PRIORITY TO THE LOWEST PRIORITY SLOT (STEP 3).

STEP 2 STEP 3
6-44 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Even though the external port channel DMA priority can rotate,
the interrupt priorities of all DMA channels are fixed.

When external port DMA channel priority is fixed (DCPR=0), channel 10
has the highest priority, and channel 13 has the lowest priority. But, pro-
grams can redefine this priority order by assigning one of the other
channels the highest priority. To change the fixed priority sequence of the
external port DMA channels, a program could use the following
procedure:

1. Disable all external port DMA channels except the one which is to
have lowest priority.

2. Select rotating priority.

3. Cause at least one transfer to occur on the enabled channel.

4. Disable rotating priority and re-enable all of the external port
DMA channels.

After completing this procedure, the channel immediately after the
selected channel has the highest fixed priority.

In systems where multiple processors are using the external bus, the PRIO
bit raises the priority level for external port DMA transfers. When a chan-
nel’s PRIO bit is set, the I/O processor asserts the Priority Access (PA) pin
when that channel uses the external bus. The channel gets higher priority
in bus arbitration, allowing the DMA to complete more quickly.

Programs can also rotate priority between external port and link port
DMA channels. For more information, see “Link Port Channel Priority
Modes” on page 6-83.
ADSP-21161 SHARC Processor Hardware Reference 6-45

External Port DMA
External Port Channel Transfer Modes
The DEN, CHEN, TRAN, and DTYPE bits in the DMACx register enable DMA and
chained DMA and select the transfer direction and data type. The DMA
enable (DEN) and Chained DMA enable (CHEN) bits work together to select
an external port DMA channel’s transfer mode. Table 6-14 lists the possi-
ble modes.

Because the external port is bidirectional, the I/O processor uses the
Transmit select (TRAN) bit to determine the transfer direction (transmit or
receive). Data flows from internal to external memory when in transmit
mode. In transmit mode, the I/O processor fills the channel’s EPBx buffer
with data from internal memory when the channel’s DEN bit is set.

The Data Type (DTYPE) bit determines how the DMA channel accesses
columns of internal memory. If DTYPE is set, the data is 40- or 48-bit
words, and the I/O processor makes 3-column internal memory accesses.
If DTYPE is cleared, the data is 32- or 64-bit words, and the I/O processor
makes 4-column internal memory accesses. For more information, see
“Memory Organization and Word Size” on page 5-25.

The DTYPE for the transfer overrides the Internal Memory Data
Width (IMDWx) setting for the internal memory block.

Table 6-14. External Port DMA Enable Modes

CHEN DEN DMA Enable Mode Description

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,
auto-chaining disabled); For more information, see “Chaining DMA
Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,
auto-chaining enabled)
6-46 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
External Port Channel Handshake Modes
The MASTER, HSHAKE, EXTERN, and HIDMA bits in the DMACx and WAIT regis-
ters select the channel’s DMA handshake and enable the hold cycles for
host DMA. Table 6-15 summarizes the external port DMA modes.
Table 6-16 shows how the MASTER, HSHAKE, and EXTERN bits work to select
the channel’s DMA handshake mode.

Table 6-15. External Port DMA Modes

Mode Operation

Slave Internal Memory <--> EPBx

Master Internal Memory <--> EPBx <-->External Memory
Uses strobes and address, No DMAR and DMAG.

Paced Master Internal Memory <--> EPBx <-->External Memory
Uses strobes and address, Uses DMAR , No DMAG.

Handshake Internal Memory <--> EPBx <-->External Memory
No strobes and address, Uses DMAR and DMAG.

External Handshake External Memory <--> External Device
Uses strobes and address, Uses DMAR and DMAG.
ADSP-21161 SHARC Processor Hardware Reference 6-47

External Port DMA
Table 6-16. External Port DMA Handshake Modes: DMACx MASTER (M),
HSHAKE (H), and EXTERN (E) Bits

E H M DMA Mode of Operation

0 0 0 Slave Mode. The processor responds to the buffer’s internal memory transfer activ-
ity based on the buffer status in the FS field, generating a DMA request whenever
the buffer is not empty (on receive) or is not full (on transmit). During transmit
(TRAN=1), the processor fills the EPBx buffer with data from internal memory
when the program enables the buffer (DEN=1).

For more information, see “Slave Mode” on page 6-55.

0 0 1 Master Mode. The processor attempts the internal memory DMA transfers indi-
cated by the DMA counter (CEPx) based on the buffer status in the FS field, mak-
ing transfers whenever the buffer is not empty (on receive) or is not full (on
transmit).

Systems using Master Mode should de-assert corresponding DMA request inputs,
de-asserting DMAR1 if channel 11 is in master mode and de-asserting DMAR2 if
channel 12 is in master mode.

For more information, see “Master Mode” on page 6-50.

0 1 0 Handshake Mode. When in this mode, the processor generates a DMA request
whenever the external device asserts the DMARx pin, then the processor asserts the
DMAGx pin, transferring the data (and de-asserting DMAGx) when the external
devices de-asserts the DMARx pin.

Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “Handshake Mode” on page 6-57.

0 1 1 Paced Master Mode. The processor attempts the internal memory DMA transfers
indicated by the DMA counter (CEPx), making transfers based on external DMA
request inputs. The processor generates a DMA request whenever the external
device asserts the DMARx pin. The processor controls the data transfer using the
RD or WR and ACK pins and by applying the selected number of waitstates.

Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “Paced Master Mode” on page 6-54.
6-48 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
For the handshake and external-handshake modes shown in Table 6-16,
programs can insert an added idle cycle after every memory access. The
handshake and Idle for DMA (HIDMA) bit in the WAIT register enables this
added cycle, which reduces bus contention from devices with slow
three-state timing or long recovery times.

Because external port DMA transfers can go between processor internal
memory and external memory, the I/O processor must generate addresses
for both memory spaces. The external port DMA channels have additional
parameter registers (EIEPx, EMEPx, ECEPx) for external memory access.

To support data packing options for external memory DMA transfers, the
EIEPx and EMEPx registers can generate addresses at a different rate than
the internal address registers (IIEPx and IMEPx). Figure 6-5 on page 6-23
shows that the I/O processor has separate address generators for internal
and external addresses. For this reason, when packing is used for external

1 0 0 Reserved

1 0 1 Reserved

1 1 0 External-Handshake Mode. The processor responds to external memory DMA
requests based on external DMA request inputs. This mode is identical to Hand-
shake Mode, but applies to transfers between external memory and external devices.

The processor generates a DMA request whenever the external device asserts the
DMARx pin. The processor asserts the DMAGx pin, transferring the data (and
de-asserting DMAGx) when the external devices de-asserts the DMARx pin.

 Note that this mode only applies to external port buffers EPB1 and
EPB2 and DMA channels 11 and 12.

For more information, see “External-Handshake Mode” on page 6-66.

1 1 1 Reserved

Table 6-16. External Port DMA Handshake Modes: DMACx MASTER (M),
HSHAKE (H), and EXTERN (E) Bits (Cont’d)

E H M DMA Mode of Operation
ADSP-21161 SHARC Processor Hardware Reference 6-49

External Port DMA
memory DMA, the external count (ECEPx) register indicates the number of
external port transfers, not the number of internal memory words being
transferred.

The DMA mode and other factors determine the size of the DMA data
transfer on the external port. These other factors include the EIEPx, EMEPx,
and ECEPx parameters; the PMODE, DTYPE, and MAXBL values in DMACx; and
the transfer capacity available in the EPBx data buffer employed in the
transfer. The internal I/O processor bus transfer size varies with the IIEPx,
IMEPx, and CEPx parameters, and the PMODE, DMA mode, DTYPE, and INT32
values in DMACx. The following sections describe these DMA modes and
transfer sizes in more detail:

• “Master Mode” on page 6-50

• “Paced Master Mode” on page 6-54

• “Slave Mode” on page 6-55

• “Handshake Mode” on page 6-57

• “External-Handshake Mode” on page 6-66

Master Mode

When the MASTER bit is set (=1) and the EXTERN and HSHAKE bits are cleared
(=0) in the channel’s DMACx register, the DMA channel is in master mode.
A channel in this mode can independently initiate internal or external
memory transfers.

Master mode applies to all external port DMA channels: 10, 11,
12, and 13. When interfacing to SDRAM memory, only master
mode DMA can be used for external port DMA transfers between
SDRAM and internal memory. DMARx and DMAGx pins cannot be
used to pace or handshake DMA transfers using SDRAM interface
pins.
6-50 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
To initiate a master mode DMA transfer, the processor sets up the chan-
nel’s parameter registers and sets the channel’s DMA enable (DEN) bit. A
master mode DMA channel performing internal memory to external
memory data transfer automatically performs enough transfers from inter-
nal memory to keep the EPBx buffer full. When the data transfer direction
is external to internal, a master mode DMA channel also performs enough
transfers from external memory to keep the EPBx buffer full.

The I/O processor uses the EIEPx, EMEPx, and ECEPx registers to
access external processor memory in master mode DMA.

External Transfer Controls In Master Mode. In master mode, the proces-
sor determines the size of the external transfer from the channel’s PMODE
bits and EIEPx, EMEPx, and ECEPx registers. Table 6-8 on page 6-37 shows
the packing mode selected by the PMODE bits, and Table 6-17 shows the
external transfer size in master mode that results from the combination of
the PMODE bits.

32-bit External Transfers. The processor performs 32-bit transfers when
PMODE= 011 (32- to 48-bit internal), or 100 (32-bit exter-
nal-to-32-bit/64-bit internal). In PMODE=011or 100, all data transfers
across the upper word of the data bus (DATA47-16) are as indicated in

Table 6-17. Master Mode External Transfer Size

Transfer Size 32-bit 16-bit 8-bit

PMODE 011, 100 001, 010 110, 101

EIEP X1

1 An X in Table 6-17 indicates any supported value.

X X

EMEP X X X

ECEP X # of 16-bit xfers # of 8-bit xfers

DTYPE X X X

EPBx Depth >=1 >=1 >=1
ADSP-21161 SHARC Processor Hardware Reference 6-51

External Port DMA
Figure 7-1 on page 7-2. This mode supports all values of EIEPx, EMEPx,
and ECEPx. ECEPx contains the number of 32-bit words to transfer. There
must be at least one 32-bit EPBx FIFO entry available to support the
32-bit external transfer.

16-bit External Transfers. The processor performs 16-bit transfers when
PMODE=001 (16-bit external-to-32/64-bit internal) or 010 (16-bit external
to 48-bit internal). This mode supports all values of EIEPx, EMEPx, and
ECEPx. The value ECEPx is programmed to the number of 16-bit words to
transfer. There must be at least one 32-bit EPBx FIFO entry available to
support the 16-bit external transfer. In PMODE=001, or 010, all data trans-
fers across DATA31-16 as indicated in Figure 7-1 on page 7-2.

8-bit External Transfers. The processor performs 8-bit transfers when
PMODE=110 (8-bit external to 32/64-bit internal) or 101 (8-bit external to
48-bit internal). This mode supports all values of EIEPx, EMEPx, and ECEPx.
The value ECEPx is programmed to be the number of 8-bit words to trans-
fer. There must be at least one 32-bit EPBx FIFO entry available to support
the 8-bit external transfer. In PMODE=110 or 101, all data transfers across
DATA23-16 as indicated in Figure 7-1 on page 7-2.

Internal Address/Transfer Size Generation. In master mode, the proces-
sor determines the size of the internal transfer from the channel’s PMODE
bits and IIEPx, IMEPx, and CEPx registers. Table 6-7 on page 6-36 shows
the packing mode selected by the PMODE bits, and Table 6-18 shows the
internal transfer size in master mode that results from the combination of
the PMODE bits.

Table 6-18. Master Mode Internal Transfer Size Determination

Transfer Size 64-bit1 48-bit 32-bit

PMODE 001, 100, 110 010, 011, 101 001, 100, 110

IIEPx depends on IM2 X3 X

IMEPx -1 or 1 X X
6-52 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
64-bit Internal Transfers. To enable internal 64-bit transfers and incre-
ment the internal IIEPx pointer, programs must set IIEPx to match the
IMEPx selection as shown in Table 6-18. CEPx contains the number of
32-bit words to transfer, and should be set to an even number of 32-bit
words. The processor decrements CEPx by 2 for each 64-bit transfer. For
64-bit transfers, PMODE must be set to 001 (16-bit-to-32/64-bit internal),
100 (32-bit external-to-32/64-bit internal) or 110 (8-bit exter-
nal-to-32/64-bit internal). DTYPE and INT32 must be cleared. There must
be at least two 32-bit EPBx FIFO entries available to support the 64-bit
external transfer.

48-bit Internal Transfers. The processor can perform 48-bit internal
transfers for DMA of packed or unpacked 48-bit instructions. Many
applications can use internal 64-bit transfer for 48-bit instructions. This
technique can provide greater throughput than 48-bit internal transfers.

In either of the 48-bit internal transfer modes in Table 6-18 (PMODE=101
and DTYPE=1 or PMODE=010 or 011 and DTYPE=0), the processor accesses
the memory using instruction alignment (3-column read or write) for the
EPBx buffer. In this case, IIEPx points to 48-bit words, and CEPx counts
the number of 48-bit internal transfers.

CEPx even # of 32-bit
words

of 48-bit words X

DTYPE 0 1 0

EPBx Depth >1 >1 >=1

INT32 0 0 0 or 1

1 Including packed instructions.
2 If IMEPx is 1 for increment, IIEPx must be an even, 64-bit aligned Normal word address.

If IMEPx is -1 for decrement, IIEPx must be an odd, Normal word address.
3 X indicates any supported value.

Table 6-18. Master Mode Internal Transfer Size Determination (Cont’d)
ADSP-21161 SHARC Processor Hardware Reference 6-53

External Port DMA
32-bit Internal Transfers. The processor performs according to the condi-
tions in Table 6-18. Under these additional conditions, the processor
performs 32-bit transfers instead of 64- or 48-bit transfers: PMODE= 001
(16-bit external to 32-bit internal), or 100 (32-bit external to 32-bit inter-
nal), and IIEPx is not aligned to a 64-bit boundary, or IMEPx is < -1, or >
1, or CEPx is < 2, or EPBx depth < 2, or INT32 = 1, and DTYPE=0.

Paced Master Mode

When the MASTER and HSHAKE bits are set (=1) and the EXTERN bit is cleared
(=0) in the channel’s DMACx register, the DMA channel is in Paced Master
mode. A channel in this mode can independently initiate internal or exter-
nal memory transfers.

Paced Master mode applies only to external port DMA channels 11
and 12.

In Paced Master mode, the processor has the same control for address gen-
eration and transfer size as in master mode. For more information, see
“Master Mode” on page 6-50. The difference between these modes is that
in Paced Master mode external transfers are controlled and initiated
(paced) by the DMARx signal as in handshake mode. For more information,
see “Handshake Mode” on page 6-57.

The processor responds to the DMARx request only with the RD, or WR
strobes, depending on direction and data alignment. DMAGx is not asserted
in Paced Master mode. This method lets the processor share the same
buffer between the I/O processor and processor core without external gat-
ing. Paced Master mode accesses can be extended by the ACK input, by
waitstates programmed in the WAIT register, and by holding the DMARx
input low.
6-54 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Slave Mode

When the MASTER, HSHAKE, and EXTERN bits in the channel’s DMACx register
are cleared (=0), the DMA channel is in slave mode. A channel in this
mode cannot independently initiate external memory transfers.

To initiate a slave mode DMA transfer, an external device must read or
write the channel’s EPBx buffer. A slave mode DMA channel performing
internal to external data transfer automatically performs enough transfers
from internal memory to keep the EPBx buffer full. When the data transfer
direction is external to internal, a slave mode DMA channel does not ini-
tiate any internal DMA transfers until the external device writes data to
the channel’s EPBx buffer. Note that the I/O processor does not use the
EIEPx, EMEPx, and ECEPx registers in slave mode DMA

The following sequence describes a typical external to internal slave mode
DMA operation where an external device transfers a block of data into the
processor’s internal memory:

1. The external device initializes the channel by writing the DMA
channel’s parameter registers (IIEPx, IMEPx, and CEPx) and DMACx
control register.

2. The external device begins writing data to the EPBx buffer.

3. The EPBx buffer detects that data is present and asserts an internal
DMA request to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, emptying the EPBx buffer FIFO.

If the internal DMA transfer is held off, the external device can continue
writing to the EPBx buffer because of its eight-deep FIFO. When the EPBx
FIFO becomes full, the processor holds off the external device with the
ACK signal (for synchronous accesses) or with the REDY signal (for asynchro-
ADSP-21161 SHARC Processor Hardware Reference 6-55

External Port DMA
nous, host-driven accesses). This hold-off state continues until the I/O
processor finishes the internal DMA transfer, freeing space in the EPBx
buffer.

The following sequence describes a typical internal to external slave mode
DMA operation where an external device transfers a block of data from
the processor’s internal memory:

1. The external device writes the DMA channel’s parameter registers
(IIEPx, IMEPx, and CEPx) and DMACx control register, initializing the
channel and automatically asserting an internal DMA request to
the I/O processor.

2. The I/O processor grants the request and performs the internal
DMA transfer, filling the EPBx buffers FIFO.

3. The external device begins reading data from the EPBx buffer.

4. The EPBx buffer detects that there is room in the buffer (it is now
partially empty) and asserts another internal DMA request to the
I/O processor, continuing the process.

If the internal DMA transfers cannot fill the EPBx FIFO buffer at the same
rate as the external device empties it, the processor holds off the external
device with the ACK signal (for synchronous accesses) or with the REDY sig-
nal (for asynchronous, host-driven accesses) until valid data can be
transferred to the EPBx buffer.

The processor only deasserts the ACK (or REDY) signal when the EPBx
FIFO buffer (or pad data buffer) is full during a write. The ACK (or
REDY) signal remains asserted at the end of a completed block trans-
fer if the EPBx buffer is not full. For reads, the processor deasserts
the ACK (or REDY) signal for each read to handle the latency of the
read versus posting the write to a buffer.
6-56 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
In slave mode, the processor determines the size of the transfer based on
the setting of channel’s PMODE bits. Table 6-19 shows the transfer size in
slave mode that results from the PMODE bits and Table 6-7 on page 6-36
shows the packing mode selected by the PMODE bits.

Handshake Mode

When the MASTER and EXTERN bits are cleared (=0) and the HSHAKE bit is set
(=1) in the channel’s DMACx register, the DMA channel is in handshake
mode. A channel in this mode cannot independently initiate external
memory transfers. Note that handshake mode only applies to DMA chan-
nels 11 and 12.

To initiate a handshake mode DMA transfer, an external device must
assert an external DMA request, asserting DMAR1 for access to EPB1 or
DMAR2 for access to EPB2. The buffers pass these request to the I/O proces-
sor, which prioritizes these requests with other internal DMA requests.
When the external DMA request has the highest priority, the I/O proces-
sor asserts an external DMA grant, asserting DMAG1 for EPB1 or DMAG2 for
EPB2. The grant signals the external device to read or write the EPBx buffer.
A handshake mode DMA channel performing internal to external data
transfer automatically performs enough transfers from internal memory to
keep the EPBx buffer full. When the data transfer direction is external to

Table 6-19. Slave Mode Transfer Size Determination

Transfer Size
(external↔inter-
nal)

32-bit↔
32/64-bit

32-bit↔
48-bit

16-bit↔
32/64-bit1

1 External device must be connected to DATA[31:16]

16-bit↔
48-bit1

8-bit↔
32/64-bit2

2 External device must be connected to DATA[23:16]

8-bit↔
48-bit2

PMODE 100 011 001 010 110 101

DTYPE 0 1 0 1 0 1
ADSP-21161 SHARC Processor Hardware Reference 6-57

External Port DMA
internal, a handshake mode DMA channel does not initiate any internal
DMA transfers until the external devices writes data to the channel’s EPBx
buffer.

The I/O processor does not use the EIEPx or EMEPx registers in
handshake mode DMA. It uses the ECEPx registers.

Other than the DMARx/DMAGx handshake, handshake mode DMA opera-
tions follow almost the same process as slave mode DMA operations. The
exception is that in handshake mode DMAs from internal to external
memory the external device must load the channel’s ECEPx register with
the number of external bus transfers.

In handshake mode, the processor determines the size of the transfer from
the channel’s parameter registers and PMODE bits. Table 6-7 on page 6-36
shows the packing mode selected by the PMODE bits, and Table 6-20 shows
the transfer size in handshake mode that results from the combination of
the read and write signals and PMODE bits.

Table 6-20. Handshake Mode Transfer Size Determination

Transfer Size
(external↔internal)

32-bit↔
32/64-bit1

1 External device must be connected to the upper half of the data bus (Data[47:16])

32-bit↔
48-bit2

16-bit↔
32/64-bit2

2 External device must be connected to Data[16:31])

16-bit↔
48-bit2

8-bit↔
32/64-bit3

3 External device must be connected to Data[16:23])

8-bit↔
48-bit2

PMODE 100 011 001 010 110 101

IIEPx X4

4 X indicates any legal value

X X X X X

IMEPx X X X X X X

CEPx # of 32-bit
words

of 32-bit
words

of 16-bit
words

of 16-bit
words

of 8-bit
words

of 8-bit
words

ECEPx # of 32-bit
words

6/4 *
CEPx

2 * CEPx 3 * CEPx 4 * CEPx 6 * CEPx

DTYPE 0 1 0 1 0 1
6-58 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
DMA transfers are supported at the full system CLKIN/CLKOUT rates of
50MHz. However, full bandwidth at 2:1 core clock (CCLK) to CLKIN/CLK-
OUT ratio is not possible. Non synchronous timing specifications limit
throughput for three DMA handshake modes: paced master mode, hand-
shake mode and external handshake mode. The sampling rate of the DMARx
signal by the internal circuitry of the ADSP-21161 processor prohibits
maximum throughput at a CCLK to CLKIN/CLKOUT ratio of 2:1. For hand-
shake mode DMA, the processor does not assert the MS3-0 memory select
lines (the address strobes). For information on DMARx/DMAGx handshake
timing, see Figure 6-10.

CCLK to CLKIN ratios of 3:1 and 4:1 with CLKDBL =1 and CCLK to CLKIN
ratios of 4:1, 6:1 and 8:1 with CLKDBL =0 support full speed throughput at
the CLKIN frequency. If the maximum DMARx/DMAGx throughput at 50MHz
is needed, synchronize the assertions and deassertions of DMARx with
respect to CLKOUT. Refer to the ADSP-21161N DSP Microcomputer Data
Sheet for specific timing information.

Figure 6-10. Handshake DMA Timing (Asynchronous Requests)

CLKIN

1st DMA
Request

DMAR rising
edge allows 1st

DMAG to complete

2nd DMA
request

DMAG has a wait state
because DMAR remained
asserted in the cycle prior

to the DMAG assertion

DMA device must place data in buffer prior
to DMAG falling edge if no wait state

DMA device need not provide
data until this cycle if wait state

DATA47-16

DMARx

DMAGx

data valid data valid data
valid data valid

Bus
Transition

Cycle

(If not bus
master)
ADSP-21161 SHARC Processor Hardware Reference 6-59

External Port DMA
The I/O processor uses the rising and falling edges of DMARx in the
DMARx/DMAGx handshake as prompts for DMA operations. On the falling
edge of DMARx, the edge signals the I/O processor to begin a DMA access.
On the rising edge of DMARx, the edge signals the I/O processor to com-
plete the DMA access.

The following sequence describes the process for requesting access to an
EPBx buffer in handshake mode:

1. The external device asserts the buffer’s DMARx signal, placing an
external DMA request for access to the EPBx buffer.

2. The EPBx buffer detects the falling edge of the DMARx signal and
passes the external DMA request to the I/O processor, synchroniz-
ing the DMA operation with the processor’s system clock.

To be recognized in a particular cycle, the DMARx low transition
must meet the signal setup time from the processor data sheet. If
the transition is slower than the setup time, the signal may not take
effect until the following cycle.

3. The I/O processor prioritizes the external DMA request with other
internal DMA requests. If the processor is not already bus master,
the processor arbitrates for the external bus when the external
DMA request has the highest priority, unless the EPBx buffer is
blocked.

If the EPBx buffer is full during a write or empty during a read, the
buffer is blocked. The processor does not begin external bus arbi-
tration until the I/O processor services the EPBx buffer, returning it
to the unblocked state empty for writing or full for reading.

4. The processor becomes bus master and asserts DMAGx.

The processor keeps DMAGx asserted until the cycle after the external
device deasserts DMARx. By holding DMARx asserted, the external
device holds the processor until the external device is ready to pro-
6-60 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
ceed. If the external device does not need to extend the DMA grant
cycle, the external device can deassert DMARx immediately (not wait-
ing for DMAGx), providing the DMARx assertion time meets the timing
requirements from the processor data sheet. The responding DMAGx
in this case is a short pulse, and the processor only uses the external
bus for one cycle.

The I/O processor has a three-cycle DMA pipeline and a seven-deep exter-
nal request counter. The I/O processor’s DMA pipeline is similar to the
program sequencer’s fetch–decode–execute instruction pipeline. The I/O
processor processes the DMA pipeline in the following stages:

• It recognizes the DMA request and arbitrates internal DMA prior-
ity during the DMA fetch cycle.

• It generates the DMA address and arbitrates external bus access
during the DMA decode cycle.

• It transfers DMA data during the DMA execute cycle.

Because the I/O processor has a three-cycle DMA pipeline, there is
a minimum delay of three cycles before the processor asserts DMAGx.
This delay is in addition to any delay from internal DMA arbitra-
tion, so the external device must not assume that the DMA grant
can arrive within two cycles even if higher priority DMA opera-
tions are disabled and the external bus is available for the transfer.

The I/O processor’s external request counter increments each time the
external device asserts DMARx and decrements each time the processor
replies by asserting DMAGx. The external request counter records up to
seven requests, so the external device can make up to seven requests before
the first one has been serviced.
ADSP-21161 SHARC Processor Hardware Reference 6-61

External Port DMA
If the processor cannot immediately service the DMA requests in the
external request counter, the processor services the requests on a priori-
tized basis. The external DMA device is responsible for keeping track of
requests, monitoring grants, and pipelining the data when operating at
full speed.

If the external device makes more than seven DMARx without receiv-
ing a grant, the delayed grant causes unpredictable results.

The processor only asserts DMAGx for the number of DMARx requests indi-
cated by the external request counter. If the external devices make more
requests than the count indicates, the processor DMAGx assertions cannot
match the number of external device requests. To clear this mismatch,
programs can clear the buffer and the external request counter using the
flush bit (FLSH) in the channel’s DMACx register.

To prevent holding off the processor, the external device must service the
processor’s data requirements when it asserts the DMAGx grant signal. The
external device should immediately supply data for writes to the processor
or immediately accept data on reads from the processor. External inter-
faces can handle this I/O by placing the data in an external FIFO. When
performing DMA operations at the full CLKIN speed of the processor, the
system may need a three-deep external FIFO to handle the latency
between request and grant. Programs on the external device can optimize
operation of this FIFO by issuing three requests rapidly and making the
next requests conditional on when the processor issues a grant.

The external devices must follow the conditions in Figure 6-11 when
enabling or disabling handshake mode for an external port DMA channel:

• The processor ignores a disabled (transitioning from disabled to
enabled) DMA channel’s DMARx and DMAGx pins and ignores internal
DMARx assertions for up to two processor core clock cycles after the
instruction that enables the channel in handshake mode.
6-62 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• The external devices must maintain DMARx deasserted (kept high,
not low or changing) during the instruction that enables DMA in
handshake mode. Before using the channel for the first time, pro-
grams flush the DMA channel, asserting the FLSH bit in the DMACx
control register. This action is not required during chain insertion.

• The processor deasserts DMAGx if a program disables the channel
while DMARx and DMAGx are asserted (=0). This action clears the
channel’s active status bit, avoiding a potential deadlock condition.

ADSP-21161 processors in a multiprocessing cluster may share a DMAGx
signal, because only the bus master drives DMAGx. On the bus slaves, DMAGx
is three-stated. This state eliminates the need for external gating if more
than one processor or the host needs to drive the DMA buffer. Systems
may need a pullup resistor on this line if the host is not connected to the
pin or does not drive it when it acquires the bus. DMAGx has the same tim-
ing and transitions as the RD and WR strobes in asynchronous access mode.
For more information, see “Bus Arbitration Protocol” on page 7-95. DMAGx
responds to the SBTS and HBR signals in the same way as the read and write
strobes.

Figure 6-11. DMARx Delay After Enabling Handshake DMA

CCLK

DMARx

Executing

DMAR must be kept HI

Instruction enabling DMA by

DMARx ignored
during this instruction

setting DEN=1 and HSHAKE=1
in DMAC11 or DMAC12

Instruction Instruction
Instruction

(core clock)
ADSP-21161 SHARC Processor Hardware Reference 6-63

External Port DMA
DMA Handshake Idle Cycle
Idle cycles can be inserted during DMA handshaking to interface with
slower devices. Normally a bus idle cycle occurs when an asynchronous
read is followed by an immediate write to an external memory bank or
when crossing bank boundary. During this idle cycle, the address and data
lines continue to drive the previous value. RD, WR and DMAGx lines deassert.

If the asynchronous read is immediately followed by a write, the processor
recognizes that a write request is pending during the idle cycle. Therefore,
the MSx lines do not deassert during the idle cycle. Instead, the lines are
driven with their previous value (asserted).

Idle cycles can be inserted after every memory access by setting the HIDMA
bit in the WAIT register for DMAs with handshaking. For a handshake
mode DMA transfer, the MSx lines are never asserted. When an external
handshake mode DMA is enabled with a bus idle cycle inserted in between
the transfers, the MSx lines do not deassert during the bus idle cycle if the
I/O processor recognizes a pending DMARx request. If there are no pending
DMARx requests, MSx lines do deassert.

Figure 6-12 shows an external handshake mode DMA transfer on channel
11 with three DMAR1 pulses asserted. The HIDMA bit is set in the WAIT regis-
ter in order to insert bus idle cycles between two handshake transfers. The
first data transfer is to location 0x255000 in bank 0 and the second trans-
fer is to location 0x255001. An idle cycle is inserted between the two
transfers. Note that the first two DMAR1 pulses are sequential. Therefore,
during this idle cycle, the I/O processor recognizes that there is a DMAR1
request pending. As a result of the pending request, the MS0 line is not
deasserted.

The third data transfer is to location 0x255002. Again, an idle cycle is
inserted between the second and third transfers. However, the third DMA
transfer request happens after some time has transpired and following the
2nd DMAR1 pulse. In this case, the I/O processor recognizes that there are
6-64 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor

02

A
D

no more DMAR1 requests pending. Therefore, during the idle cycle between
the second and third transfers, the MS0 line goes high. MS0 goes low again
when the 3rd data transfer occurs.

Systems must be evaluated to determine if the idle cycle during a external
handshake DMA with an activated MSx line has an adverse impact on the
chip selected memory devices or peripherals. The RD, WR, and DMAG strobes
are inactive during the idle cycle, and therefore the MSx lines being acti-
vated should not affect interconnection to other devices as long as RD and
WR remain inactive. Otherwise, an idle cycle insertion between DMA
handshake transfers cannot be used.

Figure 6-12. DMA Handshake Idle Cycle

CLKIN

DMAR1

DMAG1

MS0

RD

WR

ADDR[23:0] 0x255000 0x255001 0x2550

DATA
VALID

DATA
VALID

DAT
VALI

DATA[47:16]
ADSP-21161 SHARC Processor Hardware Reference 6-65

External Port DMA
External-Handshake Mode

External-handshake mode is identical to handshake mode, except that
external-handshake mode transfers data between external memory and an
external device. This section describes the differences between handshake
mode and external-handshake mode. For more information, see “Hand-
shake Mode” on page 6-57.

When the MASTER bit is cleared (=0) and the HSHAKE and EXTERN bits are set
(=1) in the channel’s DMACx register, the DMA channel is in external-hand-
shake mode. A channel in this mode cannot independently initiate
external memory transfers.

Like handshake mode, external-handshake mode only applies to
DMA channels 11 and 12.

Do not use external handshake mode DMA on an external memory
bank that has SDRAM mapped and connected to its MSx line.

To initiate an external-handshake mode DMA transfer, an external device
must assert an external DMA request, asserting DMAR1 for access to DMA
channel 11or DMAR2 for access to DMA channel 12. The channels pass
these request to the I/O processor, which prioritizes these requests with
other internal DMA requests. When the external DMA request has the
highest priority, the I/O processor asserts an external DMA grant, assert-
ing DMAG1 for channel 11 or DMAG2 for channel 12. The grant signals the
external device to read or write the external bus. An external-handshake
mode DMA channel performing external to external data transfer auto-
matically generates external memory addresses and strobes for transfers
between external memory and the external device.

Unlike handshake mode, the I/O processor must use the EIEPx,
EMEPx, and ECEPx registers in external-handshake mode DMA. Also
unlike handshake mode, the data for DMA channels 11 and 12
does not pass through the EPB1 or EPB2 buffers.
6-66 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
During external-handshake mode transfers, the I/O processor generates
external memory access cycles. DMARx and DMAGx operate the same as in
handshake mode, but the processor also outputs addresses, MS3-0 memory
selects, and RD and WR strobes, and responds to ACK. On external memory
writes, the processor asserts DMAGx until the external device releases the ACK
line or any of the processor waitstates expire. The external memory access
by the external devices responds as if the processor core were making the
access. For more information, see “External Port” on page 7-1.

Because the I/O processor accesses external memory in external-handshake
mode, programs must load the DMA channel’s EIEPx, EMEPx, and ECEPx
parameter registers and the DMAC10 or DMAC11 PMODE bits. These settings let
the I/O processor generate the external memory addresses and word
count.

External-handshake mode does not support chained DMA inter-
rupts. Because no internal DMA transfers occur in
external-handshake mode, the PCI bit in the channel’s CPEPx regis-
ter cannot disable the DMA interrupt. Programs must use the
IMASK register to mask this interrupt.

In external-handshake mode, the processor does not perform packing. The
processor does determine the size of the transfer from the channel’s
parameter registers, PMODE bits. Table 6-21 shows the transfer size in exter-
nal handshake mode that results from the combination of the read and
write signals and PMODE bits. For 32-bit memory transfers to an external
device, PMODE must be set to the no packing mode (=100) in the DMACx
register.
ADSP-21161 SHARC Processor Hardware Reference 6-67

External Port DMA
Setting Up External Port DMA
The method for setting up and starting an external port DMA sequence
varies slightly with the selection of transfer and DMA handshake for the
channel.

• For more information on transfer modes, see “External Port Chan-
nel Transfer Modes” on page 6-46.

• For more information on DMA handshake modes, see“External
Port Channel Handshake Modes” on page 6-47.

The following sequence describes a typical external to internal DMA oper-
ation where an external device transfers a block of data into the processor’s
internal memory:

1. The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (IIEPx, IMEPx, and CEPx) and the
DMACx register, initializing the channel for receive (TRAN=0).

2. The processor or host (depending on the mode) sets the channel’s
DEN bit to 1 enabling the DMA process.

Table 6-21. External Handshake Mode Transfer Size

Transfer Size
(memory↔device)

32-bit memory↔32-bit device1

1 External device must be connected to the upper half of the data
bus (Data[47:16])

PMODE 100

EIx X2

2 X indicates any legal value

EMx X

ECx X

DTYPE 0
6-68 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
3. The external device begins writing data to the EPBx buffer through
the external port.

4. The EPBx buffer detects data is present and asserts an internal
DMA request to the I/O processor.

5. The I/O processor grants the request and performs the internal
DMA transfer, emptying the EPBx buffer FIFO.

The following sequence describes a typical internal to external DMA oper-
ation where an external device transfers a block of data from the
processor’s internal memory:

1. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IIEPx, IMEPx, and CEPx) and the
DMACx register, initializing the channel for transmit (TRAN=1).

2. The processor or host (depending on the mode) sets the channel’s
DEN bit to 1 enabling the DMA process. Because this is a transmit,
setting DEN automatically asserts an internal DMA request to the
I/O processor.

3. The I/O processor grants the request and performs the internal
DMA transfer, filling the EPBx buffer’s FIFO.

The processor may signal the start of this transfer depending on the
mode.

4. The external device begins reading data from the EPBx buffer
through the external port. The processor may signal the start of this
transfer depending on the mode.

5. The EPBx buffer detects that there is room in the buffer because it is
now partially empty and asserts another internal DMA request to
the I/O processor, continuing the process.
ADSP-21161 SHARC Processor Hardware Reference 6-69

External Port DMA
Bootloading Through The External Port
The processor can boot from an EPROM or host processor through the
external port. The DMAC10 control register is initialized for booting in each
case. Each booting mode packs boot data into 48-bit instructions.
EPROM and host boot use channel 10 of the I/O processor’s DMA con-
troller to transfer the instructions to internal memory. For EPROM
booting, the processor reads data from an 8-bit external EPROM. For host
booting, the processor accepts data from a 8-, 16- or 32-bit host micro-
processor (or other external device).

It is important to note that DMA channel differences between the
ADSP-21161 and previous SHARC processors (ADSP-2106x)
introduce some booting differences. Even with these differences,
the ADSP-21161 supports the same boot capability and configura-
tion as the ADSP-2106x processors.

The DMACx register default values differ because the ADSP-21161
has additional parameters and different DMA channel assignments.
The EPROM and Host boot modes use EPB0, DMA channel 10.

Like the ADSP-2106x, the ADSP-21161 boots from DATA23-16.

For EPROM or host booting the ADSP-21161, the Program
sequencer automatically unmasks the DMA channel 10 channel
interrupt, initializing the IMASK register to 0x00008003.

The processor determines the booting mode at reset from the EBOOT,
LBOOT, and BMS pin inputs. When EBOOT=1 and LBOOT=0, the processor
boots from an EPROM through the external port and uses BMS as the
memory select output. When EBOOT=0, LBOOT=0, and BMS =1, the processor
6-70 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
boots from a host through the external port. For a list showing how to
select different boot modes, see the Boot Memory Select pin description in
the table Table 13-11 on page 13-72.

When using any of the power-up booting modes, address
0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In EPROM booting through the external port, an 8-bit wide boot
EPROM must be connected to data bus pins 23-16 (DATA23-16). The low-
est address pins of the processor should be connected to the EPROM’s
address lines. The EPROM’s chip select should be connected to BMS and
its output enable should be connected to RD.

In a multiprocessor system, the BMS output is only driven by the
ADSP-21161 bus master. This allows wire-ORing of multiple BMS signals
for a single common boot EPROM. Systems can boot any number of
ADSP-21161’s from a single EPROM using the same code for each pro-
cessor or differing code for each.

During reset, the processor’s ACK line is internally pulled high with a 20kΩ
equivalent resistor and is held high with an internal keeper latch. It is not
necessary to use an external pullup resistor on the ACK line during booting
or at any other time.

After the boot process loads 256 words into memory locations 0x4 0000
through 0x4 00FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. Analog Devices supplies loading routines (loader kernels)
that can load entire programs. These routines come with the development
tools. For more information on loader kernels, see the development tools
documentation.
ADSP-21161 SHARC Processor Hardware Reference 6-71

External Port DMA
Host Processor Booting

When host booting mode is configured, the ADSP-21161 enters slave
mode after reset and waits for the host to download the boot program.
After reset the ADSP-21161 processor goes into an idle state, identical to
that caused by the IDLE instruction, with the program counter (PC) set to
address 0x0004 0004. The parameter registers for the external port DMA
channel 10 are initialized as shown in Table 6-22.

Table 6-22 shows how the DMA channel 10 parameter registers are ini-
tialized at reset for host booting.The count register (CEP0) is initialized to
0x0100 for transferring 256 words to internal memory. The DMAC10 con-
trol register is initialized to 0x00000161. The default value sets up
external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSW first

Table 6-22. DMA Channel 10 Parameter Register Initialization
for Host Booting

Parameter
Register

Initialization Value

IIEP0 0x0004 0000

IMEP0 uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256 instruction words)

CPEP0 uninitialized

GPEP0 uninitialized

EIEP0 uninitialized

EMEP0 uninitialized

ECEP0 uninitialized
6-72 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• PMODE = 101, 8- to 48-bit packing

• DTYPE = 1, three-column data

The external port DMA Channel 10 (DMAC10) becomes active following
reset; it is initialized to 0x0000 0161. This enables the external port DMA
and selects DTYPE for instruction words. The packing mode bits (PMODE) in
the DMACx register are set to 8- to 48-bit packing. The host bus width (HBW)
and word order (HMSWF) bits must be programmed in the SYSCON register.

For each 48-bit word of boot image, an 8-bit host performs the following
sequence of operations:

1. Assert HBR and CS.

2. Wait for HBG. After the host receives the host bus grant signal back
from the ADSP-21161 processor, it can start downloading instruc-
tions or it can change the reset initialization conditions of the
ADSP-21161 processor by writing to any of the IOP control
registers.

3. Write the six subwords to the external port buffer, EPB0. This
buffer corresponds to DMA channel 10. The host must use data
pins DATA23-16.

4. Deassert CS and HBR. The processor samples the inactive HBR and
allows a host transition cycle. The processor can access the bus for
external memory initialization.

For 16 and 32-bit host bus widths, the HBW bits in the SYSCON register must
be modified. The host must use the data lines as follows:

16-bit host bus width = 3 subwords using data pins DATA31-16

32-bit host bus width = 2 subwords using data pins DATA47-16
ADSP-21161 SHARC Processor Hardware Reference 6-73

External Port DMA
PROM Booting

When the EPROM boot mode is configured, the external port DMA
Channel 10 (DMAC10) becomes active following reset; it is initialized to
0000 0561. This enables the external port DMA and selects DTYPE for
instruction words. 8- to 48-bit packing is forced with least-signifi-
cant-word first.

The RBWS and RBAM fields of the WAIT register are initialized to perform
asynchronous access and to generate seven wait states (eight cycles total)
for the EPROM access in external memory space. Note that wait states
defined for boot memory are applied to BMS-asserted accesses.

Table 6-23 shows how the DMA channel 10 parameter registers are ini-
tialized at reset for EPROM. The count register (CEP0) is initialized to
0x0100 for transferring 256 words to internal memory. The external
count register (ECEP0), which is used when external addresses are gener-
ated by the DMA controller, is initialized to 0x0600 (for example, 0x0100
words with six bytes per word). The DMAC10 control register is initialized to
0000 0561. The default value sets up external port transfers as follows:

• DEN = 1, external port enabled

• MSWF = 0, LSW first

• PMODE = 101, 8- to 48-bit packing

• DTYPE = 1, three-column data
6-74 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
At system start-up, when the processor’s RESET input goes inactive, the fol-
lowing sequence occurs:

1. The processor goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x0004 0004.

2. The DMA parameter registers for channel 10 are initialized as
shown in Table 6-23.

3. BMS becomes the boot EPROM chip select.

4. 8-bit Master Mode DMA transfers from EPROM to internal mem-
ory begin, on the external port data bus lines 23-16.

5. The external address lines (ADDR23-0) start at 0x0080 0000 and
increment after each access.

6. The RD strobe asserts as in a normal memory access with seven wait
states (eight cycles).

Table 6-23. DMA Channel 10 Parameter Register Initialization for
EPROM Booting

Parameter
Register

Initialization Value

IIEP0 0x0004 0000

IMEP0 uninitialized (increment by 1 is automatic)

CEP0 0x0100 (256 instruction words)

CPEP0 uninitialized

GPEP0 uninitialized

EIEP0 0x0080 0000

EMEP0 uninitialized (increment by 1 is automatic)

ECEP0 0x0600 (256 words x 6 bytes/word)
ADSP-21161 SHARC Processor Hardware Reference 6-75

External Port DMA
The processor’s DMA controller reads the 8-bit EPROM words, packs
them into 48-bit instruction words, and transfers them to internal mem-
ory until 256 words have been loaded. The EPROM is automatically
selected by the BMS pin; other memory select pins are disabled.

The DMA external count register (ECEP0) decrements after each EPROM
transfer. When ECEP0 reaches zero, the following wake-up sequence
occurs:

1. The DMA transfers stop.

2. The External Port DMA Channel 10 interrupt (EP0I) is activated.

3. BMS is deactivated and normal external memory selects are
activated.

4. The processor vectors to the EP0I interrupt vector at 0x0004 0050.

At this point the processor has completed its booting mode and is execut-
ing instructions normally. The first instruction at the EP0I interrupt
vector location, address 0x0004 0050, should be an RTI (Return from
Interrupt). This process returns execution to the reset routine at location
0x0004 0005 where normal program execution can resume. After reaching
this point, a program can write a different service routine at the EP0I vec-
tor location 0x0004 0050.

External Port DMA Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-1 demonstrates
how the I/O processor uses DMA to read from the external port receive
buffer and write to the external port transmit buffer after an interrupt.
The example shown in Listing 6-2 demonstrates how the I/O processor
uses DMA chaining to read from the external port receive buffer and write
to the external port transmit buffer.
6-76 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Listing 6-1. External Port DMA Example

/*___

ADSP-21161 Internal-to-External Memory (External Port) DMA

Example

This example shows an internal to external memory no packing

32-bit DMA transfer.

__*/

#include "def21161.h"

#define N 8

.GLOBALinit_int_to_ext_memory_DMA;

.SECTION/DM dm_data;

.VAR source[N]= 0x11111111,

0x22222222,

0x33333333,

0x44444444,

0x55555555,

0x66666666,

0x77777777,

0x88888888;

.SECTION/DM segsdram;

.VAR dest[8];

/*___________start of DMA initialization

routine___________________*/

.SECTION/PMpm_code;

init_int_to_ext_memory_DMA:
ADSP-21161 SHARC Processor Hardware Reference 6-77

External Port DMA
r0=0;dm(DMAC10)=r0; /* Clear DMA Control Register */

r0=source;dm(IIEP0) = r0; /* Write source address to IIEP0 */

r0=1;dm(IMEP0)=r0; /* Write internal address modify

 to IMEP0 */

r0=@source;dm(CEP0)=r0; /* Load internal DMA 10 Count

 Register */

r0=dest; dm(EIEP0)=r0; /* Write destination address to

 EIEP0 register */

r0=1; dm(EMEP0)=r0; /* Write external address modify

 to EMEP0 */

r0=@dest;dm(ECEP0)=r0; /* Load external DMA 10 Count

 Register */

/* master mode, no packing mode [PMODE=100] */

/* transmit data from int>ext, enable EP DMA */

/* DMAC10=b#00000000000000000000010100000101; */

 ustat1 = 0x00000000;

 bit set ustat1 MASTER | PMODE4 | TRAN | DEN;

 dm(DMAC10)=ustat1;

bit set imask EP0I; /* Unmask external port buffer 0

 DMA interrupt */

rts;
6-78 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Listing 6-2. External Port Chained DMA Example

/*__

 ADSP-21161 Internal-to-External Memory (External Port)

 Chained DMA Example

This example shows an internal to external memory, no packing

32-bit chained DMA transfer.

___*/

#include "def21161.h"

#define N 8

.GLOBALint_to_ext_memory_chainDMA;

.SECTION/DM dm_data;

.VAR source[N]= 0x11111111,

0x22222222,

0x33333333,

0x44444444,

0x55555555,

0x66666666,

0x77777777,

0x88888888;

.VAR tcb[8] = N, /* ECx */

 1, /* EMx */

0, /* EIx */

0, /* GPx */

0, /* CPx */

N, /* Cx */

1, /* IMx */

0; /* IIx */
ADSP-21161 SHARC Processor Hardware Reference 6-79

External Port DMA
.SECTION/DM segsdram;

.VAR dest[8];

/*________start of DMA initialization routine__________*/

.SECTION/PMpm_code;

int_to_ext_memory_chainDMA:

r0=source;

dm(tcb + 7) = r0; /* Write Source1 address to II tcb_a */

r0=dest;

dm(tcb + 2) = r0; /* Write Dest1 address to EI slot in tcb_a */

r0=tcb + 7;

r1= b#10000000000000000000;

r0=r0 or r1;/* set PCI Bit */

dm(tcb + 4) = r0; /* Write tcb address to CP slot in tcb */

r0=0;

dm(DMAC10)=r0; /* Clear DMA Control Register */

r0=b#00000000000000000000010100000111;

dm(DMAC10)=r0; /* dma enable, Chain enable,int>ext, master mode

*/

r0=tcb + 7;

dm(CPEP0) =r0; /* Load CP register*/

bit set imask EP0I;

rts;
6-80 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Link Port DMA
There are two link ports DMA channels available on the ADSP-21161:
channels 8 and 9. These two channels are shared with the SPI port. Chan-
nel 8 is assigned to link port 0 while channel 9 is assigned to link port 1.
These bidirectional ports transfer data to other processors or link port
peripherals.

The processor support a number of DMA modes for link port DMA. The
following sections describe typical link port DMA processes:

• “Setting Up Link Port DMA” on page 6-86

• “Bootloading Through The Link Port” on page 6-88

• “Link Port Buffer Modes” on page 6-83

• “Link Port Channel Priority Modes” on page 6-83

• “Link Port Channel Transfer Modes” on page 6-85

Link Port Registers
The SYSCON and LCTL registers control the link ports operating modes for
the I/O processor.

• Table A-18 on page A-60 lists all the bits in SYSCON.

• Table A-25 on page A-93 lists all the bits in LCTL.

The following bits control link port I/O processor modes. The control bits
in the LCTL registers have a one cycle effect latency. Programs should not
modify an active DMA channel’s bits in the LCTL register other than to
disable the channel by clearing the LxDEN bit. For information on verifying
a channel’s status with the DMASTAT register, see “Using I/O Processor Sta-
tus” on page 6-121.
ADSP-21161 SHARC Processor Hardware Reference 6-81

Link Port DMA
Some other bits in LCTL setup non-DMA link port features. For informa-
tion on these features, see “Setting Link Port Modes” on page 9-5.

• Link Port DMA Channel Priority Rotation Enable. SYSCON Bit 20
(LDCPR). This bit enables (rotates if set, =1) or disables (fixed if
cleared, =0) priority rotation between link port DMA channels 8
and 9.

• Link–External Port DMA Channel Priority Rotation Enable.
SYSCON Bit 21 (PRROT). This bit enables (rotates if set, =1) or dis-
ables (fixed if cleared, =0) priority rotation between link port DMA
channels 8 and 9 and external port DMA channels 10 to 13.

• Link Port assignment for LBUFx. LCTL Bits 9-0 and 23-22 corre-
spond to link buffer 0. LCTL Bits 19-10 and 25-24 correspond to
link buffer 1.

• Link Buffer Enable. LCTL Bits 0 and 10 (LxEN). This bit enables
(if set, =1) or disables (if cleared, =0) the corresponding link buffer
(LBUFx).

• Link Buffer DMA Enable. LCTL Bits 1 and 11 (LxDEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers for the
corresponding link buffer (LBUFx).

• Link Buffer DMA Chaining Enable. LCTL Bits 2 and 12 (LxCHEN).
This bit enables (if set, =1) or disables (if cleared, =0) DMA chain-
ing for the corresponding link buffer (LBUFx).

• Link Buffer Transfer Direction. LCTL Bits 3 and 13 (LxTRAN).
This bit selects the transfer direction (transmit if set, =1) (receive if
cleared, =0) for the corresponding link buffer (LBUFx).
6-82 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• Link Buffer Extended Word Size. LCTL Bits 4 and 14 (LxEXT). This
bit selects the transfer extended word size (48-bit if set, =1) (32-bit
if cleared, =0) for the corresponding link buffer (LBUFx). Programs
must not change a buffer’s LxEXT setting while the buffer is
enabled.

Link Port Buffer Modes
The LABx bits in the LCTL register assign link ports to link buffers and
enable link buffers. Bit 19 LAB0 enables link buffer 0 while Bit 20 LAB1
enables link buffer 1. To enable a link buffer, a program sets the buffer’s
LxEN bit in LCTL. To disable a link buffer, a program clears the buffer’s
LxEN bit in LCTL. The LCTL bit descriptions appear in “Link Port Buffer
Control Registers (LCTL) Bit Definitions” on page A-93.

When the processor disables the buffer (LxEN transitions from high
to low), the processor clears the corresponding LxSTATx and LRERRx
bits.

Link Port Channel Priority Modes
The LDCPR and PRROT bits in the SYSCON register select priority levels for
the link port buffers in relation to the priority of other link port buffer
and the other I/O ports.

The Link Port DMA Channel Priority Rotation Enable (LDCPR) bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority rotation
between link port DMA channels 8 and 9. Rotating priority distributes
link port DMA channels’ access to the I/O bus. When channel priority is
rotating, the processor arbitrates I/O bus access between contending link
port DMA channels, forcing the channels to take turns. When channel
priorities fixed, the lower numbered link port DMA channel always has
priority over the higher numbered channel when contending for I/O bus
access.
ADSP-21161 SHARC Processor Hardware Reference 6-83

Link Port DMA
When LDCPR is set (rotating priority), high priority shifts to a new channel
after each single-word transfer. The following steps illustrate this process:

1. At reset, link port channels have priority order—from high to low.

2. The link port performs a single transfer on channel 8.

3. The I/O processor rotates channel priority,
changing it from 8 to 9.

Even though the link port channel DMA priority can rotate, the
interrupt priorities of all DMA channels are fixed.

When a program uses fixed priority for the link port DMA channels, the
I/O processor assigns the higher priority to channel 8 and the lower prior-
ity to channel 9. For a list of all channel assignments, see Table 6-1 on
page 6-13.

Programs can change the fixed priority order, assigning a different channel
to the highest priority. The following example shows how to change the
fixed priority sequence of the link port DMA channels:

1. Disable all link port DMA channels except the one immediately
above the channel that is to have highest priority.

2. Select rotating priority by setting the LDCPR bit.

3. Cause at least one transfer to occur on the enabled channel.

4. Disable rotating priority and re-enable all of the link port DMA
channels.

The channel immediately after the selected channel now has the highest
fixed priority.
6-84 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Programs can also rotate priority between the link port and external port
DMA channels. The DMA Channel Priority Rotation Enable (PRROT) bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority rotation
between link port DMA channels 8 and 9 and external port DMA chan-
nels 10 to 13.

Rotating priority distributes link port and external port DMA channels’
access to the I/O bus. When channel priority is rotating, the processor
arbitrates I/O bus access between contending link port and external port
DMA channels, forcing the channel types to take turns. When channel
priority is fixed, any link port DMA channel always has priority over any
external port DMA channel when contending for I/O bus access.

Link Port Channel Transfer Modes
The LxDEN, LxCHEN, LxTRAN, and LxEXT bits in the LCTL register enable link
port DMA, and chained DMA and select the transfer direction and for-
mat. The link DMA enable (LxDEN) and link Chained DMA enable
(LxCHEN) bits work together to select a link port DMA channel’s transfer
mode. Table 6-24 lists the modes.

Table 6-24. Link Port DMA Enable Modes

LxCHEN LxDEN DMA Enable Mode Description

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,
auto-chaining disabled); For more information, see “Chaining
DMA Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,
auto-chaining enabled)
ADSP-21161 SHARC Processor Hardware Reference 6-85

Link Port DMA
Because link ports are bidirectional, the I/O processor uses the link Trans-
mit select (LxTRAN) bit to determine the transfer direction (transmit or
receive). Data flows from internal to external memory when in transmit
mode. In transmit mode, the I/O processor fills the channel’s LBUFx buffer
when the channel’s LxDEN bit is set.

The Link Extended Word Size (LxEXT) bit determines how the DMA
channel accesses columns of internal memory. If LxEXT is set, the data is
40- or 48-bit words, and the I/O processor makes 3-column internal
memory accesses. If LxEXT is cleared, the data is 32-bit words, and the I/O
processor makes 2-column internal memory accesses. For more informa-
tion, see “Memory Organization and Word Size” on page 5-25.

The LxEXT for the transfer overrides the Internal Memory Data
Width (IMDWx) setting for the internal memory block.

Setting Up Link Port DMA
The method for setting up and starting an link port DMA sequence varies
slightly with the transfer mode for the channel. For more information on
DMA transfer modes, see “Link Port Channel Transfer Modes” on
page 6-85.

The following sequence describes a typical external to internal DMA oper-
ation where an external device transfers a block of data into the processor’s
internal memory using a link port.

1. The processor or host (depending on the mode) assigns the DMA
channel’s link buffer to a link port using the channel’s LABx bits in
the LCTL register.

2. The processor or host (depending on the mode) enables the DMA
channel’s link buffer, setting the buffer’s LxEN bit in the channel’s
LCTL register. The processor or host selects a words size (32- or
40/48-bits) using the LxEXT in the channel’s LCTL register.
6-86 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
3. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IILBx, IMLBx, and CLBx) and LCTL
control register, initializing the channel for receive (LxTRAN=0).

4. The processor or host (depending on the mode) sets (=1) the chan-
nel’s LxDEN bit enabling the DMA process.

5. The external device begins writing data to the LBUFx buffer through
the link port.

6. The LBUFx buffer detects data is present and asserts an internal
DMA request to the I/O processor.

7. The I/O processor grants the request and performs the internal
DMA transfer, emptying the LBUFx buffer FIFO.

In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a link port:

1. The processor or host (depending on the mode) assigns the DMA
channel’s link buffer to a link port using the channel’s LABx bits in
the LCTL register.

2. The processor or host (depending on the mode) enables the DMA
channel’s link buffer, setting the buffer’s LxEN bit in the channel’s
LCTL register. The processor or host selects a words size (32- or
40/48-bits) using the LxEXT in the channel’s LCTL register.

3. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IILBx, IMLBx, and CLBx) and LCTL
control register, initializing the channel for transmit (LxTRAN=1).

4. The processor or host (depending on the mode) sets (=1) the chan-
nel’s LxDEN bit enabling the DMA process. Because this is a
transmit, setting LxDEN automatically asserts an internal DMA
request to the I/O processor.
ADSP-21161 SHARC Processor Hardware Reference 6-87

Link Port DMA
5. The I/O processor grants the request and performs the internal
DMA transfer, filling the LBUFx buffer’s FIFO.

6. The external device begins reading data from the LBUFx buffer
(through the link port).

7. The LBUFx buffer detects that there is room in the buffer (it is now
partially empty) and asserts another internal DMA request to the
I/O processor, continuing the process.

Bootloading Through The Link Port
One of the processor’s booting modes is booting the processor through the
link port. Link port booting uses DMA channel 8 of the I/O processor to
transfer the instructions to internal memory. In this boot mode, the pro-
cessor receives 4-bit wide data in link buffer 0.

After the boot process loads 256 words into memory locations 0x40000
through 0x400FF, the processor begins executing instructions. Because
most processor programs require more than 256 words of instructions and
initialization data, the 256 words typically serve as a loading routine for
the application. Analog Devices supplies loading routines (loader kernels)
that load an entire program through the selected port. These routines
come with the development tools. For more information on loader ker-
nels, see the development tools documentation.

It is important to note that DMA channel differences between the
ADSP-21161 and previous SHARC processors (ADSP-2106x)
introduce some booting differences. Even with these differences,
the ADSP-21161 supports the same boot capability and configura-
tion as the ADSP-2106x processors. For link booting the
ADSP-21161, the program sequencer automatically unmasks the
DMA channel 8 interrupt, initializing the LIRPTL register to
0x00010000 and IMASK register to 0x00004003.
6-88 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The processor determines the booting mode at reset from the EBOOT,
LBOOT, and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=1, the pro-
cessor boots through the link port. For a list showing how to select
different boot modes, see the Boot Memory Select pin description in the
table “Booting Modes” on page 13-72.

When using any of the power-up booting modes, address
0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In link port booting, the processor gets boot data from another processor’s
link port or 4-bit wide external device after system powerup.

The external device must provide a clock signal to the link port assigned
to link buffer 0. The clock can be any frequency, up to a maximum of the
processor clock frequency. The clock’s falling edges strobe the data into
the link port. The most significant 4-bit nibble of the 48-bit instruction
must be downloaded first.

Table 6-25 shows how the DMA channel 8 parameter registers are initial-
ized at reset for EPROM booting. The count register (CLB0) is initialized
to 0x0100 for transferring 256 words to internal memory. The LCTL regis-
ter is overridden during link port booting to allow link buffer 0 to receive
48-bit data.

Table 6-25. DMA Channel 8 Parameter Register Initialization For Link
Port Booting

Parameter
Register

Initialization Value

IILB0 0x0004 0000

IMLB0 uninitialized (increment by 1 is automatic)

CLB0 0x0100 (256 instruction words)
ADSP-21161 SHARC Processor Hardware Reference 6-89

Link Port DMA
In systems where multiple processors are not connected by the parallel
external bus, booting can be accomplished from a single source through
the link ports. To simultaneously boot all of the processors, a parallel
common connection should be made to link buffer 0 on each of the pro-
cessors. If only a daisy chain connection exists between the processors’ link
ports, then each processor can boot the next one in turn. Link buffer 0
must always be used for booting.

Link Port DMA Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-3 demonstrates
how the I/O processor uses DMA chaining to read from the link port
receive buffer and write to the link port transmit buffer. The example
shown in Listing 6-4 demonstrates how the I/O processor uses DMA to
read from the link port receive buffer and write to the link port transmit
buffer after an interrupt.

CPLB0 uninitialized

GPLB0 uninitialized

Table 6-25. DMA Channel 8 Parameter Register Initialization For Link
Port Booting (Cont’d)

Parameter
Register

Initialization Value
6-90 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Listing 6-3. DMA-Chained Link Loopback Example

/*____________ ADSP-21161 DMA-Chained LINK Loopback Example

This example shows an internally looped-back link port 32-bit

transfer. DMA is used to transfer the data to and from the buff-

ers. Loopback is achieved by assigning the transmit and receive

link buffers to the same port (Port 0). ____________________*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /*Reset vector from ldf file*/

nop;

jump start;

.section/dm seg_dmda;/*Data section from ldf file*/

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.var txtcb_source[8]=0,0,0,0,0,N,1,source; /*DMA TCB settings*/

.var rxtcb_dest[8]=0,0,0,0,0,N,1,dest; /*DMA TCB settings*/

/*_____________________Main Routine________________________*/

.section/pm seg_pmco;/*Main code section described in .ldf file*/

start:

ustat1 = dm(SYSCON);

bit clr ustat1 BHD; /*Disable Buffer Hang*/

dm(SYSCON) = ustat1;

imask = 0; /*Clear IMASK and IRPTL registers*/

irptl = 0;

bit set imask LPISUMI; /*Enable Link port interrupts*/

bit set lirptl LP1MSK; /*Enable Link port 1 interrupt*/

bit set mode1 IRPTEN; /*Enable global interrupts*/
ADSP-21161 SHARC Processor Hardware Reference 6-91

Link Port DMA
r0 = 0; dm(LCTL) = r0;

ustat1=dm(LCTL);

/*LCTL REGISTER-->LBUF0=TX, LBUF1=RX, 2x CLK RATE, LBUF 0 & 1

ENABLED, LBUF 0 & 1 -> PORT 0 DMA Enabled, DMA Chain Enabled*/

bit clr ustat1 L0TRAN | LAB0 | LAB1 | L0CLKD0 | L1CLKD0;

bit set ustat1 L1TRAN | L1EN | L0EN | L0CLKD1 | L1CLKD1 | L0DEN |

L1DEN | L0CHEN | L1CHEN;

dm(LCTL)=ustat1;

r1 = 0x0003FFFF; /* CPX register mask */

r0 = txtcb_source + 7; /* Get DMA chaining int. mem. ptr

 with tx buf address */

r0 = r1 AND r0; /* Mask the pointer */

r0 = BSET r0 BY 18; /* Set the pci bit */

dm(txtcb_source + 4) = r0; /* Write DMA transmit block chain

 pointer to TCB buffer */

dm(CPLB1) = r0; /* Transmit blk chain ptr, init.LP1

 DMA transfers */

r0 = rxtcb_dest + 7;

r0 = r1 AND r0;/* Mask the pointer */

r0 = BSET r0 BY 18;/* Set the pci bit */

dm(rxtcb_dest + 4) = r0; /* Write DMA receive block chain

 pointer to TCB buffer*/

dm(CPLB0) = r0; /* Receive block chain pointer,

 Initiate LP0 DMA transfers */

wait: idle;

jump wait;
6-92 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Listing 6-4. Interrupt DMA-Driven Link Loopback Example

/*__

 ADSP-21161 Interrupt DMA-Driven LINK Loopback Example

This example shows an internally looped-back link port 32-bit

transfer. DMA is used to write to and read from the buffers.

Loopback is achieved by assigning the transmit and receive link

buffers to the same port. (Port 0)

___*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /*Reset vector from ldf file*/

nop;

jump start;

.section/dm seg_dmda; /*Data segment section from ldf file*/

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm lp1i_svc; /*Link Port 1 Vector from ldf file*/

jump lpISR1;rti;rti;rti;

.section/pm lp0i_svc; /*Link Port 0 Vector from ldf file*/

jump lpISR0;rti;rti;rti;
ADSP-21161 SHARC Processor Hardware Reference 6-93

Link Port DMA
/*_____________________Main Routine________________________*/

.section/pm seg_pmco;/*Main code section from ldf file*/

start:

r0 = 0; DM(LCTL) = r0;

r0=source;

dm(IILB0)=r0; /*Set DMA tx index to start of source buffer*/

r0=dest;

dm(IILB1)=r0; /*Set DMA rx index to start of destination

buffer*/

r0=@source;

dm(CLB0)=r0; /*Set DMA count to length of data buffers*/

dm(CLB1)=r0;

r0=1;

dm(IMLB0)=r0; /*Set DMA modify (stride) to 1*/

dm(IMLB1)=r0;

ustat1 = dm(SYSCON); /*Disable Buffer Hang*/

bit clr ustat1 BHD;

dm(SYSCON) = ustat1;

imask = 0; lirptl = 0;

/*Enable Global,Link Port and Link Port Buffer 1 interrupt */

bit set imask LPISUMI;

bit set lirptl LP1MSK | LP0MSK;

bit set mode1 IRPTEN | CBUFEN;

ustat1=dm(LCTL);

/*LCTL Register-->LBUF1=TX, LBUF0=RX, 1/4x CCLK RATE, LBUF 0 & 1

ENABLED, LBUF 0 & 1 -> PORT 0 Link buffer 0 & 1 DMA Enabled*/
6-94 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
bit clr ustat1 L1TRAN | L0CLKD0 | L1CLKD0 | LAB0 | LAB1;

bit set ustat1 L0TRAN | L1EN | L0EN | L0CLKD1 | L1CLKD1 | L0DEN |

L1DEN;

dm(LCTL)=ustat1;

wait:

idle;

jump wait;

lpISR0: rti;

lpISR1: rti;

Serial Port DMA
Serial Port DMA provides a mechanism for receiving or transmitting an
entire block of serial data before an interrupt is generated. The processor's
on-chip DMA controller handles DMA transfers, allowing the processor
core to continue running until the entire block of data is transmitted or
received. There are eight serial port channels available on the
ADSP-21161 for DMA transfers: channels 0 through 7. Each of the serial
port channels can be configured to transmit or receive data. The A path
for each sport allows expansion or compression of data.

The processor supports a number of DMA modes for serial port DMA.
The following sections describe typical serial port DMA processes:

• “Setting Up Serial Port DMA” on page 6-100

• “Serial Port Buffer Modes” on page 6-97

• “Serial Port Channel Priority Modes” on page 6-99

• “Serial Port Channel Transfer Modes” on page 6-99
ADSP-21161 SHARC Processor Hardware Reference 6-95

Serial Port DMA
Serial Port Registers
The SPCTLx registers control the serial port operating mode for the I/O
processor. Figure 6-13 lists all the bits in SPCTLx.

The following bits control serial port I/O processor modes. The control
bits in the SPCTLx registers have a one cycle effect latency. Programs
should not modify an active DMA channel’s bits in the SPCTLx registers;
other than to disable the channel by clearing the SDEN bit. To change an
inactive serial port’s operating mode, programs should clear a serial port’s
control register before writing new settings to the control register. For
information on verifying a channel’s status with the DMASTAT register, see
“Using I/O Processor Status” on page 6-121.

Some other bits in SPCTLx setup non-DMA serial port features. For infor-
mation on these features, see “Serial Port DMA” on page 6-95.

• Serial Port Enable. SPCTLx Bit 0 (SPEN_A) and Bit 24 (SPEN_B).
These bits enables (if set, =1) or disables (if cleared, =0) the corre-
sponding serial port. SPEN_A corresponds to the A channel
(companding). SPEN_B corresponds to the B channel (no compand-
ing). You can enable one or both of these bits.

• Data Type Select. SPCTLx Bits 2-1 (DTYPE). These bits select the
data type formatting for normal and multi-channel reception as
follows: (normal/multichannel= format) 00/x0=Right-justify and
zero-fill unused MSBs, 01/x1=Right-justify and sign-extend
unused MSBs, 10/0x=Compand using µ-law, 11/1x=Compand
using A-law.

• Serial Word Endian Select. SPCTLx Bit 3 (SENDN). This bit selects
little endian words (LSB first, if set, =1) or big endian words (MSB
first, if cleared, =0).

• Serial Word Length Select. SPCTLx Bits 8-4 (SLEN). These bits
select the word length –1 in bits. Word sizes can be from 3-bit
(SLEN=2) to 32-bit (SLEN=31).
6-96 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• 16-bit to 32-bit Word Packing Enable. SPCTLx Bit 9 (PACK). This
bit enables (if set, =1) or disables (if cleared, =0) 16- to 32-bit word
packing.

• Serial Port DMA Enable. SPCTLx Bit 18 (SDEN_A) and Bit 20
(SDEN_B).These bits enable (if set, =1) or disable (if cleared, =0) the
serial port’s A or B channel DMA.

• Serial Port DMA Chaining Enable. SPCTLx Bit 19 (SCHEN_A) and
Bit 21 (SCHEN_B). These bits enable (if set, =1) or disables (if
cleared, =0) the serial port’s A or B channel DMA chaining.

Serial Port Buffer Modes
The SPEN, SENDN, SLEN, and PACK bits in the SPCTLx registers enable the
serial port and select the transfer format.

To enable a serial port transmit or receive buffer, a program sets the
buffer’s SPEN bit in the SPCTLx register. To disable a serial port transmit or
receive buffer, a program clears the buffer’s SPEN_A or SPEN_B bit in the
SPCTLx register.

If a serial port buffer is enabled and DMA for that channel is not
enabled, the serial port is in single-word, interrupt-driven transfer
mode. For more information, see “Using I/O Processor Status” on
page 6-121.

Each serial port buffer allows independent settings for the three transfer
format features: bit order, word length, and word packing. For transfer-
ring little endian words (LSB first, if set, =1) to or from little endian
devices, the serial port buffers have a Serial Word Endian Select (SENDN)
bit. This bit selects little endian words (LSB first, if set, =1) or big endian
words (MSB first, if cleared, =0). The Serial Word Length Select (SLEN)
bit field selects the transfer word length (-1) in bits. Word sizes can be
from 3-bit (SLEN=2) to 32-bit (SLEN=31).
ADSP-21161 SHARC Processor Hardware Reference 6-97

Serial Port DMA

le A channe l
le

f da ta is

is
x

ctive low

FS

ble A channe l
le

le B channe l
le

b le B channe l
le

b le)

M S B w ith 0s
n extend M S B

aw
w

at
B firs t

h -1

ack ing
If the serial word length is 16-bits or smaller, the serial port can pack two
of these words into the serial port buffer. The 16-bit to 32-bit word Pack-
ing Enable (PACK) bit can enable this packing because the I/O processor
performs 32-bit transfers between the serial port buffers and processor
memory.

Figure 6-13. SPCTLx Register – DSP Serial Mode

S D EN _A
S P O R T D M A enab
1=enab le , 0=d isab

FS _B O TH
1= issue W S only i
p resent in both Tx
0= issue W S if da ta
present in e ither T

LFS
A ctive Low FS
0=active h igh , 1=a
LAFS
Late FS
0=early FS , 1=la te

S D EN _B

S C H EN _ B

S C H EN _ A
D M A cha in ing ena
1=enab le , 0=d isab

S P O R T D M A enab
1=enab le , 0=d isab

D M A cha in ing ena
1=enab le , 0=d isab

S P E N _A
S PO R T E nab le A
(1=enab le , 0=d isa
D T YP E
D ata type
00=righ t-justify; f il l
01=righ t-justify; s ig
10=com pand m u-l
11=com pand A -la

S E N D N
E ndian w ord form
0=M S B firs t, 1=LS

S LE N
S eria l W ord Lengt

P AC K
16/32 pack ing
1=packing, 0=no p

FS R
FS requ irem ent

1=FS requ ired , 0=FS not requ ired

IF S
In te rna lly genera ted FS

1=in te rna l FS , 0=externa l FS

D IT FS
D ata Independent ‘tx’ FS (if D D IR =1)

1=data independent, 0= data dependent

C K R E
C lock edge for da ta Fram e Sync sam pling

or driving (1=ris ing edge, 0=fa lling edge)

IC LK
In te rna lly genera ted S C LK

1=in terna l c lock, 0=externa l c lock

O P M O D E
S P O R T O pera tion M ode

0=D SP seria l m ode/m ultichanne l m ode
1=I2S m ode

D XS _ A
D XA D ata B uffe r S ta tus

11=fu ll, 10=partia lly fu ll, 00=em pty

D ER R _A
D X A E rror S ta tus (s ticky)

D D IR =1,‘transm it underflow ’ s ta tus
D D IR =0, ‘rece ive overflow ’ sta tus

D X S _B *

D E R R _B *

D D IR **
D ata D irection C on tro l

1=A ctive Transm it B uffe rs TXnB /T XnA
0=Enab le R ece ive B uffe rs R X nB /R X nA

S P E N _B
S PO R T E nab le B

1=enab le , 0=d isab le

D X B D ata B uffe r S ta tus
11=fu ll, 10=partia lly fu ll ,00=em pty

D X B E rror S ta tus (s ticky)

* S ta tus is R ead-on ly
** D o not read/write from /to inactive
R Xn/TXn buffe rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S PCTL0 (0x01c0) D S P Seria l M ode
S PCTL1 (0x01e0)

S PCTL2 (0x01d0)

S PCTL3 (0x01f0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6-98 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
In addition to selecting the endian, length, and packing modes for serial
port processor transfers, programs must indicate the type of data in the
transfer, using the Data Type (DTYPE) bit. For more information, see
“Serial Port Channel Transfer Modes” on page 6-99.

Serial Port Channel Priority Modes
Serial port DMA transfers always take priority over external port, SPI
port, or link port DMA transfers. For more information on prioritization
operations, see “Managing DMA Channel Priority” on page 6-22.

Serial Port Channel Transfer Modes
The SDEN_A, SDEN_B, SCHEN_A, SCHEN_B, and DTYPE bits in the SPCTLx regis-
ter enable serial port DMA, chained DMA, and select the format. The
DMA enable (SDEN) and Chained DMA enable (SCHEN) bits work together
to select a serial port DMA channel’s transfer mode. Table 6-26 lists the
modes.

Table 6-26. Serial Port DMA Enable Modes

SCHEN
A or B

SDEN
A or B

DMA Enable Mode Description

0 0 Channel disabled (chaining disabled, DMA disabled)

0 1 Single DMA mode (chaining disabled, DMA enabled)

1 0 Chain insertion mode (chaining enabled, DMA enabled,
auto-chaining disabled); For more information, see “Chaining
DMA Processes” on page 6-25.

1 1 Chained DMA mode (chaining enabled, DMA enabled,
auto-chaining enabled)
ADSP-21161 SHARC Processor Hardware Reference 6-99

Serial Port DMA
Because serial port buffers are bidirectional, the I/O processor does not
need an indicator to determine the transfer direction (transmit or receive).
Data flows from internal to external devices using a transmit (TXx) buffer.
When transmitting serial data as DMA, the I/O processor fills the chan-
nel’s TXx buffer when the channel’s SDEN bit is set.

Setting Up Serial Port DMA
The method for setting up and starting an serial port DMA sequence var-
ies slightly with the transfer mode for the channel. For more information
on DMA transfer modes, see “Serial Port Channel Transfer Modes” on
page 6-99.

In general, the following sequence describes a typical external to internal
DMA operation where an external device transfers a block of data into the
processor’s internal memory using a serial port:

1. The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPEN_A or SPEN_B bit in the
port’s SPCTLx register. The processor or host selects a words size
using the DTYPE in the port’s SPCTLx register. When you clear
DDIR(= 0), the program configures SPORT A and B data pins as
receivers and activates the RXA and RXB registers.

2. The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (IIx, IMx, and Cx) and SPCTLx control
register, initializing the channel for receive.

3. The processor or host (depending on the mode) sets (=1) the chan-
nel’s SDEN_A or SDEN_B bit enabling the DMA process.

4. The external device begins writing data to the RXx buffer through
the serial port.
6-100 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
5. The RXx buffer detects data is present and asserts an internal DMA
request to the I/O processor.

6. The I/O processor grants the request and performs the internal
DMA transfer, emptying the RXx buffer.

In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a serial port:

1. The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPEN bit in the port’s SPCTLx
register. The processor or host selects a words size using the DTYPE
in the port’s SPCTLx register. The DDIR bit is set (=1) to enable the
serial interface as a transmitter. The program activates the TX buff-
ers allowing data to transmit out of the SPORT A and B data pins.

2. The processor or host (depending on the mode) writes to the DMA
channel’s parameter registers (IIx, IMx, and Cx) and SPCTLx control
register, initializing the channel for transmit.

3. The processor or host (depending on the mode) sets (=1) the chan-
nel’s SDEN bit enabling the DMA process. Because this is a transmit,
setting SDEN_A or SDEN_B automatically asserts an internal DMA
request to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, filling the TXx buffer.

5. The external device begins reading data from the TXx buffer
through the serial port.

6. The TXx buffer detects that there is room in the buffer because it is
now “partially empty” and asserts another internal DMA request to
the I/O processor, continuing the process.
ADSP-21161 SHARC Processor Hardware Reference 6-101

Serial Port DMA
When programming the serial port channel (A or B) as a transmit-
ter only the corresponding TXA and TXB become active, while the
receive buffers RXA and RXB remain inactive. Similarly, when the
SPORT channel A and B is programmed as receive only the corre-
sponding RX0A and RX0B is activated.

When performing core driven transfers, programs must write to the
proper buffer depending on the direction setting in the SPCTL register
(DDIR). For DMA-driven transfers the serial port logic performs the data
transfer from internal memory to/from the appropriate buffer depending
on the DDIR bit setting.

If the inactive SPORT data buffers are read or written to by core while the
port is already being enabled, the SPORT does not operate correctly. If,
for example, the SPORT is programmed to be a transmitter, while at the
same time, the core reads from the receive buffer of the same SPORT, the
core hangs, just as it would if it was reading an empty buffer which was
currently active. This locks up the core permanently until the SPORT is
reset.

The program must set the direction bit along with serial port enable and
DMA enable bits before initiating any operations on the SPORT data
buffers. If the processor operates on the inactive transmit or receive buffers
while the SPORT is enabled it can cause unpredictable results.

SPORT DMA Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-5 demonstrates
how the I/O processor uses DMA chaining to read from the SPORT
receive buffer and write to the SPORT transmit buffer. The example
shown in Listing 6-6 demonstrates how the I/O processor uses DMA to
read from the SPORT receive buffer and write to the SPORT transmit
buffer.
6-102 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Listing 6-5. DMA-Chained Sport Loopback Example

/*___

ADSP-21161 DMA-Chained SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-

fer. The transfer buffer (TX2A) and receive buffer (RX0A) are
both handled via DMA chaining.
___*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /*Reset vector from ldf file*/

nop;

jump start;

.section/dm seg_dmda;

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.var txtcb[8] = 0,0,0,0,0,N,1,source; /*DMA tcb settings*/

.var rxtcb[8] = 0,0,0,0,0,N,1,dest;

.section/pm sp0i_svc;

jump IRQ; rti;rti;rti;

.section/pm sp2i_svc;

jump IRQ; rti;rti;rti;

/*-----------------Main Routine----------------------------*/

.section/pm seg_pmco;

start:
ADSP-21161 SHARC Processor Hardware Reference 6-103

Serial Port DMA
ustat3=dm(SYSCON);

bit clr ustat3 BHD; /*Disable Buffer Hang*/

dm(SYSCON)=ustat3;

bit set imask SP0I |SP2I; /*Unmask SPORT 0 & 2 Interrupts*/

bit set mode1 CBUFEN | IRPTEN; /*Enable Circ Buffers &

 Interupts*/

r0 = 0x00001000;

/*Set the SPL bit in the SPxxMCTL register to enable loopback*/

dm(SP02MCTL)=r0;

r0 = 0x0; /*Externally generated clock and framesync*/

dm(DIV0) = r0;

r0 = 0x000c21f1;

/*Set bits SPEN_A, SLEN0-4, FSR--enable the A channel, set the

word length to 32 bits, require frame synch, and enable DMA and

DMA Chaining.*/

dm(SPCTL0)=r0;

r0=0x00270004;

/*TCLKDIV=[FCCLK(96Mhz)/2xFSCLK((19.2Mhz)]-1=0x0004*/

/*TFSDIV=[FSCLK(9.6Mhz)/TFS(.24Mhz)]-1=0x0027*/

dm(DIV2)=r0;

r0=0x20c65f1;

/*Set bits SPEN_A, SLEN0-4, ICLK, IFS, FSR, DDIR--enable the A

channel, set the word length to 32 bits, generate internal frame-

synch and clock, require frame synch, set for transmit, and

enable DMA and DMA Chaining.*/

dm(SPCTL2)=r0;

r1=0x0003FFFF; /*CPx register mask*/
6-104 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
r0=txtcb+7; /*Get DMA chaining memory pntr containing

 tx buff address*/

r0=r1 AND r0; /*Mask the pointer*/

r0= BSET r0 by 18; /*Set the PCI bit*/

dm(txtcb+4)=r0; /*Write DMA transmit block chain pntr to

 TCB buffer*/

dm(CP2A)=r0; /*Transmit block chain pointer, init SP2

 DMA transfers*/

r0=rxtcb+7;

r0=r1 AND r0;

r0=BSET r0 by 18;

dm(rxtcb+4)=r0;

dm(CP0A)=r0; /*Initiate SP0 DMA transfers*/

wait: idle;

jump wait;

IRQ: rti;

Listing 6-6. DMA-Driven Sport Loopback Example

/*___

ADSP-21161 DMA-Driven SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-

fer. The transfer buffer (TX2A) and receive buffer (RX0A) are

both handled via DMA.
___*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /*Reset vector from ldf file*/

nop;

jump start;
ADSP-21161 SHARC Processor Hardware Reference 6-105

Serial Port DMA
.section/dm seg_dmda;

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm sp0i_svc;

jump IRQ; rti;rti;rti;

.section/pm sp2i_svc;

jump IRQ; rti;rti;rti;

/*-----------------Main Routine----------------------------*/

.section/pm seg_pmco;

start:

r0=source;

dm(II2A)=r0; /*Set DMA tx index to start of source buffer*/

r0=dest;

dm(II0A)=r0; /*Set DMA rx index to start of dest buffer*/

r0=@source;

dm(C0A)=r0; /*Set DMA count to length of data buffers*/

dm(C2A)=r0;

r0=1;

dm(IM0A)=r0; /*Set DMA modify (stride) to 1.*/

dm(IM2A)=r0;

ustat3=dm(SYSCON);

bit clr ustat3 BHD; /*Disable Core Buffer Hang*/

dm(SYSCON)=ustat3;

bit set imask SP0I |SP2I; /*Unmask Sport 0&2 interrupts*/
6-106 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
bit set mode1 CBUFEN | IRPTEN; /*Enable Circ. Buffer & Global

 Inters*/

r0 = 0x00001000;

/*Set the SPL bit in the SPxxMCTL register to enable loopback*/

dm(SP02MCTL)=r0;

r0 = 0x0; /*Externally generated clock and framesync*/

dm(DIV0) = r0;

r0 = 0x000421f1;

/*Set bits SPEN_A, SLEN=32, FSR--enable the A channel, set the

word length to 32 bits, and require frame synch.*/

dm(SPCTL0)=r0;

r0=0x00270004;

/*TCLKDIV=[FCCLK(96Mhz)/2xFSCLK((19.2Mhz)]-1=0x0004*/

/*TFSDIV=[FSCLK(9.6Mhz)/TFS(.24Mhz)]-1=0x0027*/

dm(DIV2)=r0;

r0=0x20465f1;

/*Set bits SPEN_A, SLEN=32, ICLK, IFS, FSR, DDIR--enable the A

channel, set the word length to 32 bits, generate internal frame-

synch and clock, require frame synch, and set for transmit.*/

dm(SPCTL2)=r0;

wait: idle;

jump wait;

IRQ: rti;
ADSP-21161 SHARC Processor Hardware Reference 6-107

SPI Port DMA
SPI Port DMA
There are two DMA channels available on the ADSP-21161 for SPI port
transfers: channels 8 and 9. These two channels are shared with the link
port. Channel 8 which is assigned to SPI receive buffer SPIRX handles
receive data while channel 9 which is assigned to SPI transmit buffer
SPITX handles transmit data.

The following sections describe typical SPI port DMA processes:

• “Setting up SPl Port DMA” on page 6-112

• “Bootloading Through the SPI Port” on page 6-113

• “SPI Port Buffer” on page 6-109

• “SPI DMA Channel Priority” on page 6-112

SPI Port Registers
The SPICTL register controls the SPI port operating mode for the I/O pro-
cessor. Figure 6-14 lists all the bits in SPICTL.

The following bits control SPI port I/O processor modes. The control bits
in the SPICTL registers have a one cycle effect latency. Programs should
not modify an active DMA channel’s SPICTL register; other than to disable
the channel by clearing the SPIEN bit. For information on verifying a
channel’s status with the DMASTAT register, see “DMA Channel Status Reg-
ister (DMASTAT)” on page A-90. For information on SPI port status, see
“SPI Port Status Register” on page A-115.
6-108 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The following bits in SPICTL setup DMA SPI port features:

• SPI Port Enable. SPICTL Bit 0 (SPIEN). This bit enables (if set, =1)
or disables (if cleared, =0) the SPI port.

• Data Format. SPICTL Bits 6 (DF). This bit selects the data format.
When set (=1), the MSB is sent/received first. When cleared (=0),
the LSB is sent/received first.

• SPI Word Length Select. SPICTL Bits 8-7 (WL). These bits select
the word length. Word sizes can be 8-bit (WL = 00), 16-bit (WL =
01) or 32-bit (WL = 11).

• Word Packing Enable. SPICTL Bit 28 (PACKEN). This bit enables
(if set, =1) 8- to 32-bit packing or (if cleared, =0) disables the pack-
ing. If this bit is enabled, the receiver packs the received byte
whereas the transmitter unpacks the data before sending it. For
more information on packing formats, see “SPI Word Packing” on
page 11-24. This bit should be 1 only in 8-bit data word length
(WL=00).

• SPI Port Receive DMA Enable. SPICTL Bit 27 (RDMAEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers from
the receive data buffer. At SPI boot this bit is set to 1 to enable the
booting process through the SPI port.

• SPI Port Transmit DMA Enable. SPICTL Bit 13 (TDMAEN). This bit
enables (if set, =1) or disables (if cleared, =0) DMA transfers to the
transmit data buffer. At SPI boot this bit is 0.

SPI Port Buffer
The SPIEN bit in the SPICTL register enables the SPI port. The SPI port
shares channel 8 with link buffer 0 for the receive function. It shares chan-
nel 9 with link buffer 1 for the transmit function. Data is loaded into
SPITX from internal memory by the DMA controller. Once the SPI is
ADSP-21161 SHARC Processor Hardware Reference 6-109

SPI Port DMA

it
enabled, data in SPITX is automatically loaded into the transmit shift regis-
ter. After a word is received completely in the receive shift register, it is
automatically transferred to the SPIRX. The data in SPIRX is moved into
internal memory by the DMA controller All DMA transfers are 32-bit
words. To disable the SPI port, clear the SPIEN bit in the SPICTL register,

Figure 6-14. SPICTL Register

FLS0

8-bit Packing Enable

Receive DMA Enable

SGN
Sign Extend Data

DMISO

OPD

RDMAEN

PACKEN

0=no packing, 1=8 to 32-bit packing

Disable MISO Pin (Broadcast)

Open Drain Output Enable for Data Pins
0=Normal, 1=Open Drain

SENDLW
Send Zero/Repeat Byte When TXB Empty

0=Send zero, 1=Repeat last data

0=MISO Enabled, 1=MISO Disabled

1=Enable, 0=Disable

GM
Fetch/Discard Incoming RXB data when RXB full

0=Discard incoming data
1=Overwrite with new data

0=no sign extend, 1=sign extend

SPICTL
0xB4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

FLS1
FLAG1 Slave Device Select
1=Enable, 0=Disable

FLS2
FLAG2 Slave Device Select
1=Enable, 0=Disable

FLS3
FLAG3 Slave Device Select
1=Enable, 0=Disable

NSMLS
Non-Seamless operation
0=no delay, 1=delay before next
word starts

DCPH0
Deselect SPIDS in CPHASE =0
(master mode only, NSMLS bit=1)
0=No SPI device select
1=Deselects slaves between
successive transfers

SPIEN
SPI System Enable
1=enable, 0=disable

SPRINT
SPI RX Buffer Interrupt Enable

MS
Master/Slave Mode Bit
0=SPI slave device, 1=SPI Master Device

CP
Clock polarity

CPHASE
Clock phase
0=SPICLK toggles at middle of 1st data bit
1=SPICLK toggles at beginning of 1st data b

1=enable SPI IRQ on RXB empty, 0=disable

SPTINT
SPI TX Buffer Interrupt Enable
1=enable SPI IRQ on TXB not full, 0=disable

0=SPICLK active high, low in idle state
1=SPICLK active low, high in idle state

PSSE
Programmable Slave Select Enable

0=Disable, 1=Enable

TDMAEN
Transmit DMA Enable

1=Enable, 0=Disable

DF
Data Format

0=LSB sent / received first

BAUDR
Baud Rate

CCLK / (2**(2 + BR))

FLAG0 Slave Device Select
1=Enable, 0=Disable

WL
Word Length

00=8 bits, 01=16 bits,
11=32 bits, 10=RESERVED

1=MSB sent / received first
6-110 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
which also clears the status of the buffers in the SPISTAT register. The bits
in the SPI control register (SPICTL) are shown in Figure A-38 on
page A-120.

If the SPI port is enabled without enabling DMA, the SPI port is
either in single-word, interrupt-driven data transfer mode (if the
corresponding interrupt enable bits in the SPICTL is set) or is in
core-driven data transfer mode. The software must do the data
transfers to the SPI data buffers. For more information on the dif-
ferent SPI transfer modes, see “Master Mode Operation” on
page 11-25. For more information on transfer status, see “Using
I/O Processor Status” on page 6-121.

The SPI allows independent settings for the three transfer format features:
bit order, word length, and word packing.

The SPI port buffer has a SPI data format (DF) bit, which when cleared
(=0) can transmit data as little endian words (LSB first) to or from little
endian devices. This bit selects big endian words (MSB first, if set, =1) or
little endian words (LSB first, if cleared, =0).

The SPI Word Length (WL) bit field selects the transfer word length. Word
sizes can be 8-bit (WL = 00), 16-bit (WL = 01) or 32-bit (WL = 11). If the
SPI word length is 8-bits or smaller, the SPI port can pack two of these
words into the SPI port data buffer. The 8-bit to 32-bit Word Packing
Enable (PACKEN) bit can enable this packing because the I/O processor per-
forms 32-bit transfers between the SPI port buffer and processor memory.
If this bit is enabled, the transmitter unpacks the data before sending it,
while the receiver packs the received byte. For more information on pack-
ing formats, see “SPI Word Packing” on page 11-24. This bit should be 1
only in 8-bit data word length (WL= 00).
ADSP-21161 SHARC Processor Hardware Reference 6-111

SPI Port DMA
SPI DMA Channel Priority
SPI shares DMA channels with the link port. The receive DMA is shared
with link port 0 DMA while the transmit DMA is shared with link port 1.
SPI port DMA transfers have the same priority as link port DMA trans-
fers. If SPI DMAs are enabled, you should disable the link port DMAs.
For more information on prioritization operations, see “Managing DMA
Channel Priority” on page 6-22.

Setting up SPl Port DMA
In general, the following sequence describes a typical external to internal
DMA operation where an external device transfers a block of data into the
processor’s internal memory using a SPI port:

1. The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPIEN bit in the port’s
SPICTL register. The processor or host selects a words size using the
WL bits in the port’s SPICTL register.

2. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IISRx, IMSRx, and CSRx) and SPICTL
control register, initializing the channel for receive.

3. Depending on the mode, the processor or host sets the channel’s
RDMAEN bit to 1 enabling the DMA process.

4. The external device begins writing data to the SPIRX buffer through
the SPI port.

5. The SPIRX buffer detects data is present and asserts an internal
DMA request to the I/O processor.

6. The I/O processor grants the request and performs the internal
DMA transfer, emptying the SPIRX buffer.
6-112 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
In general, the following sequence describes a typical internal to external
DMA operation where an external device transfers a block of data from
the processor’s internal memory using a serial port:

1. The processor or host (depending on the mode) enables the DMA
channel’s serial port, setting the port’s SPIEN bit in the port’s
SPICTL register. The processor or host selects a words size using the
WL bits in the port’s SPICTL register.

2. The processor or host (depending on the mode) writes the DMA
channel’s parameter registers (IISTx, IMSTx, and CSTx) and SPICTL
control register, initializing the channel for transmit.

3. The processor or host (depending on the mode) sets the channel’s
TDMAEN bit to 1 enabling the DMA process. Because this is a trans-
mit, setting TDMAEN automatically asserts an internal DMA request
to the I/O processor.

4. The I/O processor grants the request and performs the internal
DMA transfer, filling the SPITX buffer.

5. The external device begins reading data from the SPITX buffer
through the SPI port.

6. The SPITX buffer detects that there is room in the buffer because it
is now partially empty and asserts another internal DMA request to
the I/O processor, continuing the process.

Bootloading Through the SPI Port
One of the processor’s booting modes is booting the processor through the
SPI port. SPI port booting uses DMA channel 8 of the I/O processor to
transfer the instructions to internal memory. In this boot mode, the pro-
cessor receives 32-bit wide data in the SPIRX buffer.
ADSP-21161 SHARC Processor Hardware Reference 6-113

SPI Port DMA
During the boot process the program loads 256 words into memory loca-
tions 0x40000 through 0x400FF. The processor subsequently begins
executing instructions. Because most programs require more than 256
words of instructions and initialization data, the 256 words typically serve
as a loading routine for the application. Analog Devices supplies loading
routines (loader kernels) that load an entire program through the selected
port. These routines come with the development tools. For more informa-
tion on loader kernels, see the development tools documentation.

For SPI booting the ADSP-21161, the Program sequencer auto-
matically unmasks the DMA channel 8 interrupt, initializing the
SPICTL register to 0x0A001F81 and IMASK register to 0x00004003.

The processor determines the booting mode at reset from the EBOOT,
LBOOT, and BMS pin inputs. When EBOOT=0, LBOOT=1, and BMS=0, the pro-
cessor boots through the SPI Port. For a list showing how to select
different boot modes, see the Boot Memory Select pin description in the
table “Booting Modes” on page 13-72.

When using any of the power-up booting modes, address
0x0004 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

In SPI Port Booting, the processor gets boot data from another processor’s
SPI port or another SPI compatible device after system powerup.

Table 6-27 on page 6-115 shows how the DMA channel 8 parameter reg-
isters are initialized at reset for EPROM booting. The count register
(CSRX) is initialized to 0x0180 for transferring 256 words to internal mem-
ory. The SPI Control Register (SPICTL) is configured to 0x0A001F81
upon reset during on SPI boot. The default value sets up SPI transfers as
follows:

• SPIEN = 1, SPI enabled

• MS = 0, slave device
6-114 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
• DF = 0, LSB first

• WL = 11, 32-bit SPI receive shift register word length

• BAUDR = 1111 (at 100 MHz, SPICLK = 763 Hz)

• DMISO = 1, MISO disabled

• RDMA = 1, SPIRX DMA enabled on channel 8

This configuration sets up the SPIRX register for 32-bit serial transfers.
The SPIRX DMA channel 8 parameter registers are configured to DMA in
0x180 number of 32-bit words into internal memory normal word address
space starting at 0x40000. Once the 32-bit DMA transfer completes, the
data is then accessed as 3-column 48-bit instructions. The processor exe-
cutes a 256 (0x100) word loader kernel upon completion of the 32-bit,
0x180 word DMA. Note that for 16-bit SPI hosts, shift two words into
the 32-bit receive shift register before a DMA transfer to internal memory
occurs. For 8-bit SPI hosts, shift four words into the 32-bit receive shift
register before a DMA transfer to internal memory occurs.

Table 6-27. DMA Channel 8 Parameter Register Initialization for SPI Port
Booting

Parameter
Register

Initialization Value

IISRX 0x0004 0000

IMSRX uninitialized (increment by 1 is automatic)

CSRX 0x0180 (256 instruction words)

GPSRX uninitialized
ADSP-21161 SHARC Processor Hardware Reference 6-115

SPI Port DMA
SPI Port DMA Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 6-7 demonstrates
how the I/O processor uses DMA to read from the SPI port receive buffer
and write to the SPI port transmit buffer. The example shown in
Listing 6-8 demonstrates how the I/O processor uses DMA to read from
the SPI port receive buffer and write to the SPI port transmit buffer after
an interrupt.

Listing 6-7. DMA-Driven SPI Loopback

/*__

ADSP-21161 DMA-Driven SPI Loopback Example

This example shows looped-back SPI 32-bit transfer. On this

peripheral loop-back is performed by externally connecting the
hardware MOSI and MISO pins on the processor. The transfer buffer
and receive buffer are both handled via DMA. Hardware loop-back

does not require the use of flags as device selects so the FLS
bits do not need to be used as they would in an SPI transfer

between two different SPI devices (non-loop-back.)

__*/

#include <def21161.h>

#define size 10

/* vector code for reset vector from ldf file */
.section/pm seg_rth;

Chip_Reset: idle; jump start; nop; nop;

/* vector code for receive interrupt vector from ldf file */
.section/pm spiri_svc;

nop; nop; jump finish; nop;
6-116 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
.section/dm seg_dmda;

/* transmit buffer */
.var spi_tx_buf[size] =0x11111111,0x22222222, 0x33333333,

0x44444444, 0x55555555,0x66666666, 0x77777777, 0x88888888,

0x99999999,0xaaaaaaaa;

/* receive buffer */
.var spi_rx_buf[size];

.section/pm seg_pmco;

start:

r0=spi_tx_buf; /* configure index register for SPI transmit */
dm(IISTX)=r0;

r0=@spi_tx_buf; /* configure count register for SPI transmit */
dm(CSTX)=r0;

r0=1; /* configure modify register for SPI transmit */
dm(IMSTX)=r0;

r0=spi_rx_buf; /* configure index register for SPI receive */
dm(IISRX)=r0;

r0=@spi_rx_buf; /* configure count register for SPI receive */
dm(CSRX)=r0;

r0=1;

dm(IMSRX)=r0; /* configure modify register for SPI receive */

ustat1 = dm(SYSCON);

bit clr ustat1 BHD; /* Clear Buffer Hang Disable in SYSCON */
dm(SYSCON) = ustat1;

bit set LIRPTL SPIRMSK ; /* enable SPI RX interrupts */
ADSP-21161 SHARC Processor Hardware Reference 6-117

SPI Port DMA
bit set MODE1 IRPTEN | CBUFEN; /* allow global interrupts and

 circular buffer enable */
bit set IMASK LPISUMI; /* unmask spi interrupts */

r0=0x00000000; /* initially clear SPI control register */
dm(SPICTL)=r0;

ustat1=dm(SPICTL);

/* set up options for the SPI port */

bit set ustat1 SPIEN | SPRINT | SPTINT | MS | CPHASE | DF | WL32

| BAUDR5 | SGN | GM | RDMAEN | TDMAEN;

/* enable spi port, spitx and spirx interrupts, master device

spiclk toggles at beginning of first data transfer bit, MSB first

format, 32 bit word length, baud rate sign extend, get more new

data even if receive buffer is full enable transmit and receive

dma */

dm(SPICTL) = ustat1; /* start transfer by configuring SPICTL */

wait: idle; jump wait;

finish:rti;

Listing 6-8. Interrupt DMA-Driven SPI Loopback Example

/*___

ADSP-21161 Interrupt DMA-Driven SPI Loopback Example

This example shows an externally looped-back SPI 32-bit transfer.

DMA is used to write to and read from the buffers. Loopback is

achieved by physically connecting the MOSI and MISO pins external

to the processor.
6-118 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
___*/

#include "def21161.h"

#define size 10

/* PM interrupt vector code */
.SECTION/pm seg_rth;

Reserved_1: rti; nop; nop; nop;

Chip_Reset: idle; jump start; nop; nop;

.SECTION/DMseg_dmda;

.var spi_tx_buf[size] =0x11111111,

 0x22222222,
 0x33333333,
 0x44444444,
 0x55555555,
 0x66666666,
 0x77777777,
 0x88888888,
 0x99999999,

 0xaaaaaaaa;
.var spi_rx_buf[size];

.SECTION/PMseg_pmco;

.GLOBAL SPI_register_init;

.GLOBALSPI_lpbk_irq_test;

start:

ustat1 = dm(SYSCON); /* Clear Buffer Hang Disable in SYSCON */
bit clr ustat1 BHD;

dm(SYSCON) = ustat1;

bit set mode1 CBUFEN; /* set circular buffer enable */
SPIDMA_tx:

r0=spi_tx_buf;dm(IILB1)=r0;
ADSP-21161 SHARC Processor Hardware Reference 6-119

SPI Port DMA
r0=@spi_tx_buf;dm(CLB1)=r0;

r0=1;dm(IMLB1)=r0;

SPIDMA_rx:

r0=spi_rx_buf;dm(IILB0)=r0;

r0=@spi_rx_buf;dm(CLB0)=r0;

r0=1;dm(IMLB0)=r0;

r0=0x00000000;dm(SPICTL)=r0; /* Initially clear SPI control

 reg.*/

ustat1=dm(SPICTL);

bit set ustat1

SPIEN|SPRINT|SPTINT|MS|CPHASE|DF|WL32|BAUDR5|PSSE|DCPH0|SGN|GM|R

DMAEN|TDMAEN;

bit clr ustat1

CP|FLS0|FLS1|FLS2|FLS3|SMLS|DMISO|OPD|PACKEN|SENDLW;

dm(SPICTL) = ustat1;

bit set LIRPTL SPIRMSK | SPITMSK; /* enable SPI TX & SPI RX */

interrupts

bit set MODE1 IRPTEN; /* Allow global interrupts */

wait: jump start;
6-120 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Using I/O Processor Status
The I/O processor monitors the status of data transfers on DMA channels
and indicates status in the DMASTAT, IRPTL, and LIRPTL registers.

• Table A-9 on page A-27 lists all the bits in IRPTL.

• Table A-10 on page A-34 lists all the bits in LIRPTL.

• A discussion of DMASTAT appears in “DMA Channel Status Register
(DMASTAT)” on page A-90.

The DMA controller of ADSP-21161 processor maintains the status
information of the channels in a read only register, DMASTAT. Bits 0-13
indicate which DMA channel is active; bits 16-29 indicate the chaining
status of the channels.

• Bit definitions for the DMASTAT register are defined in Table 6-28
and in Figure 6-15.

• Bit definitions for the SPISTAT register are defined in Table A-29
on page A-115.
ADSP-21161 SHARC Processor Hardware Reference 6-121

Using I/O Processor Status

tus

tus

tus

tus

tus
Figure 6-15. DMA STAT Register

DMASTAT
0x37

Channel 0 (RX0A/TX0A) Chaining Sta

Channel 2 (RX1A/TX1A) Chaining Sta

Channel 4 (RX2A/TX2A) Chaining Sta

Channel 6 (RX3A/TX3A) Chaining Sta

Channel 8 (LBUF0) Chaining Status

Channel 9 (LBUF1) Chaining Status

Channel 1 (RX0B/TX0B) Chaining Sta

DMA0CHST

DMA2CHST

DMA4CHST

DMA6CHST

DMA8CHST

DMA9CHST

DMA1CHST

Channel 13(EPB3) Chaining Status

Channel 12 (EPB2) Chaining Status

Channel 11 (EPB1) Chaining Status

Channel 10 (EPB0) Chaining Status

Channel 7 (RX3B/TX3B) Chaining Status

Channel 5 (RX2B/TX2B) Chaining Status

Channel 3 (RX1B/TX1B) Chaining Status
DMA3CHST

DMA13CHST

DMA12CHST

DMA11CHST

DMA10CHST

DMA7CHST

DMA5CHST

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0

Channel 0 (RX0A/TX0A) Status

Channel 2 (RX1A/TX1A) Status

Channel 13 (EPB3) Status

Channel 4 (RX2A/TX2A) Status

Channel 12 (EPB2) Status

Channel 6 (RX3A/TX3A) Status

Channel 11 (EPB1) Status

Channel 8 (LBUF0/SPIRX) Status

Channel 10 (EPB0) Status

Channel 9 (LBUF1/SPITX) StatusChannel 5 (RX2B/TX2B) Status

Channel 1 (RX0B/TX0B) StatusChannel 3 (RX1B/TX1B) Status

Channel 7 (RX3B/TX3B) Status

* Channel Active Status: 1=Active [transferring data or waiting to transfer current block, and not transferring TCB]
0= Inactive [DMA transter complete, or in TCB chain loading]

** Channel Chaining Status: 1=Chaining is Enabled and currently transferring TCB, or is Pending to transfer TCB,
0 = Chaining Disabled

Status does not change on the master ADSP-21161 processor during external port DMA until the external portion is
completed (for example, the EPBx buffers are emptied).

If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status will never go to a 1. Therefore, test
channel status to see if it is ready so that your program can rewrite the chain pointer (CPx) register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

DMA0ST

DMA2ST

DMA4ST

DMA6ST

DMA8ST

DMA9ST

DMA1STDMA3ST

DMA13ST

DMA12ST

DMA11ST

DMA10ST

DMA7ST

DMA5ST
6-122 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Table 6-28. DMASTAT Register Definitions

Bit # DMA Channel # Definitions

0 0 Status1 (RX0A or TX0A)

1 2 Status1 (RX1A or TX1A)

2 4 Status1 (RX2A or TX2A)

3 6 Status1 (RX3A or TX3A)

4 8 Status1 (LBUF0/SPIRX)

5 9 Status1 (LBUF1/SPITX)

6 1 Status1 (RX0B or TX0B)

7 3 Status1 (RX1B or TX1B)

8 5 Status1 (RX2B or TX2B)

9 7 Status1 (RX3B or TX3B)

10 10 Status1 (EPB0)

11 11 Status1 (EPB1)

12 12 Status1 (EPB2)

13 13 Status1 (EPB3)

14 - 15 Reserved

16 0 Chaining Status2 (RX0A or TX0A)

17 2 Chaining Status2 (RX1A or TX1A)

18 4 Chaining Status2 (RX2A or TX2A)

19 6 Chaining Status2 (RX3A or TX3A)

20 8 Chaining Status2 (LBUF0)

21 9 Chaining Status2 (LBUF1)

22 1 Chaining Status2 (RX0B or TX0B)

23 3 Chaining Status2 (RX1B or TX1B)

24 5 Chaining Status2 (RX2B or TX2B)
ADSP-21161 SHARC Processor Hardware Reference 6-123

Using I/O Processor Status
The I/O processor reports on DMA in progress, DMA complete, or DMA
channel not ready status as follows:

• All DMA channels can be active or inactive. If a channel is active, a
DMA is in progress on that channel. The I/O processor indicates
the active status by setting the channel’s bit in the DMASTAT register.

• When an unchained (single-block) DMA process reaches comple-
tion on any DMA channel, the I/O processor generates that DMA
channel's interrupt. It does this by setting the DMA channel's
interrupt latch bit in the IRPTL or LIRPTL register. The DMA pro-
cess is complete when the count in CEPx=0 (for Slave mode and
Handshake modes) or when the count in ECEPx=0 (for External
Handshake mode) or when the count in CEPx=0 and ECEPx=0 (for
Master mode and Paced Master mode).

• When a DMA process in a chained DMA sequence reaches com-
pletion (the count in Cx=0 or CEPx=0) on any DMA channel, the
I/O processor generates an interrupt if the PCI bit in the channels
CPx register is set. The only exception is external-handshake mode.

25 7 Chaining Status2 (RX3B or TX3B)

26 10 Chaining Status2 (EPB0)

27 11 Chaining Status2 (EPB1)

28 12 Chaining Status2 (EPB2)

29 13 Chaining Status2 (EPB3)

30-31 Reserved

1 Channel Active status: 1-active, 0 = inactive
2 Channel Chaining status: 1 = chaining enabled/pending, 0 = chaining disabled

Table 6-28. DMASTAT Register Definitions (Cont’d)

Bit # DMA Channel # Definitions
6-124 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The I/O processor also generates that DMA channel’s interrupt
when the last block in a chained DMA reaches completion regard-
less of the PCI setting.

• When a DMA channel’s buffer not being used for a DMA process,
the I/O processor can generate an interrupt on single word writes
or reads of the buffer. This interrupt service differs slightly for each
port. For more information on single-word interrupt-driven trans-
fers, see “External Port Status” on page 6-127, “Link Port Status”
on page 6-131, and “Serial Port Status” on page 6-135.

Using the DMA Channel Status Register (DMASTAT), programs can check
which DMA channels are performing a DMA or chained DMA. For each
channel, the I/O processor sets the channel’s active status bit if DMA for
that channel is enabled and a DMA sequence is in progress on that chan-
nel. The I/O processor sets the channel’s chaining status bit if a chained
DMA sequence is in progress or pending on that channel.

There is a one cycle latency between a change in DMA channel sta-
tus and the status update in the DMASTAT register.

As an alternative to interrupt-driven DMA, programs can poll the DMASTAT
register to determine when a single DMA sequence is done. To poll chan-
nel status, programs read DMASTAT. If both status bits for the channel are
cleared, the DMA sequence has completed.

If chaining is enabled on a DMA channel, programs should not use
polling to determine channel status. Polling could provide inaccu-
rate information in this case because the next DMA sequence
might be under way by the time the polled status is returned.

During interrupt-driven DMA, programs use the interrupt mask bits in
the IMASK and LIRPTL registers to selectively mask DMA channel inter-
rupts that the I/O processor latches into the IRPTL and LIRPTL registers.
ADSP-21161 SHARC Processor Hardware Reference 6-125

Using I/O Processor Status
The I/O processor only generates a DMA complete interrupt when
the channel’s count register decrements to zero as a result of actual
DMA transfers. Writing zero to a count register does not generate
the interrupt.

A channel interrupt mask in IMASK and IRPTL masks out DMA complete
interrupts for a channel, but other types of interrupt masking are also
available. These other types of interrupt masking include:

• By clearing a channels PCI bit during chained DMA, programs
mask the DMA complete interrupt for a DMA processes within a
chained DMA sequence.

• By masking the LPISUM interrupt, programs mask out the logical
Oring of link port interrupt status.

• By masking the LSRQ interrupt, programs mask out link port service
requests to link ports that do not have an assigned link buffer.

These lower levels of interrupt masking let programs limit some of the
conditions that can cause DMA channel interrupts.

Each DMA channel has its own interrupt. Although the external
port and link port channel access priority can rotate, the interrupt
priorities of all DMA channels are fixed.

In processor systems using I/O processor interrupts, an external device
may need to change the processor’s interrupt mask. This task presents a
challenge because the IMASK register is not memory-mapped and is not
directly accessible to external devices through the external port. To read or
write IMASK through the external port, programs can set up an interrupt
vector routine to handle this task. The VIRPT vector interrupt register may
be used for this task.

The I/O processor can also generate non-DMA single-word interrupts for
I/O port operations that do not use DMA. In this case, the I/O processor
generates a DMA interrupt when data becomes available at the receive
6-126 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
buffer or when the transmit buffer does not have new data to transmit.
Generating DMA interrupts in this fashion lets programs implement
interrupt-driven I/O under control of the processor core. Care is needed
because multiple interrupts can occur if several I/O ports transmit or
receive data in the same cycle.

External Port Status
The I/O processor monitors the status of data transfers on the external
port. DMA channel status for the external port is described in “Using I/O
Processor Status” on page 6-121. This section describes external port spe-
cific status features, such as buffer status, buffer control, and single-word
interrupt-driven transfers.

Bits in the SYSTAT, SYSCON and DMACx registers indicate and control the sta-
tus of external port buffers.

• Table A-21 on page A-69 lists all the bits in SYSTAT.

• Table A-18 on page A-60 lists all the bits in SYSCON.

• Table A-24 on page A-80 and Figure 6-16 lists all the bits in the
DMACx register.

• For a description of the IOP registers, see the Registers appendix of
this manual.

The following bits influence external port buffer status:

• Host Packing Status. SYSTAT bits 24-22 (HPS). These bits indicate
the host’s packing status.

• External Port Packing Status. DMACx Bits 23-21(PS). These bits
indicate the corresponding FIFO buffer’s packing status.
Table 6-29 shows the available bit setting.
ADSP-21161 SHARC Processor Hardware Reference 6-127

Using I/O Processor Status

only)
• Single-Word Interrupt Enable. DMACx Bit 12 (INTIO). This bit
enables (if set, =1) or disables (if cleared, =0) single-word,
non-DMA, interrupt-driven transfers for the corresponding exter-
nal port FIFO buffer (EPBx). To avoid spurious interrupts,
programs must not change a buffer’s INTIO setting while the buffer
is enabled.

• Flush DMA Buffers and Status. DMACx Bit 14 (FLSH). This bit
flushes (when set, =1) settings for the corresponding external port
FIFO buffer (EPBx).

• External Port FIFO Buffer Status. DMACx bit 17-16 (FS). These bits
indicate the corresponding external port FIFO buffer’s status.
Table 6-30 shows the available setting.

Figure 6-16. DMAC Register–Status Bits Only

DMAC10 0x1c
DMAC11 0x1d
DMAC12 0x1e
DMAC13 0x1f

FS
Ext. Port FIFO Buffer Status (read-
00=buffer empty
01=buffer-not-full
10=buffer-not - empty
11=buffer full

Single Word Interrupts for EPBx FIFO Buffers
-wd non -DMA interrupt-driven xfers

0=disabled, FIFO fully enabled
1=enable single

INTIO

FLSH
Flush EPBx FIFO Buffers & Status

1=flush EPBx

PS

001=1st stage pack/unpack
010=2nd stage pack/unpack

011=3rd stage
100 = 5th stage of 8 to 48 -bit packing

101=110=111= reserved

000=packing complete

Ext Port EPBx FIFO Buffer Packing Status
(read-only)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6-128 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The HPS bits in the SYSTAT and PS bits in the DMACx registers indicate an
external buffer’s packing status. These bits are read-only, and the proces-
sor clears these bits when DEN is cleared (changes from 1 to 0).

The FS bits in the DMACx registers indicate an external buffer’s FIFO status.
These bits are read-only. The processor clears these bits when DEN is
cleared (changes from 1 to 0).

For transmit (TRAN=1), buffer-not-full means that the buffer has space for
one normal word, and buffer-not-empty means that the buffer has space
for two-or-more normal words. For receive (TRAN=0), buffer-not-full
means that the buffer contains one normal word, and buffer-not-empty

Table 6-29. Processor (PS) and Host (HPS) Packing Status

PS or HPS Packing Status

000 packing complete (6th stage of 8- to 48-bit packing, 4th stage of 8- to
32-bit packing, etc.)

001 1st stage

010 2nd stage

011 3rd stage

100 fifth stage of 8/48

Table 6-30. External Port Buffer FIFO Status

FS FIFO Buffer Status

00 buffer empty

01 buffer-not-full

10 buffer-not-empty

11 buffer full
ADSP-21161 SHARC Processor Hardware Reference 6-129

Using I/O Processor Status
means that the buffer contains two or more normal words. Any type of full
status (01, 10, or 11) in receive mode indicates that new (unread) data is
in the buffer.

When a program sets (=1) the FLSH bit, the processor flushes the settings
for the corresponding external port FIFO buffer (EPBx). Flushing these
settings does the following: clears (=0) the FS and PS status bits, clears (=0)
the FIFO buffer and DMA request counter, clears any partially packed
words. There is a two-cycle effect latency in completing the flush opera-
tion. Programs must not set a buffer’s FLSH during the same write that
enables the buffer. Also, programs must not set a buffer’s FLSH bit while
the DMA channel is active. Programs should determine the channel’s
active status by reading the corresponding bit in the DMASTAT register.

Status does not change on the master processor during external
port DMA until the external portion is completed (for example,
the EPBx buffers are emptied). If in chain insertion mode (DEN=0,
CHEN=1), then channel chaining status never goes to 1. Programs
should test channel status to see if it is ready before re-writing the
chain pointer (CPx).

The INTIO bit in the DMACx registers support single-word interrupt-driven
transfers for each corresponding external port buffer. These non-DMA
transfers are available under the following conditions:

The external port DMA channel’s DEN bit is cleared (DMA disabled).

• The external port DMA channel’s INTIO bit is set enabling inter-
rupt-driven I/O.

• The external port DMA channel’s buffer is not empty on an exter-
nal read or not full on an external write.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s external
port buffer.
6-130 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Link Port Status
The I/O processor monitors the status of data transfers on the link ports.
DMA channel status for the link ports is described in “Using I/O Proces-
sor Status” on page 6-121. This section describes link ports specific status
features, such as buffer status, buffer control, and single-word inter-
rupt-driven transfers.

The LRSQ (Link Service Request) register allows a disabled link port to
respond to a link port transmit or receive request from another processor.
Bits in the LSRQ registers indicate and control status of link port buff-
ers.The following bits influence link port buffer status:

• Link Port x Transmit Mask. LSRQ Bit 4 and 6 (LxTM). These bits
mask (if set, =1) or unmask (if cleared, =0) the L0TRQ through
L1TRQ status bits.

• Link Port x Receive Mask. LSRQ Bit 5 and 7 (LxRM). These bits
mask (if set, =1) or unmask (if cleared, =0) the L0RRQ and L1RRQ
status bits.

• Link Port x Transmit Request Status (read-only). LSRQ Bit 20 and
22 (LxTRQ). If set (=1), these bits indicate that the corresponding
link port (0 or 1) is disabled, but has a request to transmit data.

• Link Port x Receive Request Status (read-only). LSRQ Bit 21and
23 (LxRRQ). If set (=1), these bits indicate that the corresponding
link port (0 or 1) is disabled, but has a request to receive data.

The Link Port Status Register (LSRQ) is shown in Figure 6-16. The status
bits in the Link Port Control Register (LCTL) are shown in Figure 6-17 on
page 6-132.
ADSP-21161 SHARC Processor Hardware Reference 6-131

Using I/O Processor Status
The LRERRx bits in the LCTL register indicate a link port buffer’s receive
packing status. When the buffer is ready to receive and pack a new word,
the processor clears (=0) LRERRx. If this bit remains set (=1) after the buffer
receives a word, a link transfer error (for example, a clock glitch) has

Figure 6-17. LSRQ Register

Figure 6-18. LCTL Register – Status Bits

11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

L0TM
Link Port 0 Transmit Mask

L0RML1TM

L1RM

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16LSRQ

L0TRQ

L0RRQL1TRQ

L1RRQ

Link Port 0 Receive MaskLink Port 1 Transmit Mask

Link Port 1 Receive Mask

Link Port 0 Receive Request

Link Port 0 Transmit RequestLink Port 1 Receive Request

Link Port 1 Transmit Request

0xD0

Link Buffer 0 Status (Read - Only)
11=Full, 00= Empty, 10=one word

L0STAT[1:0]

LCTL
0xCC

L1STAT[1:0]
Link Buffer 1 Status (Read - Only)
11=Full, 00 =Empty, 10=one word

LRERR0
Rcv. Pack Error Status for Link Buffer 0
1=incomplete, 0=complete

LRERR1
Rcv. Pack Error Status for Link Buffer 1
1=incomplete, 0=complete

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
6-132 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
occurred. These bits are read-only, and the processor clears these bits
when LxEN is cleared (changes from 1 to 0). Table 6-31 shows the available
settings.

The LxSTATx bits in the LCTL register indicate a link buffer’s FIFO status.
When transmitting, these bits indicate when the buffer has space for more
data. When receiving, these status bits indicate when the buffer contains
new (unread) data. These bits are read-only. The processor clears these
bits when LxEN is cleared (changes from 1 to 0) and empties the buffer.
Table 6-32 shows the available settings.

The LCTL register lets programs assign link buffers to link ports. Bits LABO
and LAB1 in the LCTL register assign link buffers to link ports. Because this
mapping allows link ports to be unassigned (no buffer), the I/O processor
has an interrupt (LSRQI) to notify programs that an external device has
made a read or write request on a disabled link port.

Table 6-31. Link Port Buffer Receive Packing Status

LRERRx Receive Packing Status

0 pack complete (reset value)

1 pack not complete

Table 6-32. Link Port Buffer FIFO Status

LxSTATx FIFO Buffer Status

00 buffer empty

01 reserved

10 one word

11 buffer full
ADSP-21161 SHARC Processor Hardware Reference 6-133

Using I/O Processor Status
When an LSRQI interrupt is latched into the IRPTL register, programs use
the transmit (LxTRQ) and receive (LxRRQ) request bits in LSRQ register to
determine which port has a request. The LSRQ register’s bits indicate the
following:

• For a transmit request (LxTRQ=1), the LSRQI interrupt indicates that
the link port (0 or 1) is disabled, but another processor has
requested more data by setting the link port’s acknowledge
(LxACK=1).

• For a receive request (LxRRQ=1), the LSRQI interrupt indicates that
the link port is disabled, but another processor has requested to
send data by setting the link port’s clock (LxCLK=1).

To control sources of link port service requests, the I/O processor lets pro-
grams mask these service requests. The LSRQ register provides mask bits for
transmit (LxTM) and receive (LxRM) link service requests.

The LxEN bits in the LCTL register support single-word interrupt-driven
transfers for each corresponding link port buffer. These non-DMA trans-
fers are available under the following conditions:

• The link port DMA channel’s LxDEN bit is cleared (DMA disabled).

• The link port DMA channel’s LxEN bit is set enabling the link
buffer.

• The link port DMA channel’s buffer is not empty on receive or not
full on transmit.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s link port
buffer.
6-134 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Serial Port Status
The I/O processor monitors the status of data transfers on the serial ports.
DMA channel status for the serial ports is described in “Using I/O Proces-
sor Status” on page 6-121. This section describes serial ports specific
status features, such as buffer status, transmit buffer underflow, receive
buffer overflow, and single-word interrupt-driven transfers.

Bits in the SPCTLx registers indicate and control status of serial port buff-
ers. For more information, see “SPORT Serial Control Registers
(SPCTLx)” on page A-100.

The following bits influence serial port buffer status:

• DXA Error Status (sticky, read-only). SPCTLx Bit 29 (DERR_A).
This bit indicates (if set, =1 and DDIR =1) whether the serial trans-
mit operation has underflowed or (if cleared, =0 and DDIR =0)the
serial receive has overflowed on the A path.

• DXS_A Data Buffer Status (read-only). SPCTLx Bits 31-30
(DXS_A). These bits indicate the status of the serial port’s DXA data
buffer. See Table 6-33 for available bit settings.

• DXB Error Status (sticky, read-only). SPCTLx Bit 26 (DERR_B).
This bit indicates (if set, =1 and DDIR =1) whether the serial trans-
mit operation has underflowed or (if cleared, =0 and DDIR =0)the
serial receive has overflowed on the B path.

• DXS_B Data Buffer Status (read-only). SPCTLx Bits 28-27
(DXS_B). These bits indicate the status of the serial port’s DXB data
buffer. See Table 6-33 for available bit settings.

The DXS_A and DXS_B bits in the SPCTLx registers indicate a serial port
transmit or receive buffer’s FIFO status. Status bits are read-only. Dis-
abling the serial port (setting SPEN=0), clears the status bits and empties
ADSP-21161 SHARC Processor Hardware Reference 6-135

Using I/O Processor Status
the buffer. The bits may change state if the data is read or written by the
processor core while the serial port is disabled. Table 6-33 shows the avail-
able settings.

The DERR_A and DERR_B bits in the SPCTLx registers indicate a serial port
transmit underflow or receive overflow to the buffer’s FIFO. Status bits
are read-only. Disabling the serial port (setting SPEN=0), clears the status
bits and empties the buffer. These overflow and underflow bits are sticky;
once set, they remain set regardless of buffer status until the serial port is
disabled.

The SPEN bit in the SPCTLx register support single-word interrupt-driven
transfers for each corresponding serial port transmit or receive buffer.
These non-DMA transfers are available under the following conditions:

The serial port DMA channel’s SDEN bit is cleared (DMA disabled).

• The serial port DMA channel’s SPEN bit is set (enabling the serial
port transmit or receive buffer).

• The serial port DMA channel’s buffer is not empty on receive or
not full on transmit.

Under these conditions, the I/O processor generates that DMA channel’s
interrupt on the single word transfer to or from that channel’s serial port
buffer.

Table 6-33. Serial Port Transmit and Receive Buffer FIFO Status

DXS_A or DXS_B FIFO Buffer Status

00 buffer empty

01 reserved

10 partially full

11 buffer full
6-136 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
SPI Port Status
The I/O processor monitors the status of data transfers on the SPI port.
DMA channel status for the SPI port is described in “Using I/O Processor
Status” on page 6-121. This section describes SPI port specific status fea-
tures, such as buffer status, transmit or receive buffer errors, and transfer
completion test.

Bits in the SPISTAT register indicate and control status of SPI port buffers,
SPIRX and SPITX. Table A-29 on page A-115 and Figure 6-19 lists all the
bits in SPISTAT. The following bits influence SPI port buffer status:

• SPI Transmit Transfer Completion. SPISTAT Bit 0 (SPIF). This
bit is set (=1) when the SPI transfer is complete. For example, the
following condition is met: the transmit data buffer is empty and
the last data has been transmitted out of the transmit shift register.
The bit is cleared (=0) when the transfer is active.

• Transmit Error (sticky, read-only). SPISTAT Bit 2 (TXE). This bit
indicates an error in the transmission. This bit is set (=1) when the
transmit data buffer is empty and the last data has been transmitted
out of the transmit shift register. If you are not servicing the inter-
rupt quickly enough and not updating the contents of SPITX so
that it is available to be transferred to the transmit shift register
when required, this bit is set.

• Transmit Data Buffer Status (read-only). SPISTAT Bit 3-4 (TXS).
These bits indicate the status of the SPI port transmit buffer
(SPITX). If TXS =00, the buffer is empty. See Table 6-34 for avail-
able TXS bit settings.

• Receive Error (sticky, read-only). SPISTAT Bit 5 (RBSY). This bit
indicates an error in the receive operation. This bit is set (=1) when
the SPITX data buffer is full and the last data has been received into
ADSP-21161 SHARC Processor Hardware Reference 6-137

Using I/O Processor Status
the receive shift register. If you are not servicing the interrupt
quickly enough and not transferring the contents of SPIRX, this bit
is set.

• Receive Data Buffer Status (read-only). SPISTAT Bits 6-7 (RXS).
These bits indicate the status of the SPI port receive buffer (SPIRX).
If RXS =00, the buffer is empty. See Table 6-34 for available RXS bit
settings.

The TXS and RXS bits in the SPISTAT registers indicate a SPI port transmit
(SPITX) or receive (SPIRX) buffer’s FIFO status. Disabling the SPI port
(setting SPIEN=0), clears the status bits and empties the buffer. TXS and
RXS may change state if the data is read or written by the processor core
while the SPI port is disabled. Table 6-34 shows the available settings.

Figure 6-19. SPISTAT Register

SPIF
SPI Transmit Transfer Complete
1=transfer complete, 0=active transfer

MME
Multimaster Error

TXS
SPITX Data Buffer Status (read only)
00=SPITX empty
01=TXB partially full
11=SPITX full
10=Reserved

RBSY
Reception Error (Overflow)
1=new data received with full RXB FIFO
SPI enters idle mode if master device

RXS

0=no error, 1=SPIDS~ asserted by slave

TXE
Transmission Error (Underflow)
1=no new data in TX FIFO,
SPI enters idle mode if master device

SPISTAT
0xB5

SPIRX Data Buffer Status (Read-only)
00=SPIRX empty
01=SPIRX partially full
11=SPIRX full
10=Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6-138 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
The TXE and RBSY bits in the SPISTAT registers indicate a SPI port transmit
underflow or receive overflow to the buffer’s FIFO. Status bits are
read-only. Disabling the SPI port (setting SPIEN=0), clears the status bits
and empties the buffer. These overflow and underflow bits are sticky; once
set, they remain set regardless of buffer status until the SPI port is
disabled.

Under these conditions, the I/O processor generates that DMA channel’s
transfer request over the IOD bus on the single word transfer to the SPITX
data buffer or from the SPIRX data buffers.

Optimizing DMA Throughput
This section discusses overall DMA throughput when several DMA chan-
nels are trying to access internal or external memory at the same time.
Table 6-35 summarizes the advantages of different system configurations.

Internal Memory DMA
The DMA channels arbitrate for access to the processor’s internal mem-
ory. The DMA controller determines, on a cycle-by-cycle basis, which
channel is allowed access to the internal I/O bus and consequently which
channel can read or write to internal memory. The priority order of the
DMA channels appears in Table 6-1 on page 6-3.

Table 6-34. SPI Port Transmit and Receive Buffer FIFO Status

TXS or RXS FIFO Buffer Status

00 buffer empty

01 partially full

10 reserved

11 buffer full
ADSP-21161 SHARC Processor Hardware Reference 6-139

Optimizing DMA Throughput
Each DMA transfer takes one clock cycle even when different DMA chan-
nels are being allowed access on sequential cycles; for example, there is no
overall throughput loss in switching between channels. Thus, two link
port DMA channels, each transferring one byte per cycle, would have one
half the I/O transfer rate as one external port DMA channel transferring
data to internal memory on every cycle. Any combination of link ports,
serial ports, and external port transfers has the same maximum transfer
rate.

External Memory DMA
When the DMA transfer is between processor internal memory and exter-
nal memory, the external memory may have one or more wait states.
External memory wait states, however, do not reduce the overall internal
DMA transfer rate if other channels have data available to transfer. In
other words, the processor’s internal I/O data bus cannot be held up by an
incomplete external transfer.
6-140 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Figure 6-20 shows an example DMA hardware interface. The following
should be noted in this figure.

• Because DMARx and DMAGx are tied together, only one of the proces-
sors may have DMA enabled at a time.

• DMAGx is only driven by the processor bus master.

• The DMA Write Grant signal can be the combination of WR and
MS3-0 instead of DMAG2 if paced master mode is used.

• The DMA Read Grant signal can be the combination of RD and
MS3-0 instead of DMAG1 if paced master mode is used.

• DMA transfers may be to either processor or to external memory
(in external handshake mode).

Table 6-35. Configurations for Processor – Processor DMA

Processor Config.
(Data Source)

Processor Config.
(Data Destination)

C/T1 Advantages, Disadvantages

Bus Master
DMA Master Mode
(MASTER= 1) TRAN=1,
EIEPx = address of EPBx
buffer in destination,
EMEPx= 0

Bus Slave
DMA Slave Mode
(MASTER= 0),
TRAN= 0

1 Advantage: Destination auto-
matically generates interrupt
upon completion.

Disadvantage: DMA must be
programmed on both source
and destination.

Bus Slave
DMA Slave Mode
(MASTER= 0), TRAN= 1

Bus Master
DMA Master Mode
(MASTER= 1),
TRAN=0,
EIEPx = address of
EPBx buffer in source,
EMEPx=0

32 Advantage: Source automati-
cally generates interrupt upon
completion.

Disadvantages: Slower through-
put. DMA must be programmed
on both source and destination.

1 C/T is throughput in cycles/transfer.
2 Maximum burst read throughput: 3-2-2-2
ADSP-21161 SHARC Processor Hardware Reference 6-141

Optimizing DMA Throughput
Figure 6-20. Example DMA Hardware Interface

001

010

RD

WR
ACK

MS3-0

HBR

HBG

ID2-0

BR1

BR2 ADDR23-0

DATA47-16

DMAR1

DMAG1

DMAR2

DMAG2

ADSP-2116X

D Q

OE

LATCH

RD

WR

ACK

MS3-0

HBR

HBG

ID2-0

BR1

BR2

ADDR23-0

DATA47-16

DMAR1

DMAG1

DMAR2

DMAG2

ADSP-2116X LATCH

ADDR

DATA

OE

WE
ACK

CS

EXTERNAL MEMORY

8,16, OR 32

DMA
DATA
BUS

DMA
DATA
BUS

DMA
READ
REQ.

DMA
READ

GRANT

DMA
WRITE
REQ.

DMA
WRITE
GRANT

C
O

M
M

O
N

R
E

Q
.L

IN
E

C
O

M
M

O
N

G
R

A
N

T
L

IN
E

5

3

5

3

8, 16,
OR
32

DQ

OE
6-142 ADSP-21161 SHARC Processor Hardware Reference

I/O Processor
Figure 6-21 shows DMAR and DMAG timing. The following should be noted
in this figure.

• DMARx setup times relate to the use of the signal in that cycle by the
processor. DMA requests may be asserted asynchronously to CLKIN.

• DMAGx drives DATA47-16 if the processor is receiving. DMAGx latches
DATA47-16 if the processor is transmitting.

When data is to be transferred from internal to external memory, the
internal memory data is first placed in the external port’s EPBx buffer by
the DMA controller; the external memory access begins independently
once the data is detected in the EPBx buffer. Likewise, for exter-
nal-to-internal DMA, the internal DMA request is not be made until the
external memory data is in the EPBx buffer. In both cases, the external
DMA address generator—the EIEPx and EMEPx parameter registers—main-

Figure 6-21. DMAR and DMAG Timing

CLKIN

DMARx

DMAGx

DATA47-16

VALID

FETCH/DECODE CYCLES—2 CYCLES MIN.

tSDRLC

tHDGC

tSDRHC

tWDGL

tVDATDGH
ADSP-21161 SHARC Processor Hardware Reference 6-143

Optimizing DMA Throughput
tains the external address until the data transfer is completed. The internal
and external address generators of a DMA channel are decoupled and
operate independently.

When EXTERN mode DMA transfers occur between an external device and
external memory, no internal resources of the processor are utilized and
internal DMA throughput is not affected.

System-Level Considerations
Slave mode DMA is useful in systems with a host processor because it
allows the host to access any processor internal memory location indirectly
through DMA while limiting the address space the host must recognize—
only the address space of the processor’s I/O processor registers. Slave
mode DMA is also useful for processor-to-processor DMA transfers.

Slave mode DMA has one drawback when interfacing to a slow host—the
fact that the external bus is held up during the transfer (whether initiated
by the processor or the host) and no other transactions can proceed. To
overcome this, the handshake DMA mode may be used.

In handshake mode, the host does not have to master the bus in order to
make a DMA request, nor does the processor (in master mode) have to
wait on the bus for the transfer to complete. Instead, the host asserts the
DMARx pin. When the processor is ready to make the transfer, it can com-
plete it in one bus cycle. For more information, see “Handshake Mode”
on page 6-57.
6-144 ADSP-21161 SHARC Processor Hardware Reference

7 EXTERNAL PORT

The ADSP-21161 processor’s external port extends its address and data

buses off-chip. Using these buses and external control lines, systems can
interface the processor with external memory, 8-, 16- or 32-bit host pro-
cessors, and other DSPs. Because many of the external port operations
relate to external memory accessing or I/O processing, this chapter refers
to the memory and I/O processor chapters (“Memory” on page 5-1 and
“I/O Processor” on page 6-1) frequently.

This chapter describes connection and timing issues for the external port.
The main sections of this chapter describe the interfaces that are available
through the external port. These interfaces include:

• “External Memory Interface” on page 7-3

• “Host Processor Interface” on page 7-42

• “Multiprocessor (MP) Interface” on page 7-87

Data alignment through the external port is identical for these interfaces.
Figure 7-1 shows the external port’s data alignment.
ADSP-21161 SHARC Processor Hardware Reference 7-1

Figure 7-1. ADSP-21161 External Data Alignment Options

07815162324313239 40 47

Float or Fixed, D31-D0, 32-bit Packed DMA

48-bit Instruction Fetch
(No Packing)

 16-bit Packed DMA Data

16-bit Packed Instruction Execution

PROM
BOOT

DATA 47-16

L1DATA[7:0] L0DATA[7:0]
DATA 15-8 DATA 7-0

8-bit Packed DMA Data
8-bit Packed Instruction Execution

32-bit Packed Instruction Execution

Extra data lines
DATA[15-0] are only

accessible if Link Ports
are disabled. Enabled
when IPACK = 1 in the

SYSCON register

DATA 15-0
7-2 ADSP-21161 SHARC Processor Hardware Reference

External Port
Setting External Port Modes
This section describes the various ways to use the external port for data
transfer. The SYSCON, WAIT, and DMACx registers control the external port
operating mode. Table A-18 on page A-60 lists all the bits in SYSCON,
Table A-17 on page A-68 lists all the bits in WAIT, and Table A-24 on
page A-80 lists all the bits in DMACx.

• For information about setting up memory access modes (synchro-
nous versus asynchronous interface), see “Setting Data Access
Modes” on page 5-32.

• For information on setting DMA through the external port, see
“External Port DMA” on page 6-29.

• For information on using external port interrupts, see “Using I/O
Processor Status” on page 6-121.

There is a 3:1 bus conflict resolution ratio at the external port
interface (three internal buses to one external bus) in addition to
the 2:1 or greater clock ratio between the processor’s internal clock
and the external system clock. Systems that fetch instructions or
data through the external port must tolerate at least one cycle—and
possibly many additional cycles—of latency for non-SDRAM
accesses. SDRAM accesses operate at the core clock rate.

External Memory Interface
In addition to its on-chip SRAM, the processor provides addressing of up
to 64 megawords SRAM or SBSRAM or 254 megawords of off-chip
SDRAM memory through its external port. This external address space
includes multiprocessor memory space—the IOP register space of all other
ADSP-21161s connected in a multiprocessor system—as well as external
memory space—the region for standard addressing of off-chip memory.
ADSP-21161 SHARC Processor Hardware Reference 7-3

External Memory Interface
Figure 7-2 shows how the buses and control signals extend off-chip, con-
necting to external memory. Table 7-1 defines the processor pins used for
interfacing to external memory. The processor’s memory control signals
permit direct connection to fast static RAM devices. Memory mapped
peripherals and slower memories can also connect to the processor using a
user-defined combination of programmable waitstates and hardware
acknowledge signals.

External memory can hold instructions and data. Packed instructions can
be executed directly from 32-bit, 16-bit, or 8-bit wide external memories
using 32- to 48-bit, 16- to 48-bit or 8- to 48-bit execution packing modes
supported by the external port and program sequencer. The external port
can also be configured to have a 48-bit wide external data bus for 48-bit
non-packed execution of instructions when link ports are not used. The
link port data lines are multiplexed with the data lines D0 to D15 and are
enabled through control bits in the memory mapped control register
SYSCON. Data packing of 32- to 48-bit, 16- to 48-bit, 8- to 48-bit, 32- to
32/64-bit, 16- to 32/64-bit or 8- to 32/64-bit is supported for DMA
transfers directly from 32-bit, 16-bit, or 8-bit wide external memories to
and from 32-, 48-, or 64-bit internal memory. Figure 7-1 shows how the
processor transfers different data word sizes over the external port.
7-4 ADSP-21161 SHARC Processor Hardware Reference

External Port
Figure 7-2. ADSP-21161 Processor System

DMA DEVICE
(OPTIONAL)

DATA

SDA10

DMAR1-2

DMAG1-2

REDY
ADDR

DATA

HOST
PROCESSOR
INTERFACE
(OPTIONAL)

3

12

CLOCK CLKIN
XTAL

IRQ2-0

2 CLK_CFG1-0

EBOOT

LBOOT

FLAG11-0

TIMEXP

CLKDBL

RESET JTAG

7

SBTS

ADSP-21161

BMS

LINK
DEVICES
(2 MAX)

(OPTIONAL)

LXCLK

LXACK

LXDAT7-0

SCLK0

D0B
D0A
FS0SERIAL

DEVICE
(OPTIONAL)

CS
BOOT

EPROM
(OPTIONAL)

MEMORY
AND

PERIPHERALS
(OPTIONAL)

OE

DATA

CS

RD

RAS

ACK

RPBA
ID2-0

PA

HBG

HBR

SDWE

SDCLK[1-0]

WR

DATA47-16

DATA

ADDR

CS

ACK

WE

ADDR23-0

D
A

T
A

C
O

N
T

R
O

L

A
D

D
R

E
S

S

BRST

SDRAM
(OPTIONAL)

SCLK1

D1B
D1A
FS1SERIAL

DEVICE
(OPTIONAL)

SCLK2

D2B
D2A
FS2SERIAL

DEVICE
(OPTIONAL)

SCLK3

D3B
D3A
FS3SERIAL

DEVICE
(OPTIONAL)

SPICLK

MISO
MOSI
SPIDSSPI-

COMPATIBLE
DEVICE

(HOST OR
SLAVE)

(OPTIONAL)

DATA

CAS

RAS

DQM

WE

ADDR

CS
A10

CKE
CLK

SDCKE

CAS

ADDR

RSTOUT

BR1-6

MS3-0

CLKOUT

DQM
ADSP-21161 SHARC Processor Hardware Reference 7-5

External Memory Interface
Table 7-1. External Memory Interface Signals

Pin Type Function

ACK I/O/S Memory Acknowledge. External devices can deassert ACK (low) to
add wait states to an external memory access. ACK is used by I/O
devices, memory controllers, or other peripherals to hold off com-
pletion of an external memory access. The ADSP-21161 processor
deasserts ACK as an output to add wait states to a synchronous
access of its IOP registers. ACK has a 20 kΩ internal pull-up resis-
tor that is enabled during reset or on processors with ID2-0=00x.

ADDR23-0 I/O/T External Bus Address. The ADSP-21161 processor outputs
addresses for external memory and peripherals on these pins. In a
multiprocessor system the bus master outputs addresses for
read/writes of the IOP registers of other ADSP-21161 processors
while all other internal memory resources can be accessed indirectly
via DMA control (that is, accessing IOP DMA parameter registers).
The ADSP-21161 processor inputs addresses when a host processor
or multiprocessing bus master is reading or writing its IOP registers.
A keeper latch on the processor’s ADDR23-0 pins maintains the
input at the level it was last driven. This latch is only enabled on the
processors with ID2-0=00x.

BRST I/O/T Sequential Burst Access. BRST is asserted by ADSP-21161 proces-
sor to indicate that data associated with consecutive addresses is
being read or written. A slave device samples the initial address and
increments an internal address counter after each transfer. The
incremented address is not pipelined on the bus. A master
ADSP-21161 processor in a multiprocessor environment can read
slave external port buffers (EPBx) using the burst protocol. BRST is
asserted after the initial access of a burst transfer. It is asserted for
every cycle after that, except for the last data request cycle (denoted
by RD or WR asserted and BRST negated). A keeper latch on the
processor’s BRST pin maintains the input at the level it was last
driven. This latch is only enabled on processors with ID2-0=00x.

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
7-6 ADSP-21161 SHARC Processor Hardware Reference

External Port
CLKIN I Local Clock In. Used in conjunction with XTAL. CLKIN is the
ADSP-21161 processor clock input. It configures the ADSP-21161
processor to use either its internal clock generator or an external
clock source. Connecting the necessary components to CLKIN and
XTAL enables the internal clock generator. Connecting the external
clock to CLKIN while leaving XTAL unconnected configures the
ADSP-21161 processor to use the external clock source such as an
external clock oscillator.The ADSP-21161 processor external port
cycles at the frequency of CLKIN. The instruction cycle rate is a
multiple of the CLKIN frequency; it is programmable at power-up
via the CLK_CFG1-0 pins. CLKIN may not be halted, changed, or
operated below the specified frequency.

CLKOUT O/T Local Clock Out. CLKOUT is 1x or 2x and is driven at either 1x or
2x the frequency of CLKIN frequency by the current bus master.
The frequency is determined by the CLKDBL pin. This output is
three-stated when the ADSP-21161 processor is not the bus master.
A keeper latch on the processor’s CLKOUT pin maintains the out-
put at the level it was last driven. This latch is only enabled on pro-
cessors with ID2-0=00x.
If CLKDBL enabled, CLKOUT = 2xCLKIN
If CLKDBL disabled, CLKOUT = 1xCLKIN
Note: CLKOUT is only controlled by the CLKDBL pin and oper-
ates at either 1xCLKIN or 2xCLKIN.
Do not use CLKOUT in multiprocessing systems. Use CLKIN
instead.

Table 7-1. External Memory Interface Signals (Cont’d)

Pin Type Function

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
ADSP-21161 SHARC Processor Hardware Reference 7-7

External Memory Interface
DATA47-16 I/O/T External Bus Data. The ADSP-21161 processor inputs and outputs
data and instructions on these pins. Pull-up resistors on unused data
pins are not necessary. A keeper latch on the processor’s
DATA47-16 pins maintains the input at the level it was last driven.
This latch is only enabled on the processors with ID2-0=00x.
Note: DATA[15:8] pins (multiplexed with L1DATA[7:0]) can also
be used to extend the data bus if the link ports are disabled and not
used. In addition, DATA[7:0] pins (multiplexed with
L0DATA[7:0]) can also be used to extend the data bus if the link
ports are not used. This allows execution of 48-bit instructions from
external SBSRAM (system clock speed-external port), SRAM (sys-
tem clock speed-external port) and SDRAM (core clock or one-half
the core clock speed). The IPACKx Instruction Packing Mode Bits
in SYSCON should be set correctly (IPACK1-0 = 0x1) to enable
this full instruction Width/No-packing Mode of operation.

LxDAT7-0
[DAT15-0]

I/O
[I/O/T]

Link Port Data (Link Ports 0-1). Each LxDAT pin has a 50 kΩ
internal pull-down resistor that is enabled or disabled by the LxP-
DRDE bit of the LCTL register.
Note: L1DATA[7:0] are multiplexed with the DATA[15:8] pins
L0DATA[7:0] are multiplexed with the DATA[7:0] pins. If link
ports are disabled and are not be used, then these pins can be used
as additional data lines for executing instructions at up to the full
clock rate from external memory.

MS3-0 I/O/T Memory Select Lines. These outputs are asserted (low) as chip
selects for the corresponding banks of external memory. Memory
bank sizes are fixed to 16 Mwords for non-SDRAM and 64 Mwords
for SDRAM. The MS3-0 outputs are decoded memory address
lines. In asynchronous access mode, the MS3-0 outputs transition
with the other address outputs. In synchronous access modes, the
MS3-0 outputs assert with the other address lines; however, they
de-assert after the first CLKIN cycle in which ACK is sampled
asserted. In a multiprocessor systems, the MSx signals are tracked by
slave SHARCs.

Table 7-1. External Memory Interface Signals (Cont’d)

Pin Type Function

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
7-8 ADSP-21161 SHARC Processor Hardware Reference

External Port
Banked External Memory
The processor divides external memory into four equal-size, fixed banks.
Bank sizes are 16 Mword for non-SDRAM and 64 Mword for SDRAM.
By mapping peripherals into different banks, systems can accommodate
I/O devices with different timing requirements. For information on con-
figuring these memory banks for waitstates and synchronous or
asynchronous access modes, see “Setting Data Access Modes” on
page 5-32.

On the ADSP-21161 processor, Bank 0 starts at address 0x20 0000
in external memory and is followed in order by Banks 1, 2, and 3.
When the processor generates an address located within one of the
four banks, the processor asserts the corresponding memory select
line, MS3-0.

RD I/O/T Memory Read Strobe. RD is asserted whenever ADSP-21161 pro-
cessor reads a word from external memory or from the IOP registers
of other ADSP-21161 processors. External devices, including other
ADSP-21161 processors, must assert RD for reading from a word of
the ADSP-21161 processor IOP register memory. In a multiprocess-
ing system, RD is driven by the bus master. RD has a 20 kΩ inter-
nal pull-up resistor that is enabled for processors with ID2-0=00x.

WR I/O/T Memory Write Low Strobe. WR is asserted when ADSP-21161 pro-
cessor writes a word to external memory or IOP registers of other
ADSP-21161 processors. External devices must assert WR for writ-
ing to ADSP-21161 processor's IOP registers. In a multiprocessing
system, WR is driven by the bus master. WR has a 20 kΩ internal
pull-up resistor that is enabled for processors with ID2-0=00x.

Table 7-1. External Memory Interface Signals (Cont’d)

Pin Type Function

I (Input), S (Synchronous), o/d (Open Drain), O (Output), A (Asynchronous), a/d (Active
Drive), T (Three-state, when SBTS or HBR is asserted, or when the processor is a bus slave)
ADSP-21161 SHARC Processor Hardware Reference 7-9

External Memory Interface
The MS3-0 outputs serve as chip selects for memories or other external
devices, eliminating the need for external decoding logic. For more infor-
mation, see “Timing External Memory Accesses” on page 7-13. The MS3-0
lines are decoded memory address lines that change at the same time as the
other address lines. When no external memory access is occurring, the
MS3-0 lines are inactive.

Unlike previous SHARCs, strobe assertion for conditional instruc-
tions occurs only when the instruction condition code evaluates as
true.

Boot Memory
Most often, the processor only asserts the BMS memory select line when the
processor is reading from a boot EPROM. This line allows access to a sep-
arate external memory space for booting. Both ROM boot memory
waitstates and the mode of the WAIT register are applied to BMS-selected
accesses.

The BMS output is only driven by the processor bus master. For more
information on booting, see “Bootloading Through The External Port” on
page 6-70 or “Bootloading Through The Link Port” on page 6-88.

It is also possible to write to boot memory using BMS. For more informa-
tion, see “Using Boot Memory” on page 5-35.

Idle Cycle

A bus idle cycle is an inactive bus cycle that the processor automatically
generates to avoid data bus driver conflicts. Such a conflict can occur
when a device with a long output disable time continues to drive after RD
is deasserted while another device begins driving on the following cycle.
Idle cycles are also required to provide time for a slave in one bank to
three-state its ACK driver, before the slave in the next bank enables its ACK
7-10 ADSP-21161 SHARC Processor Hardware Reference

External Port
driver in the synchronous access modes. Figure 7-3 shows idle cycle inser-
tion between a synchronous read and a zero-wait, synchronous write in
cycle 3.

All timing diagrams show the default data bus width DATA [47:16].
When the full bus is enabled for 48-bit non-packed execution of
instructions or transfers of data with the PX register, the data bus
width is 48 bits, DATA47:0.

Figure 7-3. Idle Cycle Example

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

IDLE CYCLEREAD OP WRITE OP
ADSP-21161 SHARC Processor Hardware Reference 7-11

External Memory Interface
To avoid this data bus driver conflict, the processor generates an idle cycle
in the following cases:

• On a transition from a read operation to a write operation in the
same bank.

• On a transition from one bank or multiprocessor memory ID space
to any other bank or multiprocessor slave ID space, independent of
access mode.

Unlike previous SHARCs, the ADSP-21161 processor does not
support idle cycle insertion on a page boundary crossing.

Data Hold Cycle

The data hold cycle is another configurable memory access feature for
adding cycles much like waitstates, as discussed in “Setting Data Access
Modes” on page 5-32. A hold time cycle is an inactive bus cycle that the
processor automatically generates at the end of a read or write to allow a
longer hold time for address and data. The address, data (if a write), and
bank select (if in banked external memory) remain unchanged and are
driven for one cycle after the read or write strobes are deasserted. The pro-
cessor inserts the data hold cycle only in asynchronous mode and only if
the number of programmed waitstates code (EBxWS) is 010-111.
Figure 7-4 demonstrates a hold time cycle appended to an asynchronous
write access (EBxWS=011).

The ADSP-21161 processor does not append an Idle cycle after a
Hold cycle.

Multiprocessor Memory Space Waitstates and Acknowledge

Multiprocessor memory space uses only the synchronous transfer proto-
cols, using the zero-waitstate access for writes and a minimum
one-waitstate access for reads. Slave processors deassert ACK if more access
7-12 ADSP-21161 SHARC Processor Hardware Reference

External Port
time is required. DMA burst transfers are only defined for direct read
access of a processor slave’s external port buffers (EPBx). For more infor-
mation, see “Multiprocessor (MP) Interface” on page 7-87.

The ADSP-21161 processor does not support the MMSWS bit from
previous SHARCs.

Timing External Memory Accesses
Memory access timing for external memory space and multiprocessor
space is the same. For exact timing specifications, refer to the
ADSP-21161N DSP Microcomputer Data Sheet.

The processor can interface to external memories and memory-mapped
peripherals that operate asynchronously with respect to CLKIN. The pro-
cessor also supports synchronous external memories and memory-mapped
peripherals. Synchronous devices derive all of their bus timing from CLKIN
of the processor.

Figure 7-4. Hold Time Cycle Example

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0

WR

DATA 47:16

HOLD TIME
CYCLEWRITE OPERATION
ADSP-21161 SHARC Processor Hardware Reference 7-13

External Memory Interface
CLKOUT with CLKDBL tied low can be used as a clock source to
peripherals only in single processor systems.

The synchronous interface mode supports DMA burst transfers, which
can significantly improve bus throughput for large, contiguous block
transfers. The synchronous interface protocols are compatible with Syn-
chronous Burst SRAMS (SBSRAMs) from a variety of vendors. In a
multiprocessing system, the ADSP-21161 processor must be the bus mas-
ter in order to access external memory.

When interfacing to synchronous external memories, CLKIN must
be used to provide the clock source to the synchronous device.

Asynchronous Mode Interface Timing

Figure 7-5 shows typical timing for an asynchronous read or write of
external memory. Here, the CLKIN clock signal indicates that the access
occurs within a single CLKIN cycle. All timing for the master processor is
derived synchronously from CLKIN. The asynchronous slave mode modi-
fies the basic synchronous access to better support slaves whose timing is
not derived from CLKIN.

Figure 7-6 shows timing relationships used by the asynchronous external
access mode. In this mode,

• The strobes assert and deassert based on timing derived from an
internal clock whose frequency is twice that of the core clock. (This
differs from synchronous mode where the strobes assert from the
same edge.) The trailing edge timing is derived from the rising edge
of the internal version of CLKIN.

• The MSx memory select lines are held stable for the entire access.
(This differs from synchronous read or synchronous write—mini-
mum 2-cycle—modes where the memory select lines are deasserted
after the first cycle of the transfer that uses ACK.)
7-14 ADSP-21161 SHARC Processor Hardware Reference

External Port
• For read operations, DATA47:16 are sampled by the processor on the
rising edge of the RD. This differs from synchronous mode where
DATA47:16 are sampled by the internal version of CLKIN.

• Asynchronous memories or memory mapped devices that require
added waitstates through the deassertion of ACK must be configured
for a minimum of one internal waitstate due to a potential lack of
sufficient decode time for ACK delay from address/selects Refer to
ADSP-21161N DSP Microcomputer Data Sheet for timing
specifications.

Asynchronous Mode Read—Bus Master

Processor bus master reads of external memory, in asynchronous mode,
occur with the following sequence of events as shown in Figure 7-5.

1. The processor samples ACK synchronously. If ACK is asserted, the
processor drives the read address and asserts a memory select signal
(MS3-0) to indicate the selected bank. A memory select signal is not

Figure 7-5. External Memory Asynchronous Access Cycle

READ/WRITE ADDRESS

WRITE DATA

CLKIN

ADDRESS[23:0]

MS3-0

RD or WR

(WRITE) DATA 47:16

(READ) DATA 47:16

ACK
ADSP-21161 SHARC Processor Hardware Reference 7-15

External Memory Interface
deasserted between successive accesses of the same memory bank. If
ACK is sampled deasserted, the processor waits one CLKIN cycle to
sample ACK again.

2. The processor asserts the read strobe.

3. The processor checks whether waitstates are needed. If so, the
memory select and read strobe remain active for additional cycles.
Waitstates are determined by a combination of the state of the
external acknowledge signal (ACK) AND the internally programmed
waitstate count.

Figure 7-6. Asynchronous Access Timing Derivation

1 2

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

CLKIN

A0

D0
7-16 ADSP-21161 SHARC Processor Hardware Reference

External Port
4. The processor deasserts the read strobe in the cycle where no fur-
ther waitstates are indicated. The data bus (DATA47:16) is sampled
on the rising edge of the read strobe.

5. If a hold cycle is programmed for the accessed bank (via the EBxWS
parameter of the WAIT register), the address bus and memory selects
are held stable for an additional cycle. If initiating another read
memory access to the same bank, the processor drives the address
and memory select for that access in the next cycle.

Asynchronous Mode Write—Bus Master

Processor bus master writes to external memory, in asynchronous mode,
occur with the following sequence of events as shown in Figure 7-5.

1. The processor samples ACK synchronously. If ACK is asserted, the
processor drives the write address and asserts a memory select signal
(MS3-0) to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.
The processor also drives the write data (DATA47:16). If ACK is sam-
pled deasserted, the processor waits one CLKIN cycle to sample ACK
again.

2. The processor asserts the write strobes.

3. The processor checks whether waitstates are needed. If so, the
memory select and write strobe remain active for additional cycles.
Waitstates are determined by a combination of the state of the
external acknowledge signal (ACK) AND the internally programmed
waitstate count.

4. The processor deasserts the write strobes near the end of the cycle
where no further waitstates are indicated.

5. The processor three-states its data outputs, unless the next access is
also a write to the same bank, or if a hold cycle is programmed for
the accessed bank using the EBxWS parameter of the WAIT register. If
ADSP-21161 SHARC Processor Hardware Reference 7-17

External Memory Interface
a Hold cycle is inserted, the address bus, data bus, and memory
selects are held stable for an additional cycle. If initiating another
memory access to the same bank, the processor drives the address
and memory select for the next access in the following cycle.

Synchronous Mode Interface Timing

Any slave addressed by a processor in a bank configured for synchronous
transfer mode must use a clock with frequency and phase characteristics
similar to CLKIN on the processor. The slave samples all inputs, and drives
all outputs on the rising edge of this clock.

Except for zero-waitstate writes, the slave must assert ACK at least twice for
each access; once to acknowledge the address/command (strobe assertion)
and once (if not a burst) or more to acknowledge the data transfer. Due to
insufficient decode time, the first ACK can be due to the keeper latch
(internal pullup enabled for ID=00x) holding the assertion of ACK from the
previous slave.

The following notes apply to all synchronous access modes:

• A slave recognizes the start of a valid bus operation by synchro-
nously sampling one or more of the strobes and ACK asserted. ACK
assertion is by the previous bus slave, allowing a new bus access to
launch.

• For each of the non-burst, synchronous read/write accesses (except
zero-waitstate writes), the master recognizes the end of the access as
the cycle in which:

1. The slave samples or drives data in response to a valid oper-
ation driven by the master (read or write),

2. The slave asserts ACK to the master (except for zero-waitstate
write operations), and
7-18 ADSP-21161 SHARC Processor Hardware Reference

External Port
3. The number of waitstates for read or write access to that
bank has occurred—asserting ACK does not terminate the
wait count early.

• The program must select a number of waitstates that is consistent
with the access time for the slave addressed by that external mem-
ory bank.

• For the zero-waitstate writes, the access can only be extended
beyond one clock cycle by deasserting ACK in the cycle of the trans-
fer. This extension can occur on back-to-back writes in which ACK
is deasserted due to full write buffer capacity from the previous
write. Otherwise, slaves can asynchronously deassert ACK in the first
cycle.

• Deasserting ACK during the initial command phase does inhibit
waitstate count and change of bus signals. After the first ACK asser-
tion, deasserting ACK for the data phase does not inhibit waitstate
counting.

• Only one slave (or driver for ACK) should be allocated per external
memory bank. More than one slave may introduce ACK drive
contention.

• The read/write strobes for an access do not assert until ACK is sam-
pled asserted. This conditional strobe assertion delays the start of
an access until ACK is asserted by the previous slave. This sampling
is because the slave target of a single-cycle write operation may
have deasserted ACK in the cycle (due to a previous write access), to
stall further writes to that slave. To provide a cycle for the previous
slave to three-state its ACK driver before the next slave drives ACK,
the next operation to a new bank must not launch on the bus.
ADSP-21161 SHARC Processor Hardware Reference 7-19

External Memory Interface
• Write/read access stalls (no state change, other than internal wait-
state counting) on the bus if ACK is deasserted in cycle(s) of data
transfer.

• The last read/write operation must be acknowledged via ACK before
a transition to a new bus master (BTC), bank, or multiprocessor
space slave occurs. The master always inserts an Idle cycle on this
transition. No pipelining can occur across these boundaries.

Synchronous Mode Read—Bus Master

An example synchronous read cycle appears in Figure 7-7. Propagation
delays are not shown in this timing diagram. Because a synchronous access
requires a rising clock edge for the slave to sample the asserted signals of
the master (and for the master to sample the signals of the slave), the min-
imum read access in the synchronous mode is two CLKIN cycles.

In synchronous access mode, the waitstate selection in the WAIT
register (EBxWS) must be 001 or greater. EBxWS=000 is not sup-
ported in synchronous access mode.

This example demonstrates a minimum latency, one-waitstate, 32-bit
(normal word) read, from external memory.

Bus master synchronous reads from external memory occur with the fol-
lowing sequence of events as shown in Figure 7-7:

1. (cycle 1) If ACK is sampled as asserted at the beginning of cycle 1,
the processor drives the read address and asserts a memory select
signal (MS3-0) to indicate the selected bank. The processor asserts
the RD strobe. The read strobe is not deasserted between successive
read accesses of the same memory bank.

2. (cycle 2) If ACK was sampled as deasserted at the beginning of the
cycle (not shown), the MSx strobes would remain asserted. If ACK
was sampled asserted, the MSx strobes would deassert. The slave
must be capable of detecting that MSx was asserted in cycle 1 and
7-20 ADSP-21161 SHARC Processor Hardware Reference

External Port
must retain this information internally. If ACK was deasserted by the
previous slave (for a single-cycle write), deassertion of the MSx is
delayed.

3. (cycle 2) The processor checks whether more than one waitstate is
needed. If so, the read strobe remains active for additional cycle(s).
Waitstates are determined by a combination of the state of the
external acknowledge signal (ACK) AND the programmed waitstate
count.

4. (end of cycle 2) The data bus (DATA47:16) is sampled on the rising
edge of CLKIN.

Figure 7-7. Typical Synchronous Read Timing

1 2

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK
ADSP-21161 SHARC Processor Hardware Reference 7-21

External Memory Interface
5. (cycle 3) If initiating another read memory access to the same bank,
the processor drives the address, memory select, and strobe for the
next access.

Figure 7-8 shows back-to-back reads to the same bank with the second
access stalled for one cycle by the slave deasserting ACK. This example
assumes that the EBxWS=001 for this bank, indicating one internal
waitstate.

Synchronous Write, Zero-Waitstate Mode

Figure 7-9 on page 7-24 shows typical synchronous write cycle timing.
Propagation delays are not shown in this timing diagram. Synchronous
access requires a rising clock edge for the slave to sample the asserted sig-
nals of the master (and for the master to sample the signals of the slave). In
the case of writes, the latency can be reduced to a single cycle if the slave
always latches the bus signals on each clock cycle (it does not sample ACK).
For example, the slave can not sample the bus, decode that it is being
addressed as a slave, and sample the write data of the bus in the following
cycle. The slave samples the bus each cycle and decodes the sampled value
to determine if that slave was addressed by the write operation. If the
slave’s write queue goes full with that write, the slave deasserts ACK in the
cycle after the write operation transferred on the bus. Any subsequent bus
operation (read or write) stalls until ACK is sampled asserted, as shown in
cycle 2 of Figure 7-9.

The example demonstrates a minimum latency, zero-waitstate, 32-bit
write in cycle 1 followed by a write to the same bank. This write stalls
because ACK is deasserted in cycle 2 in response to the write in cycle 1. The
second access is a 32-bit write to external memory.

The zero-waitstate write mode provides the highest performance if the
slave has sufficient write buffer storage. Systems should use this mode
where the slave can always accept one write transfer (unless ACK is deas-
serted) and can generally accept more than one write. If the slave has only
one store buffer, such that it always deasserts ACK after the first write, the
7-22 ADSP-21161 SHARC Processor Hardware Reference

External Port
one-waitstate write mode may be the better choice. The zero-waitstate
write mode is targeted towards ASIC/FPGA designs, which implement
multiple write buffers (including processor as a slave), and fully pipelined
synchronous devices such as SBSRAMs.

Slaves that do not support bursting protocols do not need to con-
nect to the BRST signal.

Figure 7-8. Two Synchronous Reads From Same Bank

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0]

RD

WR

BRST

DATA 47:16

ACK
ADSP-21161 SHARC Processor Hardware Reference 7-23

External Memory Interface
Bus master synchronous writes to external memory occur with the follow-
ing sequence of events as shown in Figure 7-9:

1. (cycle 1 in Figure 7-9) If ACK is sampled asserted at the start of cycle
1, the processor bus master drives the write address and asserts a
memory select signal (MS3-0) to indicate the selected bank. The
processor asserts the WR strobe. The write strobe is not deasserted
between successive write accesses of the same memory bank.

2. (cycle 1) The previous slave three-states ACK. Note that the previous
slave could have driven ACK deasserted through cycle 1 if a write in
the previous cycle caused its write queue to fill. Only one slave is
supported per bank, and any bank transition has an IDLE cycle
inserted to provide time for the slave to three-state ACK.

Figure 7-9. Typical Synchronous Write Example

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

1 2 3

WRITE #1 WRITE #2

WRITE #1 WRITE #2
STALL 2ND WRITE
7-24 ADSP-21161 SHARC Processor Hardware Reference

External Port
3. (cycle 2) The processor is initiating another write memory access to
the same bank. It drives the address, memory select, and strobe for
the next access.

4. (cycle 2) The slave, having decoded that it received a valid write
operation in the previous cycle, detects that it cannot accept fur-
ther bus operations until an element in the write queue becomes
available, so it deasserts ACK.

5. (cycle 3) The processor samples ACK deasserted by the slave. It
inserts waitstates until ACK is sampled asserted. The write ends in
the cycle where ACK is asserted by the slave (end of cycle 3).

Figure 7-10 shows a zero waitstate write, followed by a synchronous read
from the same bank. The slave addressed by both accesses determines in
cycle 2 that it has no more write capacity. It deasserts ACK in this cycle, in
response to the write in cycle 1. In cycle 3, the slave determines that it is
now addressed by the master to perform a read and asserts ACK to acknowl-
edge the transfer. The slave asserts ACK in cycle 4 when read data is
available to complete the data transfer. The memory select for the read
access is held asserted by the master until cycle 4, because ACK was deas-
serted in cycle 2.

Synchronous Write, One Waitstate Mode

Because some synchronous slaves cannot support a free-running latch
function to capture zero-wait bus writes, the processor also supports a
minimum two-cycle (minimum one-waitstate) write access. This mode is
set using the bank Access Mode bits (EBxAM). For more information on
access modes, see Table A-20 on page A-66.

The one-waitstate, synchronous write access is shown in the second write
of Figure 7-11. In this example, the first access is to a bank configured for
asynchronous writes (cycle 1). In Figure 7-11, this condition is shown by
the deassertion of the write strobe before the rising edge of CLKIN for cycle
2. In cycle 2, a bank transition occurs, and an idle cycle is inserted to
ADSP-21161 SHARC Processor Hardware Reference 7-25

External Memory Interface
allow the slaves to transition ownership of ACK. In cycle 3, the second write
begins, to a new bank configured for one-waitstate write access. The
address and data are held for a minimum of two cycles. Similar to the syn-
chronous read, MSx deassert in the second cycle of the write (cycle 4), and
the waitstate counter decrements if ACK is sampled asserted. The access can
be held off the bus by deasserting ACK in cycle 2, or extended by deassert-
ing ACK in cycle 3 (unlikely for a synchronous slave) or cycle 4.

Synchronous Burst Mode Interface Timing

Synchronous burst mode provides improved performance on synchronous
operations. The processor supports a DMA-mastered burst mode. If the
addressed slave supports this burst transfer, after the one or more wait-
states associated with access to the first 32-bit read data transfer,

Figure 7-10. Synchronous Write Followed by Synchronous Read Example

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

write address
read address

write data read data
7-26 ADSP-21161 SHARC Processor Hardware Reference

External Port
contiguous data can transfer on each subsequent clock cycle, up to a max-
imum of four 32-bit transfers. Burst accesses support only 32-bit data
transfers. Partial data bus width transfers are not supported.

For burst transfers, the master drives the address of the first access on the
bus during the entire burst transfer. The master does not increment the
address for the slave. Because the maximum length of the burst transfer is
four, slaves only need a 2-bit address incrementer to generate the offset
address from the address driven by the master on the bus. Table 7-2 shows
burst length determination as a function of initial address. If the DMA
channel has sufficient data to transfer, it initiates a new burst transfer
starting at ADDR1-0 = 00, 01, or 10 when it wins bus arbitration. Bursts
always terminate when ADDR1-0=11.

Figure 7-11. Asynchronous Write Followed By Synchronous Write -
One-Waitstate Mode

1 2 3 4

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

WRITE #1 IDLE WRITE #2, DIFFERENT BANK
ADSP-21161 SHARC Processor Hardware Reference 7-27

External Memory Interface
An example of a synchronous burst read of length three appears in
Figure 7-12. Here, the bank used in the transfer has two waitstates.

Table 7-2. Linear Burst Address Order

First Address[1:0]
(external)

Second Address
(internal)

Third Address
(internal)

Fourth Address
(internal)

00 01 10 11

01 10 11 Burst Terminated1

10 11 Burst Terminated1

11 Burst Terminated2

1 Master always terminates burst when internal address[1:0] = 11
2 Master transfers this case as a single synchronous access

Figure 7-12. External Memory Synchronous Burst Read Example

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

ADDRESS[1:0] = 01
7-28 ADSP-21161 SHARC Processor Hardware Reference

External Port
Burst Length Determination

The DMA arbitration logic reduces the initial access latency by bursting
up to the maximum burst length of four when possible, assuming the
channel is burst enabled. When a DMA channel wins internal I/O proces-
sor arbitration, the channel drives the internal buses as with a non-burst
transfer. At the same time, the I/O processor detects whether it can per-
form a burst transfer, according to the following criteria:

1. The DMAC burst enable (MAXBL1-0) control bit field is set for that
DMA channel.

2. The EM register is set to 0 or 1. A value of 0 does not increment EI.
This is useful when bursting to or from a registered data port,
buffer, or register, such as the EPBx FIFOs of another processor.

3. The EC register is greater than or equal to two (32-bit) words.

4. The EPBx FIFO for that channel has at least two 32-bit words to
transfer for an external burst write or has at least two empty 32-bit
elements to receive data for an external burst read.

5. The two least significant bits of the DMA channel external address
are not set (ADDR1-0 does not equal 11).

Burst Stall Criteria

If the I/O processor determines that it can perform a burst transfer
(according to the burst length criteria), the arbitration between the proces-
sor core and the I/O processor locks the effective arbitration grant to that
DMA channel until:

1. The DMA channel external ADDR1-0 = 11. By disconnecting the
burst on this boundary, a modulo4 (ADDR23-0) is effectively imple-
mented, which is required by SBSRAMs, and other slaves with
ADSP-21161 SHARC Processor Hardware Reference 7-29

External Memory Interface
limited address incrementing capability. For processor-based sys-
tems, slaves only need a 2-bit counter to support the address
incrementing function of the burst.

2. Space in the EPB FIFO drops to less than two 32-bit elements (if an
external bus read), or less than four valid 32-bit elements for exter-
nal bus writes. This almost full or empty detection is required by
the master logic to deassert BRST on the cycle before the end of the
burst.

3. EC goes to < 2; the burst pin must negate at EC=1.

4. HBR and SBTS are asserted on the external bus, indicating the dead-
lock resolution case in which the processor must three-state its
outputs and switch into slave mode. For more information, see
“Deadlock Resolution” on page 7-82. Assertion of either signal
alone does not terminate the burst early. HBR assertion does not
receive an HBG until the burst finishes. SBTS assertion causes the
master to three-state outputs and insert waitstates.

If any of these conditions occur, normal arbitration between the processor
core and I/O processor for the external bus occurs. If the same bursting
channel wins arbitration again, a new burst is initiated, introducing at
least one lost or dead cycle in the burst throughput for reads.

When arbitration occurs, the DMA channel loses arbitration if any of the
following conditions are detected:

1. Higher priority external request for the bus:

a. HBR asserted

b. BRx asserted and BMAX time out has occurred

c. BRx asserted and PA asserted, but not by this master
7-30 ADSP-21161 SHARC Processor Hardware Reference

External Port
2. Higher priority internal I/O processor requester:

a. Processor core request (DAGs or program sequencer)

b. A higher priority request from another DMA channel or
direct read/write access causes this channel to lose arbitra-
tion. For more information, see “I/O Processor” on
page 6-1.

Synchronous Burst Reads

External memory synchronous burst reads occur with the following
sequence of events as shown in Figure 7-12:

1. (cycle 1 in Figure 7-12) If ACK is sampled asserted at the beginning
of cycle 1, the processor drives the read address and asserts a mem-
ory select signal (MS3-0) to indicate the selected bank.

2. (cycle 1) The processor asserts RD strobe to indicate a read request
of the slave.

3. (cycle 2) As with the non-burst synchronous read, the processor
deasserts the MSx output signal, asserts the BRST output signal, and
enables waitstate counting if ACK is sampled asserted at the end of
cycle 1.

4. (cycle 2) The processor checks whether more than one waitstates (2
waitstates for this example) is needed. If so, BRST and the read
strobe remain active for additional cycle(s).

5. (cycle 3) The slave samples BRST asserted, informing it that the
master requests at least one more transfer after the current transfer
is acknowledged via ACK by the slave.

6. (cycle 3) The programmed number of waitstates has been counted,
and the slave is driving 32-bits of valid data and asserting the ACK
signal. This ends the first access.
ADSP-21161 SHARC Processor Hardware Reference 7-31

External Memory Interface
7. (cycle 4) The slave drives the next 32-bits of contiguous data and
asserts ACK. If the slave needs more time to service any one transfer
within the burst, it can deassert ACK to stall the bus transfer.

8. (cycle 4) The slave samples BRST asserted, informing it that the
master requests at least one more 32-bit transfer.

9. (cycle 5) The master deasserts BRST to inform the slave that this is
the last transfer of the burst. In this example, the master deasserts
BRST due to the address modulo4 function. The two LSBs of the
initial address = 01. The slave increments the address as
01->10->11. This is the maximum offset needed to support from
the initial address.

10.(cycle 5) The slave drives valid data for the last transfer, and asserts
ACK.

11.(cycle 6) If initiating another burst read memory access to the same
bank, the processor asserts the address, memory select, and strobes
for the next access. This introduces at least two dead cycles in the
back-to-back burst throughput, because the initial waitstate count
applies to the first access of the second burst.

12.(cycle 6) With BRST sampled deasserted, the slave concludes its ser-
vice of the burst request by three-stating the DATA47:16 and ACK
drivers.

As a master, the processor supports burst reads on each of the four external
port DMA channels. Each channel has an independent burst enable con-
trol field (MAXBL1-0).

As a slave, the processor supports read bursts from the EPBx buffers (with
the EPBx read). For more information, see “Multiprocessor (MP) Inter-
face” on page 7-87 and “Host Processor Interface” on page 7-42.
7-32 ADSP-21161 SHARC Processor Hardware Reference

External Port
Because reads of the EPBx FIFO are destructive, the processor slave
must deassert ACK on each transfer of the burst to guarantee that it
samples the deasserted BRST input before performing the EPBx
FIFO read. If your system design uses a similar destructive read
data buffer, use precaution when burst reads of the buffer are
supported.

Synchronous Burst Writes

The processor can master burst read and write operations in the one-wait-
state write access mode (EBxAM=10) if one or more DMA channels are
configured appropriately. The processor can master non-burst, zero-wait-
state, writes in every cycle. Burst write transfers are not supported in this
access mode. Synchronous external devices require at least one cycle of
write access latency (for example, bus bridges, SDRAM controllers, and
others). These devices may be able to optimize throughput for burst write
operations, based on the contiguous, incrementing block transfer informa-
tion conveyed by the burst protocol. Burst accesses support only 32-bit
data transfers; partial data bus width transfers are not supported.

An example of a synchronous burst write appears in Figure 7-13. Here,
the bank used in the transfer has the one-waitstate mode, for the first write
of the burst.

External memory synchronous burst writes occur with the following
sequence of events as shown in Figure 7-13:

1. (cycle 1 in Figure 7-13) If ACK is sampled asserted at the start of
cycle 1, the processor drives the write address and asserts a memory
select signal (MS3-0) to indicate the selected bank. The processor
also drives valid data in this cycle. The processor asserts the WR
strobe to indicate a write command to the slave.

2. (cycle 2) The slave samples the write command and address. At this
point, the slave does not see that a burst write is in progress—the
access looks identical to a non-burst synchronous write. If the slave
ADSP-21161 SHARC Processor Hardware Reference 7-33

External Memory Interface
cannot accept the write command, it deasserts ACK in this cycle to
stall the bus until it can. In this example, it has buffer capacity to
accept all of the data of the burst, so ACK stays asserted.

3. (cycle 2) If ACK was sampled asserted at the start of the cycle, the
processor asserts the BRST output signal and deasserts the MSx out-
put signal.

4. (cycle 3) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the second of four data
transfers within the burst.

Figure 7-13. External Memory Synchronous Burst Write Example

1 2 3 4 5

CLKIN

ADDRESS 23:0

MS3-0

RD

WR

BRST

DATA 47:16

ACK

ADDRESS[1:0]=00

6

7-34 ADSP-21161 SHARC Processor Hardware Reference

External Port
5. (cycle 3) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave samples the second of four data transfers within
the burst and asserts ACK.

6. (cycle 4) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the third of four data
transfers within the burst.

7. (cycle 4) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave also samples the third of four data transfers
within the burst, and asserts ACK. If the slave needs more time to
service any one transfer within the burst, it can deassert ACK to stall
the bus transfer.

8. (cycle 5) The processor samples ACK asserted by the slave at the start
of the cycle. It increments the data bus to the last of four data
transfers within the burst. The master deasserts BRST to inform the
slave that this is the last transfer of the burst.

9. (cycle 5) The slave samples BRST asserted at the start of the cycle,
informing it that the master is writing at least one more 32-bit
transfer. The slave samples the fourth of four data transfers within
the burst and asserts ACK.

10.(cycle 6) If initiating another write burst memory access to the
same bank, the processor asserts the address, memory select, and
strobes for the next access. This introduces at least one dead cycle
in the back-to-back burst throughput, because the initial waitstate
count applies to the first access of the second burst.

11.(cycle 6) With BRST sampled deasserted, the slave concludes its ser-
vice of the burst request by three-stating the ACK driver.
ADSP-21161 SHARC Processor Hardware Reference 7-35

External Memory Interface
As a master, the processor supports burst writes on each of the four exter-
nal port DMA channels. Each channel has an independent burst enable
control field (MAXBL1-0).

As a slave, ADSP-21161 processor does not support burst writes.
Bursting is enabled by setting MAXBL1-0 to 01 in the DMACx register.
Enabling bursting can corrupt data transmitted during DMA mas-
ter writes because the MAXBL bit setting is not ignored when the
BRST signal is asserted. The ADSP-21161 only supports proces-
sor-to-processor single cycle writes. Therefore, no improvement in
throughput performance is achieved by enabling bursting. To
enable ADSP-21161 to ADSP-21161 DMA driven write transfers,
set MAXBL1-0 to 00.

Using External SBSRAM
The processor can connect to a variety of synchronous burst static RAMs
(SBSRAMs) with a glueless interface—no external logic required. These
synchronous memories can provide high throughput, especially when
using the burst read transfer modes. The processor has features to support
SBSRAMs from several memory vendors.

The processor can support both flow-through and fully-pipelined
SBSRAMs. Using flow-through devices delivers lower latency and higher
system performance when a system is designed properly.

CLKIN must be used as the clock source for SBSRAM. You cannot
use an external crystal when interfacing with SBSRAM.

Do not use CLKOUT as the clock source for the SBSRAM device.
Using an external crystal in conjunction with CLKDBL to generate a
CLKOUT frequency is not supported. Negative hold times can result
from the potential skew between CLKIN and CLKOUT.
7-36 ADSP-21161 SHARC Processor Hardware Reference

External Port
The processor can support SBSRAMs on any of the four external memory
banks. The processor supports SBSRAM single transfer reads and writes
and SBSRAM burst read transfer operations.

Burst write transfers are not supported, because the single-write
feature of SBSRAMs achieves the same throughput level, with less
complexity.

SBSRAM support is enabled by configuring the bank access mode (EBxAM)
bits for synchronous, one-cycle writes and waitstate (EBxWS) bits for one
waitstate (flow-through SBSRAMs) or two waitstates (fully pipelined
SBRAMs). For more information on programming access modes and wait-
states, see the WAIT register bits in Table A-20 on page A-66.

If burst read transfer functionality is needed, one or more of the external
port DMA channels must be configured appropriately. Because burst
transfers are controlled at the DMA channel, the DMA sequence must
make sure that the DMA burst transfer addresses a memory bank or slave
that supports the read burst transfer.

Figure 7-14 and Table 7-3 show how the processor I/O should be con-
nected to the SBSRAM I/O. Table 7-3 assumes a 512 Kbyte SBSRAM
array consisting of one bank with a 3.3V, 32K x 32 device. The names of
the SBSRAM signals may vary from between vendors.

Figure 7-14 is for illustrative purposes—actual system designs may
differ and must be carefully analyzed to determine the actual sys-
tem topology.

The SBSRAM devices are fully synchronous devices, except for the output
enable. The processor issues commands and updates the SBSRAM address
latches, as a controller, using the ADSC input of the SBSRAMs, rather than
the ADSP processor input. Using the ADSC SBSRAM input enables single
cycle writes and simplifies SBSRAM deselect operations.
ADSP-21161 SHARC Processor Hardware Reference 7-37

External Memory Interface
Figure 7-14. SBSRAM System Interface Example

Table 7-3. ADSP-21161 to SBSRAM Signal Mapping

ADSP-21161 SBSRAM Comment

CLKIN CLK Clock input of SBSRAM should be driven by CLKIN of the
processor.

ADDR15-0 ADDR15-0 Address connection

MSx CE Chip Enable, active low

BRST ADSC Address Status Controller, active low

RD OE Asynchronous Output Enable of SBSRAM, active low

WR GW Global Write Enable of SBSRAM, active low

DATA47:16 DATA31-0 I/O of SBSRAM (High word of bus, odd address)

No connect CE Chip Enable, active high, always asserted (Vdd)

No connect CE2 Second Chip Enable, always asserted (GND)

No connect ADSP Always Deasserted (Vdd)

No connect ADV Always Asserted (GND)

No connect BWE Byte Write Enable, always deasserted (Vdd)

No connect BW4-1 Byte Write Selects, always deasserted (Vdd)

ADSP-21161

MS0

ADDR[23:0]

BRST

RD

DATA[47:16]

SBSRAM
32KX32

ADDR[15:0]

CE1

ADSC

OE

GW

ADSP

ADV

BWE
BW[4:1]

LBO

CE

CE2

ZZ

DATA[31:0]
CLKIN

CLK

WR

DATA[47:16]
7-38 ADSP-21161 SHARC Processor Hardware Reference

External Port
By asserting the ADV (advance address) input to the SBSRAM, the device is
continuously attempting to burst. This input is ignored when ADSC is
asserted. Because the BRST/ADSC signal is always low for a single access or
the first access of a burst, the SBSRAM always updates its address latches
correctly. For the subsequent transfers (up to three, after the initial access)
of a read burst, the SBSRAM samples BRST/ADSC high. The asserted ADV
correctly advances the internal address count of the SBSRAM.

The processor issues four types of bus operations to the SBSRAMs, as
shown in Table 7-4.

No connect LBO Linear Burst Order, active low, always asserted (GND)

No connect ZZ Sleep Mode Enable, active high, always deasserted (GND)

Table 7-4. SBSRAM Partial Truth Table

SBSRAM Operation CE1
MSx

ADSC
BRST

ADV1

1 ADV statically held asserted, low

GW
WR

OE
RD

I/O

Read cycle, begin
burst

L2

2 L=low, H=High, X=don’t care, Hi-Z=three-stated, high impedance output

L X H L Data

Write cycle, begin
burst

L L X L H Hi-Z

Read cycle, continue
burst

X H L H L Data

Deselect Cycle H L X X X Hi-Z

All other signal inputs held static per Figure 7-14

Table 7-3. ADSP-21161 to SBSRAM Signal Mapping (Cont’d)

ADSP-21161 SBSRAM Comment
ADSP-21161 SHARC Processor Hardware Reference 7-39

External Memory Interface
Single read or write transfers, and the first transfer of a burst read, use the
read or write cycle and begin burst bus operation. Burst write transfers are
not supported. The subsequent transfers (up to three) of a read burst use
the read cycle and continue burst bus operation. The last cycle of any read
access performs a deselect bus operation ensure that the SBSRAM data
buffers remain three-stated for accesses to other banks.

The write operations are achieved by configuring the appropriate bank of
the processor to synchronous minimum one-cycle write mode. The syn-
chronous read waitstate count should be programmed to one for
flow-through SBSRAMs, or two for fully pipelined SBSRAMs.

SBSRAMs are not stalled, or suspended, by assertion of ACK in this
configuration. Systems should not deassert ACK during any
SBSRAM access. The processor has a weak pullup device on ACK;
ACK does not need to be driven during an access to a slave which
does not or cannot control ACK.

Figure 7-15 demonstrates a burst read of the flow-through SBSRAM, fol-
lowed by a single write to the SBSRAM, and a single read of the
SBSRAM. For burst operations, the deasserting BRST is not required in the
last cycle of the burst transfer. The processor’s burst protocols also support
ASIC/FPGA systems. The pipelined end-of-burst indicator may be useful
in these systems.

The SBSRAM array size can be increased from the example by using
higher density devices or implementing multiple banks of SBSRAM. Mul-
tiple banks are possible using the depth expansion feature of the
SBSRAMs and the multiple memory select outputs of the processor.
7-40 ADSP-21161 SHARC Processor Hardware Reference

External Port
SBSRAM Restrictions
SBSRAM (or other synchronous peripherals such as bridge chips) is
restricted using the same external clock generator source provided to the
CLKIN pin of the processor.

Do not use CLKOUT as the clock source to the SBSRAM. The clock
source connected to both the CLKIN and the clock input of the
SBSRAM must be a clock source provided by an external oscillator
or other clock source. External crystals in conjunction with the
internal clock generator (and CLKDBL) should not be used to gener-
ate a CLKOUT source for the SBSRAM.

Figure 7-15. SBSRAM – Burst Read, Single Write, Single Read

1 2 3 4 5 6 7 8 9 10

A0 B1 C1

A0 A1 A2 A3 B1 C1

CLKIN

ADDRESS 23:0

MS0 (CE)

BRST (ADSC)

RD (OE)

WR (GW)

ACK

DATA 47:16

DE-
SELECT
CYCLE

DE-
SELECT
CYCLE

IDLE
CYCLE
ADSP-21161 SHARC Processor Hardware Reference 7-41

Host Processor Interface
Host Processor Interface
The ADSP-21161 processor’s host interface supports connecting the pro-
cessor to 8-, 16- or 32-bit microprocessor buses. By providing an address,
a data bus, and memory control signals—such as read, write and chip
select—a host may access any device on the processor bus as if it were a
memory. The processor accommodates asynchronous data transfers,
allowing the host to use a different clock frequency. For maximum host
throughput and low and high pulse widths for WR and RD, refer to the
ADSP-21161N processor Microcomputer Data Sheet.

The ADSP-21161 processor host processor interface does not sup-
port synchronous data transfers.

Figure 7-16 shows an example of how to connect a host processor to the
ADSP-21161 processor and Table 7-5 defines the processor pins used in
host processor interfacing.

The host accesses the ADSP-21161 processor through its external port.
Figure 6-5 on page 6-23 shows a block diagram of the external port, I/O
processor, and FIFO data buffers, illustrating the on-chip data paths for
host-driven transfers. The four external port DMA channels are available
for use by the host—DMA transfers of code and data can be performed
with low software overhead.

The host processor requests and controls the processor’s external bus with
the host bus request (HBR) and host bus grant (HBG) signals. Host logic does
not need to duplicate the distributed multiprocessor arbitration protocol
of the DSPs. After the host gets control of the bus, the host transfers data
asynchronously. The host bus may be 8-, 16-, or 32-bits wide for asyn-
chronous transfers.

The host also uses the chip select (CS) and ready (REDY) signals. After get-
ting control of the bus, the host can read and write to any of the
processor’s I/O processor registers, including the EPBx FIFO buffers. The
host uses I/O processor registers such as SYSCON and SYSTAT to control and
7-42 ADSP-21161 SHARC Processor Hardware Reference

External Port
monitor the processor and to set up DMA transfers. DMA transfers are
controlled by the processor’s I/O processor after they are set up by the
host. In a multiprocessor system, the host can access the I/O processor
registers of every ADSP-21161.

Data written to and read from the processor can be packed or unpacked
into different word widths. The host bus width control bits (HBW) in the
SYSCON register configure data packing and unpacking.

Figure 7-16. Example Processor to Host System Interface

ADSP-21161

ADDR23-0

DATA47:16

ID2-0

HBR

HBG

WR

RD

ACK

MS3-0

REDY

CS

BR1-BR6

000
3

ADDR

DATA

EXTERNAL
MEMORY

CS

ACK

OE

WE

WR

RD

SYSTEM
ADDRESS

BUS

ADDRESS
COMPARATOR

HBR

CS

REDY

REDY
HBG

HBR SYSTEM BUS INTERFACE

OE T/R

DSP BUS

SYSTEM BUS

"ADDRESS
VALID"

HBG

ACK

SYSTEM
DATA BUS
ADSP-21161 SHARC Processor Hardware Reference 7-43

Host Processor Interface
Acquiring the Bus
For a host processor to gain access to the processor, the host must first
assert HBR, the host bus request signal. HBR has priority over all BRx multi-
processor bus requests. When asserted, HBR causes the current master to

Table 7-5. Host Interface Signals

Signal Type Definition

HBR I/A Host Bus Request. Must be asserted by a host processor to request con-
trol of the ADSP-21161 processor's external bus. When HBR is asserted
in a multiprocessing system, the ADSP-21161 processor that is bus mas-
ter relinquishes the bus and asserts HBG. To relinquish the bus, the
ADSP-21161 processor places the address, data, select, and strobe lines
in a high impedance state. HBR has priority over all ADSP-21161 pro-
cessor bus requests (BR6-1) in a multiprocessing system.

HBG I/O Host Bus Grant. HBG acknowledges an HBR bus request, indicating
that the host processor may take control of the external bus. HBG is
asserted (held low) by the processor until HBR is released. In a multi-
processing system, HBG is output by the processor bus master and is
monitored by all others.

CS I/A Chip Select. Asserted by host processor to select the ADSP-21161 pro-
cessor.

I=Input, S=Synchronous, (o/d)=Open Drain, O=Output, A=Asynchronous, (a/d)=Active Drive
7-44 ADSP-21161 SHARC Processor Hardware Reference

External Port
give up the bus to the host after the it finishes the current bus operation. If
the current operation is a burst transfer, the change in bus mastership
interrupts the transfer on a modulo4 boundary.

The current bus master signals that it is transferring ownership of the bus
by asserting HBG (low) when the current bus operation ends. The cycle in
which control of the bus is transferred to the host is called a Host Transi-
tion Cycle (HTC).

Bus slaves respond to HBG assertion with or without the assertion of
HBR. Therefore erroneous assertions of HBG (glitching, etc.) can
cause slave DSPs to believe that the host is the current bus master.

Figure 7-17 shows the timing for the host acquiring the bus. HBG is
asserted while the bus master releases control of the bus and remains
asserted until HBR is sampled deasserted by the ADSP-21161 processor.
The cycle in which control of the bus is released by the bus master is called
the processor’s Bus Transition Cycle (BTC). HBG freezes the multiproces-
sor bus arbitration during the time that the host has control of the bus.
HBG may be used to enable the host’s signal buffers, as shown in
Figure 7-16 on page 7-43, Figure 7-24 on page 7-80, and Figure 7-25 on
page 7-81. Arbitration is frozen due to the current bus master continu-
ously asserting its BRx. While HBG is asserted in a multiprocessor system,
the DSPs continue to assert their BRx outputs, as in normal operation, but
no BTC occurs. The current bus master keeps its BRx output asserted
throughout the entire time the host controls the bus.

After HBR is asserted, and before HBG is given, HBG floats for 1 tCK (1
CLKIN cycle). To avoid erroneous grants, HBG should be pulled up
with a 20kΩ to 50kΩ external resistor.

After the host gets control of the bus, the host can perform transfers with
the processor or other system components. To initiate transfers, the host
asserts (low) the CS and HBR inputs of the processor that it intends to access
and performs the read or write. The processor does not respond to CS until
HBG is asserted.
ADSP-21161 SHARC Processor Hardware Reference 7-45

Host Processor Interface
The host may also communicate directly with system peripherals, such as
SBSRAMs. These transfers occur using the protocol of the peripheral or
using the external handshake mode of DMA channels 10 and 11 to con-
trol the memory or peripheral. With DMA handshaking, the host only
needs to source or sink the data with the correct timing. Either of these
solutions may require additional hardware support for the host.

The host is responsible for driving the following signals during the HTC
in which it gains control of the bus: ADDR23-0, RD, WR, and DMAGx (if used
in the system). These signals must be driven by the host while the host is
bus master. Also, the host must drive or weakly pull up or down the
MS3-0, BRST, CLKIN, DMAG1, and DMAG2 signals as required. The bus master
three-states these lines, letting the host use them.

The processor with device ID=000 or 001 enables internal pullup devices
on the MS3-0, RD, WR, DMAR1, DMAR2, DMAG1, and DMAG2 signals. The pullup
provides a weak current source to hold these signals in the deasserted state
when driven to that state.

Excessive system noise can cause these weakly driven signals
(MS3-0, RD, WR, DMAR1, DMAR2, DMAG1, and DMAG2) to be sampled
asserted.

The processor with device ID=000 or 001 enables its keeper latches on
ADDR23-0 and DATA47-16, BRST, and CLKOUT, so these signals are weakly
pulled to the last value driven on them if any of these signals remain
undriven for multiple cycles.

During read-modify-write operations, the host should keep HBR asserted to
avoid temporary loss of bus mastership. HBR must remain asserted until
after the host completes the last data transfer.
7-46 ADSP-21161 SHARC Processor Hardware Reference

External Port
Figure 7-17. Example Timing for Host Acquisition of Bus

1 2 3 4 5 6 7 8

A0 Host Address

D0 Host Data D1

CLKIN

HBR

CS

REDY

HBG

BRx

ADDR 23:0

MSx

WR

RD

DATA 47:16

ACK

A1
ADSP-21161 SHARC Processor Hardware Reference 7-47

Host Processor Interface
The following restrictions apply to bus acquisition by the host:

• If HBR is asserted while the processor is in reset, it does not respond
with HBG until after reset and multiprocessor synchronization is
completed.

• The host should keep HBR asserted until after the host completes its
last data transfer and is ready to give up bus ownership.

• If SBTS is asserted after HBR, the processor enters slave mode and
suspends any unfinished access to the external bus.

• In uniprocessor systems (with ID2-0=000), the host must assert CS
in the same cycle as HBR to initiate an asynchronous access.

After the host finishes its task, it can relinquish control of the bus by deas-
serting HBR. The bus master responds by deasserting HBG in the cycle after
sampling HBR deasserted. In the cycle following deassertion of HBG, the bus
master assumes control of the bus and normal multiprocessor arbitration
resumes.

Asynchronous Transfers
To initiate asynchronous transfers after acquiring control of the proces-
sor’s external bus, the host must assert the CS input of the processor to be
accessed. The host then drives the address of the I/O processor register to
access. To simplify the hardware requirements for external interface logic,
only the address bits shown in Table 7-6 need to be driven.
7-48 ADSP-21161 SHARC Processor Hardware Reference

External Port
Table 7-6 applies to all asynchronous host access cases, including multi-
processor systems. Fewer address bits may need to be driven depending on
the system. For example, in a uniprocessor system, the host does not need
to drive the ADDR20 address pins. Use the following guidelines when
designing a system that uses asynchronous host accesses.

• A host can only access IOP register space on the ADSP-21161
processor.

• The ADSP-21161 processor now uses 9 address lines to access the
IOP registers.

• The ADSP-21161 processor does not support the Instruction
Word Transfer (IWT) function from previous SHARC DSPs. 48-bit
instructions can be transferred by configuring the host packing
mode to one of the 48-bit internal transfer modes.

Table 7-6. Address Fields For Asynchronous Host Accesses

Address Bits1 Comments

ADDR8-0 Must be driven in all cases.

ADDR16-9 Floating

ADDR19-17 S field2, floating

ADDR20 M field2, must be 0

or

ADDR23-21 E field2, One of these bits must be 1.

ADDR25-24 V field2, virtual.

ADDR27-26 V field2, virtual, MSx.

1 Setup and hold times for these address lines are specified in the Data Sheet.
2 For a complete description of these address fields, see “Multiprocessor Memory” on page 5-19.
ADSP-21161 SHARC Processor Hardware Reference 7-49

Host Processor Interface
Host accesses to non-existent IOP register addresses are not sup-
ported. These accesses result in a host bus grant (HBG) hang.
Therefore, ensure that host accesses generate valid IOP register
addresses.

When using asynchronous transfers and direct access to IOP register
space, only the lower 9 bits, ADDR8-0, need be supplied by the host. The
upper address bits can be configured as Table 7-6.

Asynchronous write operations are latched at the I/O pads in a four-deep
FIFO buffer; this buffer is called the slave write FIFO and appears in
Figure 6-5 on page 6-23. This buffering allows previously written words
to be re-synchronized while a new word is being written. For maximum
host throughput and low and high pulse widths for WR and RD, refer to the
ADSP-21161N DSP Microcomputer Data Sheet.

A host may write to several ADSP-21161s simultaneously (a broadcast
write) by asserting each of their CS pins. Each processor accepts the write
as if it were the only device being addressed. Because the REDY output is
wire-ORed (if configured as an open-drain output), REDY only appears
asserted when all selected DSPs are ready, unless REDY is actively pulled
up. ACK is not active when CS is asserted.

To eliminate the need for a host to drive the multiprocessor address lines
(ADDR20-17) in systems with only one processor (ID2-0=000), the proces-
sor with ID2-0=000 does not recognize synchronous accesses to these
addresses. The host must drive these address lines with 0000 or one of the
ADDR23-21 address pins must be driven high to select an address in external
memory if the processor’s ID2-0 is anything other than 000. To account
for buffer delays when sampling the REDY signal, systems must make sure
that REDY is properly re-synchronized by the host.
7-50 ADSP-21161 SHARC Processor Hardware Reference

External Port
Host Transfer Timing
When a processor’s CS chip select is asserted (low), the selected processor
deasserts the REDY signal. Refer to the ADSP-21161N DSP Microcomputer
Data Sheet for exact timing specifications.

As shown in Figure 7-18, the processor deasserts REDY in response to CS.
The host can assert CS before or after HBR is asserted. When HBG is not
asserted, this timing is determined by the tTRDYHG switching characteristic
specified in the “Multiprocessor Bus Request and Host Bus Request” tim-
ing data in the ADSP-21161N DSP Microcomputer Data Sheet.

REDY is asserted prior to RD or WR being asserted and becomes deasserted
only if the processor is not ready for the read or write to complete—the
only exception is when CS is first asserted. The REDY pin is an open-drain
output to facilitate interfacing to common buses. It can be changed to an
active-drive output by setting the ADREDY bit in the SYSCON register.

Figure 7-18 shows the timing of a host write cycle, including details of
data packing and unpacking. This timing applies to the example host
interface hardware shown in Figure 7-25 on page 7-81 and has the follow-
ing sequence:

1. The host asserts the address. HBR and CS are decoded from the host
bus interface address comparator and do not need to be supplied
directly by the host. The selected processor deasserts REDY
immediately.

2. The host asserts WR and drives data according to the timing require-
ments specified in the ADSP-21161N DSP Microcomputer Data
Sheet.

3. The selected processor asserts REDY when it is ready to accept the
data. This transition occurs after the current bus master has com-
pleted its current transfer and has asserted HBG. HBG enables the host
interface buffers to drive onto the processor bus.
ADSP-21161 SHARC Processor Hardware Reference 7-51

Host Processor Interface
Figure 7-18. Example Timing for Host Read and Write Cycles

HBR

HOST
ADDRESS

CS

HOST BUFFERS
TURN ON

VALID ADDRESS VALID

HBG

DRIVEN
BY HOST

DRIVEN BY
DSP BUS MASTER

DATA

BRx

ACK

REDY

DATA SETUP

VALID

BUS
TRANSITION
CYCLE (BTC)

HOST
TRANSITION
CYCLE (HTC)

REDY DEASSERTED
FOR A MIN OF

1 CYCLE

V ALID DATA
FROM DS P

DATA FROM HOST IS LATCHED INTO DSP ON WR RISING EDGE

HOST TRISTATES
BEFORE

ASSERTING RD

DRIVEN BY
EACH DSP

DATA IS LATCHED IN HOST
ON RD RISING EDGE

HOST
WRITE

HOST
READ

RD
WR
MSx DRIVEN

INACTIVE
BEFORE

THREE-SATE

ADDRESS SETUP
7-52 ADSP-21161 SHARC Processor Hardware Reference

External Port
4. The host deasserts WR when REDY is high and stops driving data.

5. The selected processor latches data on the rising edge of WR.

After the first word, the write sequence is:

1. The host asserts WR and drives data according to the timing require-
ments specified in the ADSP-21161N DSP Microcomputer Data
Sheet.

2. The processor deasserts REDY if it is not ready to accept data.

3. The host deasserts WR when REDY is high and stops driving data.

4. The selected processor latches data on the rising edge of WR.

More than one processor may have its CS pin asserted at any one time dur-
ing a write, but not during a read because of bus conflicts.

Figure 7-18 also shows the timing of a host read cycle. This timing applies
to the bus interface hardware in Figure 7-25 on page 7-81 and has the fol-
lowing sequence:

1. The host asserts the address. HBR and the appropriate CS line are
decoded by the host bus interface address comparator. The selected
processor deasserts REDY immediately and asserts HBG.

2. The host asserts RD.

3. The selected processor drives data onto the bus and asserts REDY
when the data is available.

4. The host latches the data and deasserts RD.
ADSP-21161 SHARC Processor Hardware Reference 7-53

Host Processor Interface
After the first word, the read sequence is:

1. The host asserts RD.

2. The selected processor deasserts REDY then asserts REDY, driving
data when it becomes available.

3. The host deasserts RD when REDY is high and latches the data.

Host Interface Deadlock Resolution With SBTS
In host systems, the host may need to recover the processor from a slave
deadlock condition. When a host processor uses SBTS and HBR for deadlock
resolution, SBTS operates differently than when the host uses only SBTS.

By asserting both SBTS and HBR, the host places the ADSP-21161 in slave
mode. ACK, HBG, REDY, and the data bus may all be active in slave mode. If
the ADSP-21161 was performing an external access (which did not com-
plete) in the same cycle that SBTS and HBR were asserted, the access is
suspended until SBTS and HBR are both deasserted again.

As with previous SHARCs, this functionality—using SBTS and HBR
together—can be used for host/processor deadlock resolution. If SBTS and
HBR are asserted while bus lock is set, the processor three-states its bus sig-
nals, but does not go into slave mode. For more information, see
“Deadlock Resolution” on page 7-82.

If SBTS and HBR are asserted while an external DMA access is occur-
ring, HBG is not asserted until the access is completed.

The processor also supports burst transfers, which can be truncated by
assertion of HBR and SBTS. If the DMA transaction was a burst transfer,
when the host relinquishes control of the local bus, the processor resumes
the burst transfer, starting at the address of the last operation that did not
complete.
7-54 ADSP-21161 SHARC Processor Hardware Reference

External Port
Slave Reads and Writes
The host can directly access the I/O processor registers of a processor by
reading or writing the appropriate address.

These accesses are invisible to the slave processor’s core. They do not
degrade internal memory or internal bus performance. This capability is
important, because it lets the processor core continue program execution
uninterrupted.

The host can directly read or write the I/O processor registers to control
and configure the processor or to set up DMA transfers for indirect
read/write access to internal memory.

IOP Shadow Registers

To ease host and multiprocessor system operations, the I/O processor reg-
isters include registers that shadow or mirror some processor core system
registers, including the program counter (PC), and MODE2_SHDW registers.
These registers facilitate system start up and debug, by letting the host (or
another processor in an multiprocessor system) interrogate these processor
core registers. These shadow registers are read only and lag the value of the
registers they shadow by one internal core clock. For more information,
see “PC Shadow Register (PC_SHDW)” on page A-77 and “MODE2
Shadow Register (MODE2_SHDW)” on page A-78.

The silicon revision field of the MODE2 shadow register MODE2_SHDW
is now used for differentiating between silicon revisions. These cor-
responding bits in the MODE2 (foreground) register are now
reserved. The application program must read the MODE2_SHDW regis-
ter bits [31:25] to identify the silicon revision. MODE2_SHDW is a
memory-mapped IOP register whose address is 0x11.
ADSP-21161 SHARC Processor Hardware Reference 7-55

Host Processor Interface
Instruction Transfers

For 8-, 16- or 32-bit host interfaces, the ADSP-21161 can pack and
unpack 48-bit instructions or 40-bit extended precision normal word data
based on the host packing mode selected with the HBW bits in the SYSCON
register.

Slave Write Latency

The processor handles asynchronous (from a host) and synchronous (from
another processor) writes differently. This difference influences the
latency for the writes.

When a bus slave receives data from an asynchronous write, the processor
latches the data and address in a four-level FIFO buffer. For synchronous
writes, this buffer is two levels deep. This buffer is called the slave write
FIFO and appears in Figure 6-5 on page 6-23. In the following cycle, the
slave write FIFO attempts to complete the write internally. This buffering
lets the host (or bus master) perform writes at the full clock rate.

The slave’s core cannot explicitly read the slave write FIFO. Also,
the processor cannot determine the slave write FIFO’s status.

Writes to the I/O processor registers from the slave write FIFO usually
occur in the following one or two cycles or when any current DMA trans-
fer is completed. The write takes more than two cycles only if a direct
write in the previous cycle was held off by a full buffer.

If the slave write FIFO is full when a write is attempted, the processor
deasserts ACK (or REDY) until the FIFO is not full. Unless higher priority
on-chip DMA transfers are occurring, the slave write FIFO usually emp-
ties out within one cycle, creating a one-cycle write latency.

Slave reads are held off when there is data in the slave write FIFO—this
prevents false data reads and out-of-sequence operations.
7-56 ADSP-21161 SHARC Processor Hardware Reference

External Port
Slave Reads

When a read of an ADSP-21161 occurs, the address is latched on-chip by
the I/O processor and REDY is deasserted asynchronously. When the data is
available, the I/O processor drives the data and asserts REDY.

I/O processor register reads have a maximum throughput of one access per
every three CLKIN cycles. As a slave, the processor supports burst read
accesses, which improve throughput for I/O processor register reads of
EPBx FIFOs only. Maximum throughput for synchronous burst direct read
accesses is summarized in Table 7-7. For hosts, the processor does not
support the synchronous burst protocol.

Broadcast Writes
Broadcast writes allow simultaneous transmission of data to all of the
ADSP-21161 processors in a multiprocessing system. The host processor
can perform broadcast writes to the same I/O processor register on all of
the slaves. Broadcast writes can be used to implement reflective sema-
phores in a multiprocessing system.

The host processor must assert the CS input of all processors in the system
and the address of the appropriate memory mapped I/O processor register
for a broadcast write.

Unlike previous SHARCs, the ADSP-21161 processor does not
include a broadcast write memory space into its address space and
therefore processor to processor broadcast writes are not supported.

Table 7-7. Direct Read Latencies for a 1:2 Clock Ratio

Access Type Latency (CLKIN cycles)

Single Read of I/O processor register 3

Burst Read of I/O processor registers (EPBx only) 3-2-2-2
ADSP-21161 SHARC Processor Hardware Reference 7-57

Host Processor Interface
Data Transfers Through the EPBx Buffers
The host processor can transfer data to and from the ADSP-21161
through the external port FIFO buffers, EPB0, EPB1, EPB2, and EPB3. Each
of these buffers, which are part of the I/O processor register set, is an
eight-location FIFO, 64-bit wide (or sixteen-location, 32-bit wide). These
buffers support single-word transfers, DMA transfers, and sequential burst
accesses. DMA transfers are handled internally by the I/O processor, but
single-word transfers must be handled by the processor core.

The processor supports synchronous burst read transfers (32-bit only)
from the EPBx FIFOs as a slave. Burst write transfers are not supported.

To perform a burst read transfer from an EPBx buffer, the master issues a
starting burst address pointing to one of the EPBx buffer addresses in I/O
processor control register space. The slave does not increment an EPBx
burst read address, and the master limits the burst transfer length to the
modulo4 address boundary restriction.

For information on external port transfers, see “External Port Channel
Transfer Modes” on page 6-46. For information on external port hand-
shaking, see “External Port Channel Handshake Modes” on page 6-47.

To support debugging buffer transfers, the processor has a Buffer
Hang Disable (BHD) bit. When set (=1), this bit prevents the pro-
cessor core from detecting a buffer-related stall condition,
permitting debugging of this type of stall condition. For more
information, see the BHD discussion on page 6-43.

DMA Transfers
The host processor can also set up DMA transfers to and from the
ADSP-21161. After the host gets control of the processor, the host can
access the on-chip DMA control and parameter registers to set up an
external port DMA operation. DMA is the most efficient way to transfer
7-58 ADSP-21161 SHARC Processor Hardware Reference

External Port
blocks of data. For DMA programming examples, see “External Port
DMA Example” on page 6-77 and “External Port Chained DMA Exam-
ple” on page 6-79.

• DMA Transfers to Internal Memory. The host can set up external
port DMA channels to transfer data to and from internal memory.

• DMA Transfers to External Memory. The host can set up an
external port DMA channel to transfer data directly to external
memory using the DMA request and grant lines (DMARx, DMAGx).

For more information, see “Setting Up External Port DMA” on
page 6-68.

The host may also use the DMARx/DMAGx handshake signals for a
DMA transfer as a bus slave, but may not use DMA as a bus master
while HBR retains control of the bus.

Host Data Packing
The host interface uses the same data packing features as the I/O processor
uses. The “8- to 32-Bit Data Packing” on page 7-66 and “48-Bit Instruc-
tion Packing” on page 7-74 sections describe timing for these data packing
operations.

For transfers to or from the EPBx data buffers, the packing mode is
determined by the setting of the HBW bits of the SYSCON register
AND the PMODE bits in the DMACx control register for each external
port buffer.

For host accesses, to pack and unpack individual data words, you must set
both the PMODE bits in the appropriate DMACx control register and the HBW
bits in the SYSCON register. Table 7-8 shows the packing mode bit settings
for access to IOP, link port and external port buffers.
ADSP-21161 SHARC Processor Hardware Reference 7-59

Host Processor Interface
The ADSP-21161 provides a glueless interface to 8-, 16-, and 32-bit
hosts. Three differences between the ADSP-21161 and the ADSP-21160
are:

• Connection of 8-bit hosts (in addition to 16- or 32-bit hosts) is
supported.

• There is limited direct access to IOP register space. A host proces-
sor and other ADSP-21161s in a multiprocessing configuration can
only directly access the memory mapped IOP registers of an
ADSP-21161. A host can only use asynchronous access to
ADSP-21161 registers (by using CS of the processor). The lower
nine bits of the 24-bit address bus are decoded to select an IOP
register for any access into the ADSP-21161’s internal memory.

Table 7-8. Packing Mode Combinations

PMODE HBW
8/16/32

Host Packing Mode (External:Internal)

IOP Buffers
Internal Packing
Fixed to 32-bit

Link Ports Buffers
Internal Packing
Fixed to 48-bit

External Port Buffers
Uses PMODE,
INT32 & DTYPE
(1=48/40, 0=32/64)

000 – Reserved

001 01 (16-bit) 16 : 32 16 : 48 16 : 32/64

010 01 (16-bit) 16 : 32 16 : 48 16 : 48-bit

011 00 (32-bit) 32 : 32 32 : 48 32 : 48-bit

100 00 (32-bit) 32 : 32 32 : 48 32 : 32/64

101 10 (8-bit) 8 : 32 8 : 48 8 : 48

110 10 (8-bit) 8 : 32 8 : 48 8 : 32/64

111 – Reserved
7-60 ADSP-21161 SHARC Processor Hardware Reference

External Port
• Synchronous broadcast write is not supported by the ADSP-21161
because there is no broadcast memory space. However, the host can
simultaneously write to the same address on all the processors asyn-
chronously by asserting CS for each processor simultaneously
during a write without any multiprocessor memory offset.

The host data bus is connected to the ADSP-21161 data bus in a
LSB-alignment to the default 32-bit active data bus DATA47-16. For exam-
ple, data pin 0 (D0) of host data bus connects to DATA16 of ADSP-21161
data bus, data pin 1 (D1) of the host data bus connects to DATA17 of the
ADSP-21161 data bus, and so on.

Depending on the register access, the processor packs/unpacks data as 32
bits, 48 bits, or up to 64 bits. A host can indirectly transfer data (via
DMA) to and from internal memory by writing or reading to/from EPBx.
To support this, several packing options are available. The newly defined
Host Bus Width (HBW) bits 5 and 4 in the SYSCON register control the host
data packing. They are described in Table 7-9 on page 7-65. Host Packing
Status (HPS) bits 24-22 have also been redefined in SYSTAT. They are
described in Table A-21 on page A-69.

Packing Mode Variations For Host Accesses
The host interface (using HBR, HBG, CS) uses data packing logic to allow the
packing of 8-, 16-, and 32-bit external bus words into 32-, 48-, and 64-bit
internal words. The packing logic is fully reversible; packing and unpack-
ing of data is performed for both directions of data transfer to external
data.

For 32-bit, 16-bit, and 8-bit host processors accessing IOP register space,
the processor can pack and unpack data to or from internal memory, inde-
pendent of the setting of the PMODE bits in the DMACx register, to either
32-bit, 48-bit, or up to 64-bits internal packing depending on the type of
host access. Although the packing mode for host access is configurable, it
can sometimes revert to fixed packing modes depending on the IOP regis-
ADSP-21161 SHARC Processor Hardware Reference 7-61

Host Processor Interface
ter accessed. In most cases, when a host accesses IOP control/status
registers, the processor defaults to internal data packing and unpacking to
a 32-bit access (independent of the setting of the PMODE bits in the DMACx
register). LBUFx buffer access is limited to 48-bits internal packing, ignor-
ing the PMODE bits in DMACx. EPBx buffer access always depends on the
PMODE bits, DTYPE and INT32 bits in DMACx.

The three host access cases are described in the following sections:

• “IOP Register Host Accesses” on page 7-62

• “LINK Port Buffer Access” on page 7-63

• “EPBx Buffer Accesses” on page 7-64

IOP Register Host Accesses

For accesses to all IOP registers except EPBx and LBUFx, the host data is
fixed to packed or unpacked to/from 32-bit internal data word. In most
cases, when accessing an IOP control or status register, or serial port and
SPI data buffers (TXn/RXn, SPIRX/SPITX), the PMODE bits in the DMACx regis-
ter are ignored. A fixed packing mode of 8-, 16- or 32-bit external to
32-bit internal is selected. This is because all IOP registers except LBUFx
and EPBx are 32 bits wide.

Ensure that host accesses generate valid IOP register addresses.
Host accesses to non-existent IOP register addresses are not sup-
ported, and can result in host bus grant (HBG) hang.

Host access of IOP control/status registers and SPORT/SPI data
buffers (except EPBx and LBUFx) will pack or unpack to 32 bits inter-
nally, ignoring the value of PMODE in DMACx. The HBW bits in the
SYSCON register are used as a reference to set the external packing
mode.
7-62 ADSP-21161 SHARC Processor Hardware Reference

External Port
For example, when interfacing the ADSP-21161 to an 8-bit microcontrol-
ler, the HBW bits are set in the SYSCON register to specify a host bus width of
8 bits. This results in an 8-bit external to 32-bit internal fixed data pack-
ing mode to an IOP register. Table 7-8 on page 7-60 shows the packing
mode combinations.

LINK Port Buffer Access

The link buffers LBUF0 and LBUF1 can also be accessed by an external host
processor, using direct reads and writes to IOP register space. However,
there are differences in how data is accessed with the link buffers com-
pared to other IOP control/status registers. When the host processor reads
or writes to these buffers, the external packing data access width is also
determined by the host bus width bits in the SYSCON register while the
internal packing mode is restricted to 48 bits.

Hosts accesses to the link port buffers pack or unpack to 48 bits
internally, ignoring the value of PMODE in DMACx. The HBW bits in the
SYSCON register are used to set the external packing mode.

In the case where a host processor reads or writes to the LBUF0 and LBUF1
link buffers, the PMODE bits in the DMACx external port DMA control regis-
ter are ignored and are fixed to a special 48-bit internal packing mode.
This fixed 48-bit internal packing mode is required because the
ADSP-21161 link port buffers transmit and receive 48-bit words.
Depending on the HBW bits in SYSCON, the appropriate external to 48-bit
internal memory packing mode are selected. The available bit settings are
shown in Table 7-8 on page 7-60.

It may be desirable in some applications for a host processor to transfer
instruction opcodes to another SHARC indirectly via the directly con-
nected SHARC’s link port by reading or writing the opcode data to or
from the LBUF0 and LBUF1 link buffers through the external port. For
example, with a 16-bit host, the packing mode internally defaults to
48-bit packed transfers such that the packing mode is 16-bit external to
48-bit internal packed data transfers.
ADSP-21161 SHARC Processor Hardware Reference 7-63

Host Processor Interface
EPBx Buffer Accesses

The external port buffers, EPB0, EPB1, EPB2, and EPB3 can also be accessed
by an external host processor, using direct reads and writes to IOP register
space. There are differences in how data is accessed with the EPBx buffers
as compared with other IOP control/status registers. When the host pro-
cessor reads or writes to external port buffers, the packing mode indicated
by the PMODE bits in the corresponding DMACx register are selected.

Host accesses to the external port buffers pack or unpack according
to the packing mode specified with the PMODE bits in DMACx.

Depending on the HBW bits in SYSCON and PMODE in DMACx, the appropriate
packing mode are selected as shown in Table 7-8 on page 7-60.

There is no direct write pending bit in SYSTAT (as in the
ADSP-21160) since the ADSP-21161 does not have a direct write
FIFO. However, the ADSP-21161 processor has two newly defined
bits in SYSTAT for checking the status of the slave write FIFO.

The following bits in the SYSTAT register affect host access:

• Synchronous Slave Write FIFO Data Pending. SYSTAT Bit 20
(SSWPD).Since a host cannot be synchronous, this bit is set for syn-
chronous access by another ADSP-21161. The bit is set (=1) when
synchronous slave IOP register write is pending. The bit is cleared
(=0) when the direct write is complete.

• Slave Write FIFO Data Pending. SYSTAT Bit 21 (SWPD).This status
bit is set for any host or SHARC write access to an IOP register. If
a host processor attempts to write data through the asynchronous
protocol, this status bit is set. The bit is set (=1) when a slave (asyn-
7-64 ADSP-21161 SHARC Processor Hardware Reference

External Port
chronous or synchronous) write to an IOP register is pending. The
bit is cleared (=0) when there is no slave write pending. The proces-
sor clears SWPD when the direct write is complete.

• Host Packing Order. SYSCON Bit 7 (HMSWF).This bit determines
whether the I/O processor packs the most significant or least signif-
icant word first for 8-bit and 16-bit hosts. For 32- to 32/64 and
32- to 48-bit packing, the processor ignores the HMSWF bit in the
SYSCON register and the MSWF bit in the DMACx register.

Host packing examples are shown below for host direct read/write access
to IOP control/status registers, TXn/RXn, SPIRX/SPITX and LBUFx data buff-
ers. The default internal packing is 32-bit for host accesses to IOP
control/status registers and 48-bit for host accesses to LBUFx, ignoring
PMODE bits in DMACx. If the HMSWF bit is set (=1), the packing and unpack-
ing is most significant word first. If the HMSWF bit is cleared (=0), the
packing and unpacking is least significant word first.

Table 7-9. Packing sequence for 32-bit IOP Register Data

Transfer Data Bus Pins 23-16 (8-bit
bus, LSW first)

Data Bus Pins 31-16 (16-bit
bus, MSW first)

First Word 1; bits 7-0 Word 1; bits 31-16

Second Word 1; bits 15-8 Word 1; bits 15-0

Third Word 1; bits 23-16

Fourth Word 1; bits 31-24

Table 7-10. Packing Sequence for Accessing 48-bit LBUFx Data

Transfer Data Bus Pins 31-16 (16-bit
bus, MSW first)

Data Bus Pins 23-16 (8-bit
bus, MSW first)

First LBUFx; bits 47-32 LBUFx; bits 47-40

Second LBUFx; bits 31-16 LBUFx; bits 39-32

Third LBUFx; bits 15-0 LBUFx; bits 31-24
ADSP-21161 SHARC Processor Hardware Reference 7-65

Host Processor Interface
To write a single 48-bit word or an odd number of 48-bit words to
LBUFx, write a dummy access to completely fill the packing buffer.

8- to 32-Bit Data Packing

The processor latches incoming data on pins DATA23-16 for 8- to 32-bit
packing on an 8-bit host bus. Similarly, the processor drives outgoing data
on DATA23-16 with the other lines equal to zeroes. The sequence of events
for 32-bit packing and unpacking for writes and reads are shown in
Figure 7-19 on page 7-71.

When a host reads a 32-bit word with 8-bit unpacking using the typical
bus interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs:

• The host initiates a read cycle by driving an address, asserting CS,
and asserting RD (low).

Fourth LBUFx; bits 23-16

Fifth LBUFx; bits 15-8

Sixth LBUFx; bits 7-0

Table 7-11. Packing Sequence for Accessing 48-bit LBUFx Data From a
32-bit bus (MSW First)

Transfer Data Bus Pins 47-32 Data Bus Pins 31-16

First LBUFx 1; bits 47-32 LBUFx 1; bits 31-16

Second LBUFx 2; bits 15-0 LBUFx 1; bits 15-0

Third LBUFx 2; bits 47-32 LBUFx 2; bits 31-16

Table 7-10. Packing Sequence for Accessing 48-bit LBUFx Data (Cont’d)

Transfer Data Bus Pins 31-16 (16-bit
bus, MSW first)

Data Bus Pins 23-16 (8-bit
bus, MSW first)
7-66 ADSP-21161 SHARC Processor Hardware Reference

External Port
• The selected processor deasserts REDY, latches the address, and per-
forms an internal read to get the data.

• When the processor has the data, it asserts REDY and drives the first
8-bit word.

• The host latches the data and deasserts RD (high).

• The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

• The processor transmits the second 8-bit word.

• The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

• The processor transmits the third 8-bit word.

• The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

• The processor transmits the final 8-bit word. 8- to 32-bit packing
is complete.

When a host writes a 32-bit word with 8-bit packing using the typical bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs:

• The host initiates a write cycle by driving the write address, assert-
ing CS, and asserting WR (low).

• The processor asserts REDY when it is ready to accept data.

• The host drives the address and the first 8-bit word and deasserts
WR (high).

• The processor latches the first 8-bit word.
ADSP-21161 SHARC Processor Hardware Reference 7-67

Host Processor Interface
• The host drives the address and initiates another write cycle for the
second 8-bit word by asserting WR.

• The processor latches the second 8-bit word.

• The host drives the address and initiates another write cycle for the
third 8-bit word by asserting WR.

• The processor latches the third 8-bit word.

• The host drives the address and initiates another write cycle for the
fourth 8-bit word by asserting WR.

• When the processor has accepted the fourth word, it performs an
internal write to its memory-mapped I/O processor register. If the
processor's internal write has not completed by the time another
host access occurs, the processor holds off that access with REDY.

The packing sequence for downloading 32-bit data from a 8-bit host bus
takes four cycles for every word, as illustrated in as shown in Table 7-12.
The endian format of the transfers is controlled by the HMSWF bit in the
SYSCON register. If HMSWF=0, the least significant 8-bit word is packed first.
If HMSWF=1, the most significant 8-bit word is packed first.

Table 7-12. 8- to 32-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 23-16

First transfer Word1, bits 31-24

Second transfer Word1, bits 23-16

Third transfer Word1, bits 15-8

Fourth transfer Word1, bits 7-0
7-68 ADSP-21161 SHARC Processor Hardware Reference

External Port
16- to 32-Bit Packing

For a 16-bit host bus, the processor latches incoming data on pins
DATA31-16. Similarly, the processor drives outgoing data on DATA31-16
with the other lines equal to zeroes. The sequence of events for 32-bit
packing and unpacking is different for writes and reads.

When a host reads a 32-bit word with 16-bit unpacking using the bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs as illustrated in Figure 7-23 on page 7-73:

• The host initiates a read cycle by driving an address, asserting CS,
and asserting RD (low).

• The selected processor deasserts REDY, latches the address, and per-
forms an internal read to get the data.

• When the processor has the data, it asserts REDY and drives the first
16-bit word.

• The host latches the data and deasserts RD (high).

• The host initiates another read access, driving the address of the
data to be accessed then asserting RD.

• The processor transmits the second 16-bit word (16 to 32-bit pack-
ing is complete).

When a host writes a 32-bit word with 16-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the following
sequence of events occurs as illustrated in Figure 7-23 on page 7-73:

• The host initiates a write cycle by driving the write address, assert-
ing CS, and asserting WR (low).

• The processor asserts REDY when it is ready to accept data.

• The host drives the address and the first 16-bit word and deasserts
WR (high).
ADSP-21161 SHARC Processor Hardware Reference 7-69

Host Processor Interface
• The processor latches the first 16-bit word.

• The host drives the address and initiates another write cycle for the
second 16-bit word by asserting WR.

• When the processor has accepted the second word, it performs an
internal write to its memory-mapped I/O processor register. If the
processor's internal write has not completed by the time another
host access occurs and the 4 deep asynchronous slave FIFO is full,
the processor holds off that access with REDY.

The packing sequence for downloading or uploading instructions over an
16-bit host bus takes two cycles for every 32-bit word, as shown in
Table 7-13. The endian format of the transfers is controlled by the HMSWF
bit in the SYSCON register. If HMSWF=0, the least significant 16-bit word is
packed first. If HMSWF=1, the most significant 16-bit word is packed first.

Table 7-13. 16- to 32-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 31-16

First transfer Word1, bits 31-16

Second transfer Word1, bits 15-0
7-70 ADSP-21161 SHARC Processor Hardware Reference

External Port
Figure 7-19. Timing for 8- to 32-Bit Host Data Packing

Figure 7-20. Timing for 8- to 48-Bit Host Data Packing (Write)

8/32 BIT PACKING

HOST ADDRESS[23:0] WRITE
ADDR

READ
ADDR

WR

RD

(SAME) WRITE ADDRESS (SAME) READ ADDRESS

REDY

DATA[23:16]

WRITE 1ST
WORD

HOST WRITE WITH 8/32
BIT PACKING

HOST READ WITH 8/32
BIT PACKING

WRITE 2ND
WORD

WRITE 3RD
WORD

WRITE 4TH
WORD

READ 1ST
WORD

READ 2ND
WORD

READ 3RD
WORD

READ 4TH
WORD

8/48 BIT PACKING (WRITE)

HOST ADDRESS[23:0] WRITE
ADDR

READ
ADDR

WR

RD

(SAME) WRITE ADDRESS

REDY

DATA[23:16]

WRITE 1ST
WORD

HOST WRITE WITH 8/48
BIT PACKING

WRITE 2ND
WORD

WRITE 3RD
WORD

WRITE 4TH
WORD

READ 1ST
WORD

READ 2ND
WORD

WRITE 5TH
WORD

WRITE 6TH
WORD

NEXT PACKED
READ TRANSFER
ADSP-21161 SHARC Processor Hardware Reference 7-71

Host Processor Interface
Figure 7-21. Timing for 8- to 48-Bit Host Data Packing (Read)

Figure 7-22. Timing for 16- to 48-Bit Host Data Packing

8/48 BIT PACKING(READ)

HOST ADDRESS[23:0] WRITE
ADDR

READ
ADDR

WR

RD

(SAME) READ ADDRESS

REDY

DATA[23:16]

HOST READ WITH 8/48
BIT PACKING

READ 1ST
WORD

READ 2ND
WORD

READ 3RD
WORD

READ 4TH
WORD

READ 5TH
WORD

READ 6TH
WORD

PREVIOUS PACKED
WRITE TRANSFER

16/48 BIT PACKING

HOST ADDRESS[23:0] WRITE
ADDR

READ
ADDR

WR

RD

(SAME) WRITE ADDRESS (SAME) READ ADDRESS

REDY

DATA[31:16]

WRITE 1ST
WORD

HOST WRITE WITH 16/48
BIT PACKING

HOST READ WITH 16/48
BIT PACKING

WRITE 2ND
WORD

WRITE 3RD
WORD

READ 1ST
WORD

READ 2ND
WORD

READ 3RD
WORD
7-72 ADSP-21161 SHARC Processor Hardware Reference

External Port
Figure 7-23. Timing for Host Data Packing

WORD1
WRITE ADDR

1ST
WORD

WORD1

REDY

32/48 BIT PACKING

ADDR23-0

DATA47-16

WORD1
WRITE ADDR

WORD2
WRITE ADDR

WORD1
READ ADDR

WORD2
READ ADDR

WORD2
READ ADDR

READ 1ST
WORD

INTO DSP

READ 2ND
WORD

INTO DSP

2ND
WORD

3RD
WORD

WORD2 WORD3

HOST WRITE WITH
32/48 BIT PACKING

HOST READ WITH
32/48 BIT PACKING

WR

RD

WRITE
ADDRESS

(SAME) WRITE
ADDRESS

READ
ADDRESS

(SAME) READ
ADDRESS

REDY

WRITE 1ST WORD
INTO DSP

READ 1ST
WORD

FROM DSP

READ 2ND
WORD

FROM DSP

VALID VALID VALID VALID

16/32 BIT PACKING

DATA31-16

HOST WRITE WITH
16/32 BIT PACKING

HOST READ WITH
16/32 BIT PACKING

WR

RD

HOST
ADDRESS(15:0)

WRITE 1ST WORD
INTO DSP
ADSP-21161 SHARC Processor Hardware Reference 7-73

Host Processor Interface
If the processor is waiting for another 8- or 16-bit word from the host to
complete the packed word, the HPS field in the SYSTAT register is non-zero.
For more information, see “Host Interface Status” on page 7-76.

Because there is only one packing buffer for the host interface, the
host must complete each packed transfer before another is begun.
For more information, see “External Port Status” on page 6-127.

48-Bit Instruction Packing

The host can also download and upload 48-bit instructions over its 8-,
16-, or 32-bit bus.

32- to 48-Bit Packing

The packing sequence for downloading instructions from a 32-bit host
bus (HBW=00) takes 3 cycles for every 2 words, as illustrated in Table 7-14.
Data (32-bit) is transferred on data bus lines 47-16 (DATA47-16). If an odd
number of instruction words are transferred, the packing buffer must be
flushed by a dummy access to remove the unused word.

40-bit extended precision data may be transferred using the 48-bit pack-
ing mode. For more information on memory allocation for different word
widths, see “Memory Organization and Word Size” on page 5-25.

The HMSWF bit of SYSCON is ignored for 32- to-48-bit packing.

Table 7-14. 32- to 48-Bit Word Packing (Host Bus <-> ADSP-21161)

Transfer Data Bus Lines 47-32 Data Bus Lines 31-16

First transfer Word1, bits 47-32 Word1, bits 31-16

Second transfer Word2, bits 15-0 Word1, bits 15-0

Third transfer Word2, bits 47-32 Word2, bits 31-16
7-74 ADSP-21161 SHARC Processor Hardware Reference

External Port
When a host writes a 48-bit word with 32-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-23 on page 7-73.

16- to 48-Bit Packing

The packing sequence for downloading or uploading instructions over a
16-bit host bus takes three cycles for every 48-bit word, as shown in
Table 7-15.

When a host writes a 48-bit word with 16-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-22 on page 7-72.

8- to 48-Bit Packing

The packing sequence for downloading or uploading instructions over an
8-bit host bus takes six cycles for every 48-bit word, as shown in
Table 7-16. The endian format of the transfers is controlled by the HMSWF
bit in the SYSCON register. If HMSWF=0, the least significant word is packed
first. If HMSWF=1, the most significant word is packed first.

When a host writes a 48-bit word with 8-bit packing using typical bus
interface hardware shown in Figure 7-25 on page 7-81, the sequence of
events occurs as illustrated in Figure 7-23 on page 7-73.

Table 7-15. 16- to 48-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 31-16

First transfer Word1, bits 47-32

Second transfer Word1, bits 31-16

Third transfer Word1, bits 15-0
ADSP-21161 SHARC Processor Hardware Reference 7-75

Host Processor Interface
Host Interface Status
The SYSTAT register provides status information for host and multiproces-
sor systems. For more information on the SYSTAT register, see Table A-21
on page A-69.

Interprocessor Messages and Vector Interrupts
After getting control of the ADSP-21161, the host processor communi-
cates with it by writing messages to the memory-mapped I/O processor
registers. In a multiprocessor system, the host can access the I/O processor
registers of every ADSP-21161.

The MSGRx registers are general-purpose registers that can be used for mes-
sage passing between the host and the ADSP-21161. They are also useful
for semaphores and resource sharing between multiple DSPs. The MSGRx
and VIRPT registers can be used for message passing in the following ways:

• Message Passing. The host can use any of the eight message regis-
ters, MSGR0 through MSGR7, to communicate with the processor.

Table 7-16. 8- to 48-Bit Word Packing, HMSWF=1
(Host Bus <-> ADSP-21161)

Transfer Data Bus Pins 23-16

First transfer Word1, bits 47-40

Second transfer Word1, bits 39-32

Third transfer Word1, bits 31-24

Fourth transfer Word1, bits 23-16

Fifth transfer Word1, bits 15-8

Sixth transfer Word1, bits 7-0
7-76 ADSP-21161 SHARC Processor Hardware Reference

External Port
• Vector Interrupts. The host can issue a vector interrupt to the
processor by writing the address of an interrupt service routine to
the VIRPT register. When serviced, this high priority interrupt
causes the processor to branch to the service routine at that address.

The MSGRx and VIRPT registers also support shared-bus multiprocessing
through the external port. Because these registers may be shared resources
within a single processor, conflicts may occur—your system software must
prevent this. For further discussion of I/O processor register access con-
flicts, see “I/O Processor Registers” on page A-47.

Message Passing (MSGRx)

There are three possible software protocols that the host can use for com-
municating with the processor through the MSGRx message registers:
vector-interrupt-driven, register handshake, and register write-back.

For the vector-interrupt-driven method, the host fills predetermined
MSGRx registers with data, and triggers a vector interrupt by writing the
address of the service routine to VIRPT. The service routine should read the
data from the MSGRx registers and then write 0 into VIRPT. This signals the
host that the routine is complete. The service routine also could use one of
the processor’s FLAG11-0 pins to indicate completion.

For the register handshake method, four of the MSGRx registers are desig-
nated as follows: a receive register (R), a receive handshake register (RH), a
transmit register (T), and a transmit handshake register (TH). To pass data
to the ADSP-21161processor, the host would write data into T and then
write a 1 into TH. When the ADSP-21161 sees a 1 in TH, it reads the data
from T and then writes back a 0 into TH. When the host sees a 0 in TH, it
knows that the transfer is complete. A similar sequence of events occurs
when the ADSP-21161 passes data to the host through R and RH.
ADSP-21161 SHARC Processor Hardware Reference 7-77

Host Processor Interface
The register write-back method is similar to register handshaking, but uses
only the T and R data registers. The host writes data to T. When the
ADSP-21161 sees a non-zero value in T, it retrieves it and writes back a 0
to T. A similar sequence occurs when the host is receiving data. This sim-
pler method works well when the data to be passed does not include 0.

Host Vector Interrupts (VIRPT)

Vector interrupts are used for interprocessor commands between the host
and a ADSP-21161 or between two ADSP-21161s. When the external
processor writes an address to the ADSP-21161’s VIRPT register, the write
triggers a vector interrupt. For more information, see “Multiprocessing
Interrupts” on page 3-49.

To use the ADSP-21161’s vector interrupt feature, the host can perform
the following sequence of actions:

1. Poll the processor’s VIRPT register until the host reads a certain
token value (for example, zero).

2. Write the vector interrupt service routine address to VIRPT.

3. When the service routine is finished, the processor writes the token
back into VIRPT to indicate that it is finished and that another vec-
tor interrupt can be initiated.

System Bus Interfacing
A processor subsystem, consisting of several DSPs with local memory, may
be viewed as one of several processors connected together by a system bus.
Examples of such systems are the EISA bus, PCI bus, or several processor
subsystems. The processors in this kind of system arbitrate for the system
bus using an arbitration unit. Each device on the bus that needs to become
a bus master must be able to drive a bus request signal and respond to a
bus grant signal. The arbitration unit determines which request to grant in
any given cycle.
7-78 ADSP-21161 SHARC Processor Hardware Reference

External Port
Access to the Processor Bus – Slave Processor

Figure 7-24 shows an example of a interface to a system bus that isolates
the local processor bus from the system bus. When the system is not
accessing the DSPs, the local bus supports transfers between other local
DSPs and local external memory or devices.

When the system needs to access a processor, the system executes a read or
write to the address range of the processor subsystem. The external address
comparator detects a local access and asserts HBR and one of the appropri-
ate CS lines. The processor holds off the system bus with REDY until the
processor is ready to accept the data. The HBG signal enables the system bus
buffers. The buffers’ direction for data is controlled by the read or write
signals. To avoid glitching the HBR line when addresses are changing, the
address comparator may be qualified by an enable signal from the system
or qualified by the system read or write signals. These methods cause HBR
to be deasserted each time system read or write is deasserted or the address
is changed. Because these techniques deassert HBR with each access, the
overhead of an HTC occurs as part of each access.

Access to the System Bus – Master Processor

Figure 7-25 shows a bidirectional system interface in which the processor
subsystem can access the system bus by becoming a bus master. Before
beginning the access, the processor first requests permission to become the
bus master by generating the System Bus Request signal (SBR). A bus arbi-
tration unit determines when to respond with SBR. Here, each system bus
master generates and responds to its own unique pair of signals.

The method a processor uses to arbitrate for the system bus depends on
whether the access is from the processor processor core or the I/O proces-
sor. For more information, see “Processor Core Access to System Bus” on
page 7-82 and “DMA Access to System Bus” on page 7-84.
ADSP-21161 SHARC Processor Hardware Reference 7-79

Host Processor Interface
Figure 7-24. Slave System Bus Interface

ADSP-21161
#2

ADDR23-0

DATA47-16

CS

WR

RD

010
3

5

SYSTEM
DATA BUS

WRITE

READ

SYSTEM
ADDRESS

BUS

ADDRESS
COMPARATOR

REDY

SYSTEM BUS INTERFACE

OE T/R

CLUSTER
BUS

SYSTEM BUS

"ADDRESS
VALID"

001
3

5

HBG

ACK

ID2-0

ACK

MS3-0

REDY

BR1,
BR3-BR6

BR2

HBG

HBR

ADDR

DATA

EXTERNAL
MEMORY

ACK

OE

WE

CS

ID2-0

HBR

ACK

MS3-0

REDY

BR2-BR6

BR1

HBG

REDY
HBG

HBR

CS2
CS1

HBR

ADSP-21161
#1

ADDR23-0

DATA47-16

CS

WR

RD
7-80 ADSP-21161 SHARC Processor Hardware Reference

External Port
Figure 7-25. Bidirectional System Bus Interface

ADSP-21161
#2

ADDR23-0

DATA47-16

ID2-0

ACK

MS3-0

REDY

CS

BR1,
BR3-BR6

BR2

SBTS

FLAG0

HBG

HBR WR

RD

010
3

5

ADDR

DATA

EXTERNAL
MEMORY

ACK

OE

WE

CS

SYSTEM
DATA BUS

WRITE

READ

SYSTEM
ADDRESS

BUS

ADDRESS
COMPARATOR

CS2
CS1

HBR

REDY

REDY
HBG

HBR SYSTEM BUS INTERFACE

CLUSTER
BUS

SYSTEM BUS

"ADDRESS
VALID"

ID2-0

HBR

ACK

MS3-0

REDY

BR2-BR6

BR1

SBTS

FLAG0

HBG

CS
3

5

001

ACK

MS3-0

SBTS (1,2)

FLAG0 (1,2)

SBTS (1,2)

FLAG0 (1,2)

SYSTEM
BUS

REQUEST

SYSTEM
BUS

GRANT

SYSTEM
BUS

GRANT

ACK

HBG

WR

RD

ADSP-21161
#1

ADDR23-0

DATA47-16
ADSP-21161 SHARC Processor Hardware Reference 7-81

Host Processor Interface
Processor Core Access to System Bus

The processor core may arbitrate for the system bus by setting a flag and
waiting for SBG on another flag. This technique has the benefit of not stall-
ing the local bus while waiting. If SBG is tied to an interrupt pin, the
processor can continue processing while waiting.

Another method for the processor access is to attempt the access assuming
that the system bus is available. The processor then either waits or aborts
the access if the bus is not available. The processor begins the access to the
system bus by asserting one of the memory select lines, MS3-0. This asser-
tion also asserts SBR. If the system bus is not available (for example, SBG is
deasserted), the processor should be held off with ACK. This approach is
simple, but stalls the processor and the local bus when the system bus is
accessed while it is busy. To overcome this stall, programs can use the
Type 10 instruction:

IF condition JUMP(addr), ELSE compute, DM(addr)=dreg;

This instruction aborts the bus access if the condition (SBG) is not true and
causes the program to branch to a try-again-later routine. This method
works well if SBG is asserted most of the time. If the Type 10 instruction is
not used, a deadlock condition can result if an access is attempted before
the bus is granted.

The processor samples FLAG inputs at the CLKIN frequency except
when CLKDBL is enabled. When CLKDBL is enabled, the processor
samples FLAG inputs at the CLKOUT frequency. FLAG outputs must
be held stable for at least one full CLKIN cycle.

Deadlock Resolution

When both the processor subsystem and the system try to access each
other’s bus in the same cycle, a deadlock may occur in which neither
access can complete; ACK stays deasserted.
7-82 ADSP-21161 SHARC Processor Hardware Reference

External Port
Normally, the master processor responds to an HBR request by asserting
HBG after the completion of the current access. If the processor is accessing
the system bus at the same time, HBG is not asserted, because this current
access cannot complete—this condition results in a deadlock in which nei-
ther access can complete. The deadlock may be broken by asserting the
Suspend Bus Three-state (SBTS) input for one or more cycles after the
deadlock is detected—when the system bus to local bus buffer is requested
from both sides.

The combination of SBTS and HBR puts the master processor into slave
mode and suspends the processor core’s external access. This suspension
lets the system access to the local bus proceed, after the processor asserts
HBG. The combination of HBR and SBTS should only be applied when there
is a deadlock caused by a processor access to the system bus. SBTS should
not be used when there is a local bus transfer, because the WR signal is
asserted twice—once before the SBTS is asserted and once after the access
resumes. For processor-to-processor transfers on the local bus, this double
assertion violates the slave timing requirements.

The following sequence of actions allows the host processor to suspend an
ongoing processor access and gain access to its internal resources, provided
that: 1) the access originates from the processor’s core, not the DMA con-
troller, 2) a DRAM page miss is not detected for that memory access, and
3) bus lock is not enabled.

1. After HBR is asserted, the host asserts SBTS for one or more cycles. If
SBTS is asserted one or more cycles after HBR is recognized, HBG is
guaranteed to be asserted in the next cycle. SBTS should be deas-
serted before HBR is deasserted.

2. The host drives the RD and WR strobe to their correct values after HBG
is asserted. The host may then perform as many accesses as desired.

3. The host has full control of the bus and may access any of the pro-
cessors or peripherals on the bus.
ADSP-21161 SHARC Processor Hardware Reference 7-83

Host Processor Interface
4. The host deasserts HBR. HBG is deasserted when the internal read
buffer is empty.

5. One cycle after the processor deasserts HBG, it restarts its suspended
access.

DMA Access to System Bus

Using the SBTS and HBR inputs to resolve a system bus deadlock, as
described in “Deadlock Resolution” on page 7-82, cannot be used for
DMA transfers, because after a DMA word transfer has begun in the
ADSP-21161, it must be completed (for example, it must receive the ACK
signal). If SBTS and HBR are asserted during a DMA access, the HBG pin is
not asserted until the access cycle has completed. If the single DMA access
is not allowed to complete, a deadlock condition may result.

To prevent system bus deadlock when using DMA, programs must make
sure that SBG has been asserted before the DMA sequence begins. If a
higher priority access is needed, the DMA sequence may be held off (by
asserting HBR) at any time after a word has been transferred. Systems must
ensure that SBG is asserted before HBR is deasserted to prevent the possibil-
ity of another deadlock occurring. When the DMA sequence is complete,
the DMA interrupt service routine should clear the external SBR flag.

Because the system bus is likely to be considerably slower than the local
bus, performance on the local bus may be improved considerably by using
handshake mode DMA. In this case, the SBG signal is tied to the DMA
request line, DMARx. The local and system bus accesses are only initiated
when the system bus is available.

Using a FIFO in the system interface unit, to allow DMA data
from the local bus to be posted, may also increase performance on
the local bus when using a slow system bus.
7-84 ADSP-21161 SHARC Processor Hardware Reference

External Port
Multiprocessing With Local Memory

Figure 7-26 shows how several subsystems may be connected together on a
system bus for high throughput. The gate array implements bus arbitra-
tion when the system bus is accessed. The buffers isolate the local buses
from the system bus.

The example system in Figure 7-26 works in the following way:

• A processor requests the system bus with SBR when it asserts the MS2
line. The gate array arbitrates between the SBR lines and then
enables the highest priority group by asserting SBG, which is tied to
FLAG0.

• The master processor may connect to system memory or to other
processor groups. When the bus buffer is enabled, the read or write
strobe enables should be asserted with a delay to allow the address
to stabilize.

• To access a processor slave in another group, the master processor
addresses that group’s multiprocessor memory space. The gate
array detects group multiprocessor memory space from three
high-order address bits and asserts the HBR line for the selected
group. When HBG is asserted, the gate array enables the slave’s bus
buffer. The high-order group address bits are cleared by the buffer
to allow the group to decode the address as local multiprocessor
memory space. The access is asynchronous because the CS line is
asserted. The single waitstate option for the bus should be enabled.

• If two groups access each other in the same cycle, a deadlock may
occur. The SBTS pin may be used to clear the deadlock.

ADSP-21161 to Microprocessor Interface

A ADSP-21161 without external memory may connect to a host micro-
processor’s bus. Depending on the microprocessor’s I/O capabilities, the
interface may not require any buffers. This type of connection assumes
ADSP-21161 SHARC Processor Hardware Reference 7-85

Host Processor Interface
that the processor can execute its application from internal memory most
of the time and only occasionally needs to request an external access. The
host microprocessor should always keep the HBR request asserted unless it
sees BR1 asserted (for the BRx line of the processor with ID=001). The host
can then deassert HBR to allow the processor to perform an external access

Figure 7-26. Subsystems on a System Bus

ADSP-21161
#2

HBR

HBG

SBTS

FLAG0

MS2

ADDR

DATA
ACK

SYSTEM BUS

ADSP-2116I
#1

HBR

HBG

FLAG0

SBTS

ADDR

DATA

ACK

SYSTEM
BUS

ARBITRATION

LOCAL
MEMORY

LOCAL
MEMORY

ENABLE

BUFFER

BUFFER

ENABLE

(GATE ARRAY)

SYSTEM
MEMORY

DATA

ADDR

SYSTEM BUS
ADDRESS

SYSTEM BUS ADDRESS

3

3

LOCAL BUS

LOCAL BUS

MS2

SBR

SBG

SBR

SBG

REDY

CS

REDY

CS

A
D

D
R

23
-0

D
A

T
A

47
-1

6

7-86 ADSP-21161 SHARC Processor Hardware Reference

External Port
when the host is ready to give up its bus. Usually, the host can read or
write to the processor as needed. The host accesses the processor by assert-
ing CS and handshaking with REDY. The HBG is not necessary in this system.

Multiprocessor (MP) Interface
The ADSP-21161 processor supports connecting to other ADSP-21161
processors to create multiprocessing processor systems. This support
includes:

• Distributed, on-chip arbitration for the shared external bus

• A unified multiprocessor address space that makes the I/O proces-
sor registers of all processors directly accessible to each processor
(and host interface)

• Dedicated hardware support for interprocessor communication
(for example, reflective semaphores)

• Dedicated, point-to-point communication channels between pro-
cessors using the link ports

Figure 7-27 illustrates a basic multiprocessing system. In a multiprocessor
system with several processors sharing the external bus, any of the proces-
sors can become the bus master. The bus master has control of the bus,
which consists of the DATA47-16, ADDR23-0, and associated control lines.
ADSP-21161 SHARC Processor Hardware Reference 7-87

Multiprocessor (MP) Interface
Figure 7-27. ADSP-21161 Multiprocessor System

ACK

OE

ADDR

DATA

CS

WE

GLOBAL
MEMORY

AND
PERIPHERALS

(OPTIONAL)

C
O

N
T

R
O

L

ADSP-21161 #1

ADDR23-0

CONTROL

ADSP-21161 #3

ID2-0

RESET

CLKIN

3

ADSP-21161 #4

CLOCK

ADDR

DATA

SDRAM
(OPTIONAL)

CS

ADDR

DATA
BOOT

EPROM
(OPTIONAL)

ID2-0

RESET

CLKIN

C
O

N
T

R
O

L

A
D

D
R

E
S

S

D
A

T
A

C
O

N
T

R
O

L

A
D

D
R

E
S

S

D
A

TA

CONTROL

ADSP-21161 #2

ID2-0

RESET

CLKIN

2

1

ADDR

DATA

HOST
PROCESSOR
INTERFACE
(OPTIONAL)

WE

RAS

CAS

DQM

CLK

A10

CKE

CS

DATA47-16

SDWE

RAS

CAS

DQM

SDCLK[1-0]

SDA10

SDCKE

BR6-2

RD

MS3-0

SBTS

CS

ACK

BR1

REDY
HBG
HBR

WR

BMS

ADDR23-0

RESET

DATA47-16

ADDR23-0
DATA47-16
7-88 ADSP-21161 SHARC Processor Hardware Reference

External Port
Table 7-17 shows the external port signals for multiprocessor processor
arbitration and communication.

The I/O processor registers of the system’s processors make up the multi-
processor memory space. Multiprocessor memory space is mapped into
the unified address space of each processor. For more information, see the
multiprocessor memory map in Figure 5-8 on page 5-20.

After a processor becomes the bus master, it can read and write to any of
the slave’s I/O processor registers, including their external port FIFO data
buffers. For example, the master processor may write to a slave’s I/O pro-
cessor registers to set up DMA transfers or to send a vector interrupt.

The ADSP-21161 processor only supports direct reads and writes
to I/O processor registers. However, internal memory can be
accessed indirectly through EPBx DMA transfers.

Table 7-17. Signal for Cluster Multiprocessor Systems

Signal Types Signals

Synchronization CLKIN, RESET

Arbitration BR6-1, PA1

1 Optional, only needed if Priority Access function is used

Bused Information ADDR23-0, DATA47-16

Master Controls RD, WR, BRST

Slave Control ACK

Host Interface2

2 Optional, only needed if Host Interface is used.

HBR, HBG, CS, REDY, SBTS
ADSP-21161 SHARC Processor Hardware Reference 7-89

Multiprocessor (MP) Interface
Multiprocessing System Architectures
Multiprocessor systems typically use one of two schemes to communicate
between processor nodes. One scheme uses dedicated point-to-point com-
munication channels. In the other scheme, nodes communicate through a
single shared global memory over a parallel bus.

The ADSP-21161 supports point-to-point communication—data flow
multiprocessing—through its two link ports. Also, the ADSP-21161 sup-
ports a shared parallel bus communication—cluster multiprocessing—
through its link ports and external port. The following sections provide
more detail on on data flow multiprocessing and cluster multiprocessing.

Data Flow Multiprocessing

Data flow multiprocessing works for applications requiring high computa-
tional bandwidth, but requiring only limited flexibility. The program
partitions its algorithm sequentially across multiple processors and passes
data through a line of processors, as shown in Figure 7-28.

The ADSP-21161 provides complete support for data flow multiprocess-
ing applications, because the processor eliminates the need for
interprocessor data FIFOs and external memory. The internal memory of
the processor is usually large enough to contain both code and data for
most applications using data-flow system topology. Data flow systems

Figure 7-28. Data Flow Multiprocessing

ADSP-21161 ADSP-21161

LINK
PORT

LINK
PORT

ADSP-21161

LINK
PORT

LINK
PORT

LINK
PORT

LINK
PORT
7-90 ADSP-21161 SHARC Processor Hardware Reference

External Port
only require a number of processors and point-to-point signals connecting
them. This design yields savings in complexity, board space, and system
cost. For more information on connecting multiple processors using link
ports, see “Host Processor Access To Link Buffers” on page 9-14.

Cluster Multiprocessing

Cluster multiprocessing works for applications where flexibility is
required. This flexibility is needed when a system must be able to support
a variety of different tasks, some of which may be running concurrently.
The cluster multiprocessing configuration is shown in Figure 7-29. Also,
the processor has an on-chip host interface that lets a cluster be interfaced
to a host processor or another cluster.

Cluster multiprocessing systems include multiple ADSP-21161s con-
nected to a parallel bus that supports interprocessor access of on-chip
memory-mapped registers and access to shared global memory. In a typi-
cal cluster of processors, up to six processors and a host can arbitrate for

Figure 7-29. Cluster Multiprocessing

EXTERNAL
PORT

EXTERNAL
PORT

BULK
MEMORY

ADSP-21161 ADSP-21161

LINK
PORT

LINK
PORT

ADSP-21161

LINK
PORT

LINK
PORT

LINK
PORT

LINK
PORT

EXTERNAL
PORT
ADSP-21161 SHARC Processor Hardware Reference 7-91

Multiprocessor (MP) Interface
the bus. The on-chip bus arbitration logic lets these processors share the
common bus. The ADSP-21161’s features (such as large internal memory,
link ports, and external port FIFOs) help eliminate the need for any extra
hardware in the cluster multiprocessor configuration. External memory,
both local and global, can frequently be eliminated in this type of system.

The ADSP-21161 supports fixed and rotating priority schemes. Other
supported techniques include bus locking, timed release, DMA prioritiza-
tion, and core processor access preemption of background DMA transfers.
The on-chip arbitration logic lets transitions in bus mastership take up to
only one cycle of overhead. Bus requests are generated implicitly when a
processor accesses an external address. Because each processor monitors all
bus requests and applies the same priority logic to the requests, each can
independently determine who is the next bus master.

After getting mastership of the bus, a processor can access external mem-
ory and the I/O processor registers of all other processors (slaves) in the
system. A processor can directly transfer data to another processor or set
up a DMA channel to transfer the data. The processors are mapped into a
common memory map—to identify the address space of each processor
within the unified memory map of the system cluster. Also, each processor
has a unique ID. The processor’s I/O processor registers and external
memory are all part of the unified address space.

The cluster configuration allows the processors to have a very fast
node-to-node data transfer rate. Clusters also allow a simple, efficient soft-
ware communication model. For example, all of the required setup
operations for a DMA transfer can be accomplished by a single processor
on one side of the transfer. The other processor is not interrupted until
the DMA transfer is complete.

The ADSP-21161’s internal memory facilitates I/O in multiproces-
sor systems. The on-chip, dual-ported RAM supports full-speed
inter-processor DMA transfers concurrent with dual accesses by the
7-92 ADSP-21161 SHARC Processor Hardware Reference

External Port
processor’s processor core. Because no cycles are stolen from the
processor core, the processor’s full performance is maintained dur-
ing these accesses.

Link Port Data Transfers In A Cluster. A bottleneck exists within the
cluster because only two processors can communicate over the shared bus
during each cycle—other processors are held off until the bus is released.
Because the processor can also perform point-to-point link port transfers
within a cluster, systems can eliminate this bottleneck by setting up data
communication through the link ports. Data links between processors can
be dynamically set up and initiated over the common bus. Both link ports
can operate simultaneously on each processor.

A disadvantage of the link ports is that individual transfers occur at a
much lower rate than that of the shared parallel bus. Because the link
ports’ 8-bit data path is smaller than the processor’s native word size, the
transfer of each word requires multiple clock cycles. Link ports may also
require more software overhead and complexity because they must be set
up on both sides of the transfers before they can occur.

SIMD Multiprocessing. For certain classes of applications such as radar
imaging, a Single-Instruction Multiple-Data (SIMD) array of processors
may be the most efficient topology to coordinate a large number of pro-
cessors in a single system. The SIMD array of Figure 7-29 on page 7-91
consists of multiple processors connected in a two- or three-dimensional
mesh. The data link ports provide nearest neighbor communications and
through-routing of data. A single master processor provides the instruc-
tion stream that the array executes. Data flow in and out the array can be
managed through multiple serial port streams.

Multiprocessor Bus Arbitration
Multiple processors can share the external bus with no additional arbitra-
tion logic. Arbitration logic is included on-chip to allow the connection of
up to six processors and a host processor.
ADSP-21161 SHARC Processor Hardware Reference 7-93

Multiprocessor (MP) Interface
The processor accomplishes bus arbitration through the BR1-6, HBR, and
HBG signals. BR1-6 arbitrate between multiple processors, and HBR/HBG pass
control of the bus from the processor bus master to the host and back. The
priority scheme for bus arbitration is determined by the setting of the RPBA
pin. Table 7-18 defines the processor pins used in multiprocessing
systems.

Table 7-18. MultiprocessingPins

Signal Type Definition

BR6-1 I/O/S Multiprocessing Bus Requests. Used by multiprocessing to arbitrate
for bus mastership. A processor only drives its own BRx line (corre-
sponding to the value of its ID2-0 inputs) and monitors all others.
In a multiprocessor system with less than six processors, the unused
BRx pins should be tied high; the processor’s own BRx line must not
be tied high or low because it is an output.

ID2-0 I Multiprocessing ID. Determines which multiprocessing bus request
(BR1 - BR6) is used by ADSP-21161 processor. ID = 001 corre-
sponds to BR1, ID = 010 corresponds to BR2, and so on. Use
ID = 000 or ID = 001 in single-processor systems. These lines are a
system configuration selection that should be hardwired or only
changed at reset.

RPBA I Rotating Priority Bus Arbitration Select. When RPBA is high,
rotating priority for multiprocessor bus arbitration is selected. When
RPBA is low, fixed priority is selected. This signal is a system config-
uration selection which must be set to the same value on every pro-
cessor. If the value of RPBA is changed during system operation, it
must be changed in the same CLKIN cycle on every processor.

PA (a/d)
I/O/S

Priority Access. The processor slave may assert the PA signal to
interrupt background DMA transfers and gain access to the external
bus. This signal is asserted when a processor slave’s processor core
requests the bus or if an external DMA channel requests the bus
with the DMACx PRIO control bit set. The PA signal is an active
drive output, which may be asserted (low) by one or more slaves. It
is deasserted (high) by the master. A protocol is used to avoid driver
contention.

I = Input, S = Synchronous, (o/d) = Open Drain; O = Output, A = Asynchronous, (a/d) =
Active Drive
7-94 ADSP-21161 SHARC Processor Hardware Reference

External Port
The ID2-0pins provide a unique identity for each processor in a multipro-
cessing system. The first processor should be assigned ID=001, the second
should be assigned ID=010, and so on. One of the processors must be
assigned ID=001 in order for the bus synchronization scheme to function
properly.

The processor with ID=001 holds the external bus control lines sta-
ble during reset.

When the ID2-0 inputs of a processor are equal to 001, 010, 011, 100,
101, or 110, the processor configures itself for a multiprocessor system
and maps its I/O processor registers into the multiprocessor memory
space. ID=000 configures the processor for a single-processor system.
ID=111 is reserved and should not be used.

A processor in a multiprocessor system can determine which processor is
the current bus master, by reading the CRBM2-0 bits of the SYSTAT register.
These bits give the value of the ID2-0 inputs of the current bus master.

Conditional instructions can be written that depend upon whether the
processor is the current bus master in a multiprocessor system. The assem-
bly language mnemonic for this condition code is BM, and its complement
is Not BM (not bus master). The BM condition indicates whether the pro-
cessor is the current bus master. For more information, see “Conditional
Sequencing” on page 3-53. To use the bus master condition, the condi-
tion code select (CSEL) field in the MODE1 register must be zero or the
condition is always evaluated as false.

Bus Arbitration Protocol

The Bus Request (BR1-6) pins are connected between each processor in a
multiprocessing system, with the number of BRx lines used equal to the
number of processors in the system. Each processor drives the BRx pin that
corresponds to its ID2-0 inputs and monitors all others. If less than six
processors are used in the system, the unused BRx pins should be tied high.
ADSP-21161 SHARC Processor Hardware Reference 7-95

Multiprocessor (MP) Interface
When one of the slave processors needs to become bus master, it automat-
ically initiates the bus arbitration process by asserting its BRx line at the
beginning of the cycle. Later in the same cycle, the processor samples the
value of the other BRx lines.

The cycle in which mastership of the bus is passed from one processor to
another is called a Bus Transition Cycle (BTC). A bus transition cycle
occurs when the current bus master’s BRx pin is deasserted and one or
more of the slave’s BRx pins is asserted. The bus master can retain bus mas-
tership by keeping its BRx pin asserted. Also, the bus master does not
always lose bus mastership when it deasserts its BRx line—another BRx line
must be asserted by one or more of the slaves at the same time. In this
case, when no other BRx is asserted, the master does not lose any bus
cycles.

By observing all of the BRx lines, each processor can detect when a bus
transition cycle occurs and which processor has become the new bus mas-
ter. A bus transition cycle is the only time that bus mastership is
transferred.

After conditions determine that a bus transition cycle is going to occur,
every processor in the system evaluates the priority of the BRx lines asserted
within that cycle. For a description of bus arbitration priority, see “Bus
Arbitration Priority (RPBA)” on page 7-98. The processor with the high-
est priority request becomes the bus master on the following cycle, and all
of the processors update their internal records to indicate which processor
is the current bus master. This information can be read from the current
bus master field, CRBM, of the SYSTAT register. Figure 7-29 on page 7-91
shows typical timing for bus arbitration.

The actual transfer of bus mastership is accomplished by the current bus
master three-stating the external bus—DATA47-16, ADDR23-0, CLKOUT1, RD,
WR, BRST, MS3-0, HBG, DMAG2-1—at the end of the bus transition cycle and
the new bus master driving these signals at the beginning of the next cycle.

1 For a complete description of CLKOUT functionality, see Table 13-1 on page 13-4.
7-96 ADSP-21161 SHARC Processor Hardware Reference

External Port
The bus strobes (RD, WR) and MS3-0 are driven high (inactive) before
three-stating occurs. ACK must be sampled high by the new master before it
starts a new bus operation. For more information, see Figure 7-30.

During bus transition cycle delays, execution of external accesses are
delayed. When one of the slave processors needs to perform an external
read or write, it automatically initiates the bus arbitration process by
asserting its BRx line. This read or write is delayed until the processor
receives bus mastership. If the read or write was generated by the proces-
sor’s processor core (not the I/O processor), program execution stops on
that processor until the instruction is completed.

The following steps occur as a slave acquires bus mastership and performs
an external read or write over the bus as shown in Figure 7-31 on
page 7-100.

1. The slave determines that it is executing an instruction which
requires an off-chip access. It asserts its BRx line at the beginning of
the cycle. Extra cycles are generated by the core processor (or I/O
processor) until the slave acquires bus mastership.

2. To acquire bus mastership, the slave waits for a bus transition cycle
in which the current bus master deasserts its BRx line. If the slave
has the highest priority request in the bus transition cycle, it
becomes the bus master in the next cycle. If not, it continues
waiting.

3. At the end of the bus transition cycle the current bus master
releases the bus, and the new bus master starts driving.

During the CLKIN cycle in which the bus master deasserts its BRx output, it
three-states its outputs in case another bus master wins arbitration and
enables its drivers in the next CLKIN cycle. If the current bus master retains
control of the bus in the next cycle, it enables its bus drivers, even if it has
no bus operation to run.
ADSP-21161 SHARC Processor Hardware Reference 7-97

Multiprocessor (MP) Interface
The processor with ID=00x enables internal keeper latches, or pullup
devices, on key signals, including the address and data buses, strobes, and
ACK. These devices provide a weak current source or sink—approximate
20KΩ impedance—to keep these signals from drifting near input receiver
thresholds when all drivers are three-stated.

When the bus master stops using the bus, its BRx line is deasserted, allow-
ing other processors to arbitrate for mastership if they need it. If no other
processors are asserting their BRx line when the master deasserts its BRx,
the master retains control of the bus and continues to drive the memory
control signals until: 1) it needs to use the bus again, or 2) another proces-
sor asserts its BRx line.

While a slave waits to be a master for a DMA transfer, it asserts
BRx. If that slave’s core accesses the DMA address registers, the BRx
is deasserted during that access. See “I/O Processor Registers Mem-
ory Map” on page A-51.

Bus Arbitration Priority (RPBA)

To resolve competing bus requests, there are two available priority
schemes: fixed and rotating. The RPBA pin selects the scheme. When RPBA
is high, rotating priority bus arbitration is selected, and when RPBA is low,
fixed priority is selected.

The RPBA pin must be set to the same value on each processor in a multi-
processing system. If the value of RPBA is changed during system
operation, it must be changed synchronously to CLKIN and must meet a
setup time that lets all processors recognize the change in the same cycle.
The priority scheme changes in that (same) cycle.
7-98 ADSP-21161 SHARC Processor Hardware Reference

External Port
In the fixed priority scheme, the processor with the lowest ID number
among the competing bus requests becomes the bus master. If, for exam-
ple, the processor with ID=010 and the processor with ID=100 request the
bus simultaneously, the processor with ID=010 becomes bus master in the
following cycle.

Each processor knows the ID of the other processors requesting the
bus, because the ID corresponds to the BRx line being used for each
processor.

Figure 7-30. Bus Request and Read/Write Timing

MINIMUM 2-CYCLE SYNC READ
- SLAVE DEASSERTS ACK IN 2ND
 CYCLE IF NEEDED

PULLUP HOLDS ACK ASSERTED

HIGHEST PRIORITY REQUESTER BECOMES BUS MASTER

WR

BTC

BRST

ACK

DATA
SYNC WRITE SYNC READ

ACCESSACCESS BTC DOES NOT
OCCUR IF NO OTHER
BRx ASSERTED

VALIDVALID

1 2 3 4 5 6

 CLKIN

BRX

ADDR

MSX

RD

OPTIONAL

MS, STROBES DRIVEN INACTIVE BEFORE TRISTATE

VALID

VALID

VALID

VALID
ADSP-21161 SHARC Processor Hardware Reference 7-99

Multiprocessor (MP) Interface

RM
SS

EN

AL
ION
The rotating priority scheme gives roughly equal priority to each proces-
sor. When rotating priority is selected, the priority of each processor is
reassigned after every transfer of bus mastership. Highest priority is
rotated from processor to processor as if they were arranged in a circle—

Figure 7-31. Bus Arbitration Timing

BR2

 CLKIN

BR1

BUS REQUESTS:

ADSP-21161 WITH ID=1:

ADSP-21161 WITH ID=2:
EXECUTE

BUS
ACTIVE

FLOW

BTC BTCADSP-21161 #2 IS BUS MASTER

ADSP-21161
#1 IS BUS
MASTER

BRX SAMPLED
AT THIS POINT

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

INTERNAL
OPERATION

EXTERNAL
ACCESS

EXTERNAL
ACCESS

EXTERNAL
ACCESS

EXTERNAL
ACCESS

PERFORM
ACCESS

PERFORM
ACCESS

PERFORM
ACCESS

HOLD SIGNAL
STABLE

HOLD SIGNAL
STABLEUNDRIVEN

UNDRIVEN

EXECUTE

BUS
ACTIVE

FLOW

PERFO
ACCE

UNDRIV

INTERN
OPERAT

HOLD SIGNAL
STABLE
7-100 ADSP-21161 SHARC Processor Hardware Reference

External Port
the processor located next to (one place down from) the current bus mas-
ter is the one that receives highest priority. Table 7-19 shows an example
of how rotating priority changes on a cycle-by-cycle basis.

Bus Mastership Timeout

In either the fixed or rotating priority scheme, systems may need to limit
how long a bus master can retain the bus. Systems can limit bus master-
ship by forcing the bus master to deassert its BRx line after a specified
number of CLKIN cycles and giving the other processors a chance to acquire
bus mastership.

To set up a bus master timeout, a program must load the BMAX register
(Figure 7-32) with the maximum number of CLKIN cycles (minus 2) that
allows the processor to retain bus mastership. This equation is shown
below

BMAX = (maximum # of bus mastership CLKIN cycles) – 2

Internal processor clock cycles are a multiple of CLKIN cycles.

Table 7-19. Rotating Priority Arbitration Example

Cycle Number Hardwired Processor IDs & Priority1

1 The following symbols appear in these cells: 1-5 = assigned priority, M = bus mastership (in that
cycle), BR = requesting bus mastership with BRx

ID1 ID2 ID3 ID4 ID5 ID6

12

2 Initial priority assignments

M 1 2-BR 3 4 5

2 4 5-BR M-BR 1 2 3

3 4 5-BR M 1 2 3

4 5-BR M 1 2 3 4-BR

53

3 Final priority assignments

1-BR 2 3 4 5 M
ADSP-21161 SHARC Processor Hardware Reference 7-101

Multiprocessor (MP) Interface
The minimum value for BMAX is 2, which lets the processor retain bus mas-
tership for four CLKIN cycles. Setting BMAX=1 is not allowed. To disable the
bus master timeout function, set BMAX=0.

Each time a processor acquires bus mastership, its BCNT register is loaded
with the value in BMAX. BCNT is then decremented in every CLKIN cycle that
the master performs a read or write over the bus and any other (slave) pro-
cessors are requesting the bus. Any time the bus master deasserts its BRx
line, BCNT is reloaded from BMAX.

When BCNT decrements to zero, the bus master first completes its off-chip
read/write and then deasserts its own BRx (any new off-chip accesses are
delayed)—this allows transfer of bus mastership. If the ACK signal is hold-
ing off an access when BCNT reaches zero, bus mastership is not
relinquished until the access can complete.

If BCNT reaches zero while a burst transfer is in progress, the bus master
completes the burst transfer before deasserting its BRx output. If BCNT
reaches zero while bus lock is active, the bus master does not deassert its
BRx line until bus lock is removed. If HBR is being serviced, BCNT stops dec-
rementing and continues only after HBR is deasserted.

Bus lock is enabled by the BUSLK bit in the MODE2 register. For more
information, see “Bus Lock and Semaphores” on page 7-110.

Figure 7-32. BMAX Register

31 30 29 28 27 26 25 24 23 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMAX
(0x18)

BMAX = (maximum # of bus
mastership cycles -2)

21 20 19 18 17 16
7-102 ADSP-21161 SHARC Processor Hardware Reference

External Port
Priority Access

The Priority Access signal (PA) lets external bus accesses by a slave proces-
sor take priority over ongoing DMA transfers. Normally when external
port DMA transfers are in progress, the slave processors cannot use the
external bus until the DMA transfer is finished. By asserting its PA pin, the
slave processor can acquire the bus without waiting for the DMA opera-
tion to complete. The PA signal can also be asserted by a slave with a
high-priority DMA access pending on the external bus.

If the PA signal is not used in a multiprocessor system, the processor bus
master does not give up the bus to another processor until: 1) a cycle in
which it does not perform an external bus access or 2) a bus timeout. If a
slave processor needs to send a high priority message or perform an impor-
tant data transfer, it normally must wait until any DMA operation
completes. Using the PA signal lets the slave perform its higher priority bus
access with less delay.

Each of the DMACx registers has a PRIO bit that raises that DMA channel to
a higher priority than all other internal DMA channels that do not have
the PRIO bit set. Unless configured differently with the EBPR bit in the
SYSCON register, this channel still has lower priority (internally) than the
core. Programs should be careful to minimize the number of DMA chan-
nels enabled to high priority status in the multiprocessor system, because
both core and (external) high priority DMA requests from slaves are arbi-
trated at the same priority level. For example, a slave core cannot arbitrate
bus ownership away from a high priority DMA transfer, unless the bus
timeout (BMAX function) occurs.

When PA is asserted, the current processor bus master deasserts its BRx out-
put, and gives up the bus, provided:

1. Its core does not have an external access pending, and

2. None of its external bus DMA channels have pending high-priority
bus requests.
ADSP-21161 SHARC Processor Hardware Reference 7-103

Multiprocessor (MP) Interface
All processor slaves also deassert their BRx outputs, if each slave meets the
same provisions. The current bus master never asserts PA, because it
already has control of the bus. If the current master detects a condition
that would assert PA while it is bus master, it performs that high priority
operation before giving up bus ownership.

In the CLKIN cycle after PA has been asserted, only the processor slaves with
a pending high priority access have their bus requests asserted. Bus arbitra-
tion proceeds as usual with the highest priority device becoming the
master when the previous bus master releases its BRx output.

The new master samples all BRx inputs after gaining bus mastership—dur-
ing the cycle that follows the BTC. If no other bus requests are asserted,
the master is the only device driving PA, and the master deasserts and
three-states PA in this cycle as shown in Figure 7-33.

Figure 7-33. Example PA Deassertion

1 2 3 4

BR1-5

BR6

PA

All ADSP-21161s that do not
have core access pending
remove their BRx

Slaves cannot assert
PA in this cycle

Bus Master samples
all other BRx negated
and negates PA

{{

BTC
7-104 ADSP-21161 SHARC Processor Hardware Reference

External Port
If the master samples other BRx inputs as asserted, multiple devices are
driving PA, and the new bus master cannot deassert PA. The new bus mas-
ter three-states its PA driver in this case. All processor slaves recognize the
cycle following the BTC. They do not assert PA during this cycle, unless
they were already driving their BR and PA outputs in the BTC. This behav-
ior is demonstrated in Figure 7-34.

Bus Synchronization After Reset
When a multiprocessing system is reset (RESET asserted), the bus arbitra-
tion logic on each processor must synchronize, making sure that only one
processor drives the external bus. One processor must become the bus
master, and all other processors must recognize which one it is before
actively arbitrating for the bus. The bus synchronization scheme also lets
the system safely bring individual processors into and out of reset.

Figure 7-34. Example of PA Driven by Multiple Slaves

BR1-6

PA

All ADSP-21161s that
do not have core access
pending remove their BRx

BTC

Slaves continue
to assert PA in
this cycle

Bus Master samples
other BRx asserted
and three-states (only) PA

1 2 3 4

{ {
ADSP-21161 SHARC Processor Hardware Reference 7-105

Multiprocessor (MP) Interface
One of the processors in the system must be assigned ID=001 in order for
the bus synchronization scheme to function properly. This processor also
holds the external bus control lines stable during reset. Bus arbitration
synchronization is disabled if the processor is in a single-processor system
(ID=000).

To synchronize their bus arbitration logic and define the bus master after
a system reset, the multiple processors obey the following rules:

• All processors except the one with ID=001 deassert their BRx line
during reset. They keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is synchronized1.

• After reset, a processor considers itself synchronized when it detects
a cycle in which only one BRx line is asserted. The processor identi-
fies the bus master by recognizing which BRx is asserted and
updates its internal record to indicate the current master.

• The processor with ID=001 asserts its BRx (BR1) during reset and for
at least two cycles after reset. If no other BRx lines are asserted dur-
ing these cycles, the processor with ID=001 drives the memory
control signals to prevent them from glitching. Although it is
asserting its BRx and driving the memory control signals during
these cycles, this processor does not perform reads or writes over
the bus.

If the processor with ID=001 is synchronized by the end of the two cycles
following reset, it becomes the bus master. If it is not synchronized at this
time, it deasserts its BRx (BR1) and waits until it is synchronized.

When a processor has synchronized itself, it sets the BSYN bit in the
SYSTAT register.

1 For a complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.
7-106 ADSP-21161 SHARC Processor Hardware Reference

External Port
If one processor comes out of reset after the others have synchronized and
started program execution, that processor may not be able to synchronize
immediately (for example, if it detects more than one BRx line asserted). If
the un-synchronized processor tries to execute an instruction with an
off-chip read or write, it cannot assert its BRx line to request the bus and
execution is delayed until it can synchronize and correctly arbitrate for the
bus.

Synchronization cannot occur while HBG is asserted, because bus arbitra-
tion is suspended while the bus is controlled by a host. If HBR is asserted
immediately after reset and no bus arbitration has taken place, the proces-
sor with ID=001 is considered to be the last bus master.

The processor with ID=001 maintains correct logic levels on the RD, WR,
MS3-0, and HBG signals during reset. Because the “001” processor can be
accidently reset by an erroneous write to the soft reset bit (SRST) of the
SYSCON register, it behaves in the following manner during reset:

• While it is in reset, the processor with ID=001 attempts to gain
control of the bus by asserting BR1.

• While it is in reset, the processor with ID=001 drives the RD, WR,
MS3-0, DMAG1, DMAG2, and HBG signals only if it determines that it
has control of the bus. For the processor to decide it has control of
the bus, two conditions must be true: 1) BR1 was asserted and no
other BRx lines were asserted in the previous cycle, and 2) HBG was
deasserted in the previous cycle.

The processor with ID=001 continues to drive the RD, WR, MS3-0, DMAG1,
DMAG2, and HBG signals for two cycles after reset, as long as neither HBG nor
any other BRx lines are asserted. At the end of the second cycle it assumes
bus mastership (if it is synchronized), and normal bus arbitration begins
in the following cycle. If it is not synchronized, it deasserts BR1, stops driv-
ing the memory control signals and does not arbitrate for the bus until it
becomes synchronized.
ADSP-21161 SHARC Processor Hardware Reference 7-107

Multiprocessor (MP) Interface
Although the bus synchronization scheme allows individual processors to
be reset, the processor with ID=001 may fail to drive the memory control
signals if it is in reset while any other processors are asserting their BRx
line.If the processor with ID=001 has asserted HBG while it is in reset, it is
synchronized when RSTOUT is deasserted1. This lets the host start using the
bus while the processors are still in reset. If a host processor attempts to
reset the processor bus master (which is driving the HBG output), the host
immediately loses control of the bus.

During reset2, the ACK line is pulled high internally by the processor bus
master with a 20 kΩ equivalent resistor.

Booting Another processor
If the system uses one processor to boot another processor over the cluster
bus, the master processor must (for maximum efficiency) do the following
to communicate to the slave processor through the external port interface:

1. Program the PMODE field in DMAC10 of the booting processor for 32-
to 48-bit packing. This modification must be made to the boot
loader kernel as well.

2. Write 48-bit words to EPB0 on the booting processor.

1 For a complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.

2 For a complete description of the functionality of the internal reset signal, RSTOUT, see Table 13-1
on page 13-4.
7-108 ADSP-21161 SHARC Processor Hardware Reference

External Port
Multiprocessor Writes and Reads
A processor bus master can read or write to the I/O processor registers of a
slave processor. For more information, see “Slave Reads and Writes” on
page 7-55.

For synchronous write accesses, the slave write FIFO functions as a
2-deep FIFO. One or both of the stages may be used to store write
accesses. If a synchronous write to this processor completes by the
end of cycle N and if this is the first write to be stored in the slave
write FIFO (for example, due to stalled write to the EPBx FIFO),
then the ACK deasserts in cycle N+2. If a subsequent write to the
same slave processor completes in cycle N+1, the access is correctly
stored in the second stage of slave FIFO. Independent of this access
in cycle N+1, an access in cycle N+2 is stalled on the bus due to a
deasserted ACK. Only when the slave write FIFO is empty is ACK
asserted again.

Each processor bus slave monitors addresses driven on the external bus
and responds to any that fall within its region of multiprocessor memory
space. These accesses are invisible to the slave processor’s processor core.
They do not degrade internal memory or internal bus performance as seen
by the core. This feature lets the processor core continue program execu-
tion uninterrupted.

The processor bus master can read and write the slave’s I/O processor reg-
isters (for example, SYSCON, SYSTAT) to send a vector interrupt or to set up
DMA transfers.

For information on topics relevant to multiprocessing, see the following
referenced sections:

• IOP Shadow Registers. For more information, see “IOP Shadow
Registers” on page 7-55.

• Slave Write Latency. For more information, see “Slave Write
Latency” on page 7-56.
ADSP-21161 SHARC Processor Hardware Reference 7-109

Multiprocessor (MP) Interface
• Slave Reads. For more information, see “Slave Reads” on
page 7-57.

• Shadow Write FIFO. For more information, see “Slave Reads” on
page 7-57.

• Data Transfers Through the EPBx Buffers. For more information,
see “Data Transfers Through the EPBx Buffers” on page 7-58.

• Interprocessor Messages & Vector Interrupts. For more informa-
tion, see “Interprocessor Messages and Vector Interrupts” on
page 7-76.

Instruction Transfers

Multiprocessor instruction transfers to or from internal memory of pro-
cessor should use 32-bit transfers for maximum performance. The 48-bit
internal transfers use one of the slave EPBx FIFOs and the packing mode
function (PMODE) of the DMA channel (32- to 48-bit).

Maximum throughput is achieved by transferring packed instructions to
or from internal memory, using DMA transfers with 32- to 48-bit
packing.

Bus Lock and Semaphores
Semaphores can be used in multiprocessor systems to allow the processors
to share resources such as memory or I/O. A semaphore is a flag that can
be read and written by any of the processors sharing the resource. The
value of the semaphore tells the processor when it can access the resource.
Semaphores are also useful for synchronizing the tasks being performed by
different processors in a multiprocessing system.

With the use of its bus lock feature, the processor has the ability to read
and modify a semaphore in a single indivisible operation—a key require-
ment of multiprocessing systems.
7-110 ADSP-21161 SHARC Processor Hardware Reference

External Port
Because both external memory and each processor’s I/O processor regis-
ters are accessible by every other processor, semaphores can be located
almost anywhere. Read-modify-write operations on semaphores can be
performed if all of the processors obey two simple rules:

1. A processor must not write to a semaphore unless it is the bus mas-
ter. This is especially important if the semaphore is located in the
processor’s own internal memory or I/O processor registers.

2. When attempting a read-modify-write operation on a semaphore,
the processor must have bus mastership for the duration of the
operation.

Both of these rules apply when a processor uses its bus lock feature, which
retains its mastership of the bus and prevents the other processors from
simultaneously accessing the semaphore.

Bus lock is requested by setting the BUSLK bit in the MODE2 register. When
this happens, the processor initiates the bus arbitration process by assert-
ing its BRx line. When it becomes bus master, it locks the bus by keeping
its BRx line asserted even when it is not performing an external read or
write. Host Bus Request (HBR) is also ignored during a bus lock. When the
BUSLK bit is cleared, the processor gives up the bus by deasserting its BRx
line.

While the BUSLK bit is set, the processor can determine if it has acquired
bus mastership by executing a conditional instruction with the Bus Master
(BM) or Not Bus Master (Not BM) condition codes, for example:

IF NOT BM JUMP(PC,0); /* Wait for bus mastership */

If it has become the bus master, the processor can proceed with the exter-
nal read or write. If not, it can clear its BUSLK bit and try again later.
ADSP-21161 SHARC Processor Hardware Reference 7-111

Multiprocessor (MP) Interface
A read-modify-write operation is accomplished with the following steps:

1. Request bus lock by setting the BUSLK bit in MODE2.

2. Wait for bus mastership to be acquired.

3. Wait until Slave Write Pending bit (SWPD) is zero.

4. Read the semaphore, test it, then write to it.

Locking the bus prevents other processors from writing to the semaphore
while the read-modify-write is occurring. After bus mastership is acquired,
check the SWPD bit’s status in SYSTAT to ensure that a semaphore write by
another processor is not pending.

If the semaphore is reflective, located in one of the processor’s I/O
processor register, the processor must write to it only when it has
bus lock.

Multiprocessor Interface Status

The SYSTAT register provides status information for host and multiproces-
sor systems. Figure 7-35 shows the status bits in this register.
7-112 ADSP-21161 SHARC Processor Hardware Reference

External Port

s

ed

aster

s

ata Pending
nding
pending
Figure 7-35. SYSTAT Register

SYSTAT
0x03

CRAT

SSWPD

HSTM

CRBM

IDC

Host Bus Master
1=host bus master controls ext bu
0=no host bus master

BSYN
Bus Synchronized
1=bus arbitration logic synchroniz
0=not synchronized

Current ADSP-21161 Bus Master
Status of ID of DSP who is Bus M
CRPM=001 when ID=000

VIPD

HPS

ID Code

Vector Interrupt Pending
1=Vector interrupt pending

Host Packing Status
CCLK-to-CLKIN ratio
Indicate state of CLKCFG[1:0] pin
Undefined at RESET~

Synchronous Slave Write FIFO D
1=sync slave IOP register write pe
0=no sync slave IOP register write

000=packing complete [6th stage of 8-to -48,
4th stage of 8-to-32, etc.]

001=1st stage pack/unpack
010=2nd stage pack/unpack
011=3rd stage pack/unpack

100=5th stage of 8- to -48 bit packing
101=110=111=reserved

Displays state of the ID[2:0] pins

SWPD
Slave Write FIFO Data Pending

1=slave write pending to IOP register
0=slave no write pending to IOP register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0

any data (sync or async)
ADSP-21161 SHARC Processor Hardware Reference 7-113

Multiprocessor (MP) Interface
7-114 ADSP-21161 SHARC Processor Hardware Reference

8 SDRAM INTERFACE

The ADSP-21161 processor’s synchronous DRAM (SDRAM) interface

enables it to transfer data at either the core clock frequency or one-half the
core clock frequency. The synchronous approach, coupled with the ability
to transfer data at the core clock frequency, supports data transfer at a
high throughput—up to 400 Mbytes/second for a 32-bit bus width, and
600 Mbytes/second for 48-bit bus width.

All inputs are sampled and all outputs are valid on the rising edge of the
clock SDCLK. The SDRAM’s flexible interface allows you to connect
SDRAMs to any one or more of the four external memory banks of the
ADSP-21161 processor or to all four banks simultaneously.

The ADSP-21161 processor’s SDRAM controller provides a glueless
interface with standard SDRAMs. It supports:

• SDRAMs of 16 Mbits, 64 Mbits, 128 Mbits, and 256 Mbits with
configurations 4-bit, 8-bit, 16-bit and 32-bit wide devices

• Additional buffers between ADSP-21161 processor and SDRAM

• Zero wait state, 100 Mwords/second with some access types

• Up to 254.68 Mwords [3x(64M) + 62.68M] of SDRAM in exter-
nal memory

• SDRAM page sizes of 2048, 1024, 512, and 256 words

• A programmable refresh counter to coordinate between varying
clock frequencies and the SDRAM’s required refresh rate

• Buffering for multiple SDRAMs connected in parallel
ADSP-21161 SHARC Processor Hardware Reference 8-1

• Shared SDRAM devices in a multiprocessing system

• A separate A10 pin that enables applications to precharge SDRAM
before issuing a refresh command

• Connection to up to four external memory banks (0 to 3) of the
ADSP-21161 processor

• Self-refresh, low-power mode

• Two power-up options

The following are definitions used throughout this chapter:

• Bank Activate command. Activates the selected bank and latches in
a new row address. It must be applied before a read or write
command.

• Burst length. Determines the number of words that the SDRAM
inputs or outputs after detecting a write or read command, respec-
tively. The processor supports burst length ONE mode only.

During a burst length of one cycle, the ADSP-21161 processor
SDRAM controller applies the command every cycle and keeps
accessing the data. See also, page size on page 8-3.

• Burst type. Determines the order in which the SDRAM delivers or
stores burst data after detecting a read or write command, respec-
tively. The processor supports sequential accesses only.

• CAS latency. The delay, in clock cycles, between when the
SDRAM detects the read command and when it provides the data
at its output pins. The speed grade of the device and the applica-
tion’s clock frequency determine the value of the CAS latency.

The application must program the CAS latency value into the
SDCTL register after power up.
8-2 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
• CBR Automatic Refresh (CAS before RAS) mode. In this mode,
the SDRAM drives its own refresh cycle with no external control
input. At cycle end, all SDRAM banks are precharged (idle).

• DQM Data I/O Mask function. This signal is asserted during a
precharge command or when a burst stop command interrupts a
burst write. When asserted during a write cycle, this signal inter-
rupts and disables the write operation immediately.

• SDCTL Register. IOP register that contains programmable
SDRAM control and configuration parameters that support differ-
ent vendor’s timing and power-up sequence requirements.

• Mode Register. The SDRAM’s configuration register that contains
user-defined parameters corresponding to the processor's SDCTL
register. After initial power-up and before executing a read or write
command, the application must program the MODE register.

• Page Size. The size, in words, of the SDRAM’s page. The processor
supports 2048-, 1024-, 512-, and 256-word page sizes. Page size is
a programmable option in the SDCTL register.

• Precharge Command. Precharges an active bank.

• SDRDIV Programmable Refresh Counter. An IOP register con-
taining a refresh counter value. The clock supplied to the SDRAM
can vary between 20 and 100 MHz. This counter enables applica-
tions to coordinate CLK rate with the SDRAM’s required refresh
rate.

• Self-Refresh. The SDRAM’s internal timer initiates automatic
refresh cycles periodically, without external control input. This
command places the SDRAM device in a low-power mode.
Self-refresh is a programmable option in the SDCTL register.
ADSP-21161 SHARC Processor Hardware Reference 8-3

• tRAS. Active Command time. Required delay between issuing an
activate command and issuing a precharge command. A ven-
dor-specific value. This option is programmable in the SDCTL
register.

• tRC. Bank Cycle time. The required delay between successive Bank
Activate commands to the same bank. This vendor-specific value is
defined as: tRC = tRP + tRAS.

The processor fixes the value of this parameter, so it is a non-pro-
grammable option.

• tRCD. RAS to CAS delay. The required delay between a ACT com-
mand and the start of the first read or write operation. This
vendor-specific value is programmable in SDCTL.

• tRP. Precharge time. Required delay between issuing a precharge
command and issuing an activate command. This vendor-specific
value is programmable in SDCTL.

Figure 8-1 shows the SDRAM controller’s interface between the internal
SHARC core and the external SDRAM device. (Note that in full instruc-
tion with no pack mode, the data bus extends to 48 bits, DATA47:00.)

The ADSP-21161 processor normally generates an external memory
address, which then asserts the corresponding MSx select, along with RD
and WR strobes. These control signals are intercepted by the SDRAM con-
troller. The memory access to SDRAM is based on the mapping of the
addresses and memory selects. The configuration is programmed in the
SDCTL register. The SDRAM controller can hold off the processor core or
I/O processor with an internally connected acknowledge signal (ACK), as
determined by refresh, nonsequential access, or page miss latency
overhead.
8-4 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE

M

C)
The SDRAM controller provides a glueless interconnection between the
SDRAM control, address, and data pins and the processor’s internal Har-
vard Architecture busses. The internal 32-bit address bus is multiplexed by
the SDRAM controller to generate the corresponding chip select, row
address, column address, and bank select signals to the SDRAM.

Figure 8-2 shows a block diagram of the ADSP-21161 processor’s
SDRAM interface to four 8-bit SDRAMs. In this single processor exam-
ple, the SDRAM interface connects to four 1M x 8 x2 (2M x 8) SDRAM
devices to use 2M of 32-bit words. The same address and control bus
communicates to all four SDRAM devices. The following connections are
made:

Figure 8-1. SDRAM Controller Interface

CCLK OR 1/2 CCLK

RD

MSx

RESET

ACK

WR

D47:16*

CKE

RAS

A12:0

21161
CORE

CONTROLLER

SDRA

D47:16

DQ31:0

ADSP-21161

CLK

BA0/BA1

CAS

WE

CS

DQM

A10

A23:0

SDCKE

RAS

SDCLK

A14/A13

CAS

SDWE

MSx

DQM

SDA10

A23:0A23:0 MUX

BUFFER
(JEDE
ADSP-21161 SHARC Processor Hardware Reference 8-5

• SDCKE connects to the CKE of the SDRAM devices

• SDCLK0 SDRAM clock connects to the CLK pins

• SDWE connects to all WE

• MSx pin connects to all chip selects (CS)

• All CAS, RAS, and DQM signals are connected together between the
processor and all of the SDRAM devices

Notice that the data bus shows the processor’s default bus width,
DATA[47:16]. For full non-packed instruction execution mode, the data
bus can be extended to DATA[47:0] with the use of available disabled link
port data pins. The A[10] pin of all SDRAM devices are connected to a
separate SDA10 pin on the processor to allow the SDRAM controller to
retain control of all SDRAMs for any non-SDRAM accesses during host
bus requests.
8-6 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
SDRAM Pin Connections
Table 8-1 describes the ADSP-21161 processor SDRAM controller pins
and the connections for each pin. The pins are defined as Input (I), Out-
put (O), Synchronous (S), or High Impedance (T).

Figure 8-2. ADSP-21161 Processor’s Block Diagram

Table 8-1. SDRAM Pin Connections by Type

Pin Type Description

CAS I/0/T SDRAM Column Address Select pin. Connect to SDRAM's CAS
buffer pin.

DQM 0/T SDRAM Data Mask pin. Connect to SDRAM's DQM buffer pin.

DATA[47-16]

ADSP-21161

MSx

RAS

CAS

DQM

SDWE

SDCLK0
SDCKE

A[9:0]

A[14]

SDA10

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #1
2M x 8

A11[BS]
DQ [7:0]

A[9:0]

CS

A[10]

DATA [47:16]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #3
2M x 8

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #2
2M x 8

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #4
2M x 8

A11[BS]

DQ [7:0]

A[9:0]

CS

A[10]

DATA[39-32]

DATA[23-16] DATA[31-24]

DATA[47-40]
ADSP-21161 SHARC Processor Hardware Reference 8-7

SDRAM Timing Specifications
SDRAM Timing Specifications
To support key timing requirements and power up sequences for different
SDRAM vendors, the ADSP-21161 processor provides programmability
for tRAS, tRP, tRCD, and a power up sequence mode.

The CAS latency should be programmed in the SDCTL register based on the
frequency of the operation. Refer to the SDRAM data sheet of the vendor
for more details.

For other parameters, the controller assumes:

Bank Cycle Time, tRC = tRAS + tRP

MSx 0/T Memory select pin of external memory bank configured for SDRAM.
Connect to SDRAM’s CS (Chip Select) pin.

RAS I/0/T SDRAM Row Address Select pin. Connect to SDRAM’s RAS pin.

SDA10 0/T SDRAM A10 pin. SDRAM interface uses this pin to retain control
of the SDRAM device during host bus requests. Connect to
SDRAM’s A10 pin.

SDCKE I/0/T SDRAM Clock Enable pin. Connect to SDRAM’s CKE (Clock
Enable) pin.

SDCLK0 I/0/S/T SDRAM SDCLKO output pin. Connect to the SDRAM’s CLK pin.

SDCLK1 0/S/T SDRAM SDCLK1 output pin. Connect to the SDRAM’s CLK pin.

SDWE I/0/T SDRAM Write Enable pin. Connect to SDRAM’s WE or W buffer
pin.

Table 8-1. SDRAM Pin Connections by Type (Cont’d)

Pin Type Description
8-8 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
SDRAM Control Register (SDCTL)
SDRAMs are available from several vendors, including IBM, Micron Elec-
tronics, Toshiba, Samsung Electronics, and NEC. Each vendor has
different SDRAM product requirements for the power-up sequence and
the timing parameters -tRAS (ACT to PRE command delay), tRCD and tRP
(PRE to ACT command delay). Use only SDRAMS that comply with Joint
Electronic Device Engineering Council (JEDEC) specifications. In order
to support multiple vendors, the ADSP-21161 processor SDCTL register
can be programmed to meet these requirements. The SDCTL register is an
I/O processor register which does not support bitwise operations.

Figure 8-3 provides bit descriptions for the SDRAM Register. Table A-22
on page A-73 provides bit descriptions.
ADSP-21161 SHARC Processor Hardware Reference 8-9

SDRAM Configuration for Runtime

s

SDCLKE
SDCLKE
SDRAM Configuration for Runtime
The ADSP-21161 processor supports 16 Mbits, 64 Mbits, 128 Mbits, and
256 Mbits SDRAM devices with 4-bit, 8-bit, 16-bit, and 32-bit configu-
rations. Page sizes of 256, 512, 1024, and 2048 words are supported in
the available the densities and configurations mentioned above. Each
external memory bank has address space of 64 Mwords for SDRAMs.

Figure 8-3. SDCTL Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDCL

DSDCTL

DSDCK1

SDTRAS

SDPSS

SDPGS

SDPM

SDRAM Page Size
00=256 words
01=512 words
10=1k words
11=2k words

up
sequence

SDRAM self refresh
command enable

SDSRF

up mode
, 8 CBR refs., mode reg. set
, mode reg. set, 8 CBR refs.

SDTRP

SDRAM Power-

SDEM0

SDEM1

SDEM2

SDEM3

SDBN

SDBUF

SDCKR

SDTRCD
spec

RAS to CAS delay
[# of SDCLK cycles: 1 to 7 cycles]

buffer
buffer enable

0=no buffer option]

banks
0=2 banks, 1=4 banks

CCLK ratio

1=CCLK Core clock freq. (1:1)
0=Half CCLK (core clock) freq. (1:2)

SDRAM tRCD

Pipelining option with external reg
[1=ext SDRAM ctl/addr

SDRAM # of SDRAM device mem

SDCLK-to-

Ext mem Bank2
SDRAM enable

Ext mem Bank 3
SDRAM enable

Ext mem Bank0
SDRAM enable

Ext mem Bank1
SDRAM enable

SDCTL
(0x00B8)

SDRAM Power-
0=prechg
1=prechg

SDRAM CAS Latency spec
01=1 cycle, 10=2 cycles, 11=3 cycle

Disable SDCLK0 &Control Signals
1=Disable SDCLK0, RAS~, CAS~ &
0=Activate SDCLK0, RAS~, CAS~ &

SDCLK1 Disable
1=disable SDCLK1, 0=SDCLK active

SDRAMtRAS spec
Active Command Delay
[# of SDCLK cycles: 0 to 15 cycles]

SDRAMtRP spec
PrechargeDelay
[# of SDCLK cycles: 1 to 7 cycles]
8-10 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
The SDCTL register of the ADSP-21161 processor stores the configuration
information of the SDRAM interface. Writing configuration parameters
initiates commands to the SDRAM that take effect immediately.

Before starting the SDRAM powerup sequence, complete the following
steps:

1. Write to the WAIT register to set the waitstates to zero (EBxWS=000)
for each bank that has SDRAM mapped to it.

2. Set the SDRDIV register at initial power-up. In the SDRDIV register, a
memory-mapped IOP register, configure the value for the SDRAM
refresh counter.

3. Write all of the SDRAM configuration parameter values to the
SDCTL register.

When the SDRAM controller is programmed with the register
buffer option enabled, do not perform non-SDRAM write accesses
to external memory until the power-up sequence is completed by
the SDRAM controller. External memory non-SDRAM writes do
not function correctly whenever the SDRAM controller is config-
ured for SDBUF=1 (register buffering) option and the power up
sequence has not yet been completed by the SDRAM controller.
The MRS command that is applied by the SDRAM controller con-
flicts with the non-SDRAM write access started by either the core
or DMA controller.

In the SDCTL register, set the parameter bits as follows:

• Set the SDRAM clock enables (DSDCTL and DSDCK1).

• Select the number of banks that the SDRAM contains (SDBN).

• Select the external memory banks configured for and connected to
an SDRAM (SDEMx).

• Set the SDRAM buffering option (SDBUF).
ADSP-21161 SHARC Processor Hardware Reference 8-11

SDRAM Configuration for Runtime
• Select the CAS latency value (SDCL).

• Select the SDRAM page size (SDPGS).

• Select the SDRAM power-up mode (SDPM).

• Start the SDRAM power-up sequence (SDPSS).

• Start SDRAM self-refresh mode (SDSRF).

• Set the Active Command Delay (SDTRAS).

• Set the precharge delay (SDTRP).

• Set the RAS-to-CAS delay (SDTRCD).

• Set the SDCLK to Core Clock Ratio (SDCKR).

In systems where several SDRAM devices are connected in parallel, buffer-
ing may be required to meet overall system timing requirements. The
ADSP-21161 processor supports the pipelining of the address and control
signals to enable buffering between ADSP-21161 processor and SDRAM.
The pipeline bit (SDBUF) in the SDCTL register enables this mode. When
this bit is set, the data for write accesses are delayed by one cycle, allowing
the address and controls to be externally latched. In read accesses, data is
sampled by ADSP-21161 processor one cycle later. To support the higher
clock load requirements, two SDCLK pins are provided to eliminate the
need for off-chip clock buffers. An option is provided in the SDCTL register
(bits 2 and 3) to allow the SDRAM controller to three-state one or both
the SDCLK pins. The SDCKR bit in the control register can be used to set the
SDCLK to core clock ratio. The interface can run at full core clock fre-
quency or at half the core clock frequency, depending upon the setting for
this bit.
8-12 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
Setting the Refresh Counter Value (SDRDIV)
Since the clock supplied to the SDRAM can vary between 20 MHz and
100 MHz, the processor provides a programmable refresh counter
(SDRDIV) to coordinate the supplied clock rate with the SDRAM device's
required refresh rate.

Write to SDRDIV the delay, in a number of clock cycles, that must occur
between consecutive refresh commands.

Write the delay value to the SDRDIV register before writing the
SDRAM parameter values to the SDCTL register.

To calculate the value of the refresh counter for which to program the
SDRDIV register, use the equation shown in Figure 8-4.

SDCLK is 1x CCLK or 2x CCLK, as determined by the SDCKR bit and SDCTL
register.

Where:

f CCLK = CLKCFG × f CLKOUT
CL = CAS latency programmed into the SDCTL register
tRP = tRP specification programmed in the SDCTL register

Figure 8-4. SDRDIV Register and Calculation

SDRDIV =
SDRAM refresh rate cycle

CL

SDRDIV
0xB9

tRP 5
 fCCLK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADSP-21161 SHARC Processor Hardware Reference 8-13

SDRAM Configuration for Runtime
CLK_CFG = 2 for 2:1 CCLK-to-CLKOUT clock ratio
 = 3 for 3:1 CCLK-to-CLKOUT clock ratio
 = 4 for 4:1 CCLK-to-CLKOUT clock ratio

CCLK is defined as the internal core-clock frequency. CLKOUT is 1xCLKIN or
2xCLKIN, depending on whether CLKDBL is tied high or low during RESET.
The signals SDCLK0 and SDCLK1 can operate at either 1xCCLK or 1/2 CCLK, as
determined by the SDCKR in the SDCTL register.

For example, for an IBM SDRAM with:

Reference rate = 4096 cycles/64ms

CLKIN = 25 MHz

CLKDBL enabled

Therefore, CLKOUT = 50 MHz

CLK_CFG = 2, for 2:1 PLL ratio

CL = 2

tRP = 2

The equation yields:

Setting the SDRAM Clock Enables
Systems with several SDRAM devices connected in parallel require buffer-
ing between the processor and multiple SDRAM devices to reduce
capacitive loading. Buffering, however, may also generate increased clock
loads.

SDRDIV 2x 50x106

4096 1
64x10 3–

--------------------------------- 2– 2– 5 1554 decimal() 0x612==–=
8-14 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
To meet higher clock load requirements, the processor provides two
SDRAM clock control pins, SDCLK0 and SDCLK1. These pins eliminate the
need for off-chip clock buffers.

The DSDCTL and DSDCK1 in the SDCTL register provide control for the
SDRAM clock control pins. The DSDCTL bit, if set (=1), enables high
impedance for all of the SDRAM control pins (DQM, CAS, RAS, SDWE, and
SDCKE) and the SDCLK0 pin. The DSDCTL bit, if cleared (=0), disables all
SDRAM control pins.

The DSDCK1 bit, if set (=1), enables the SDCLK1 pin and places it into a high
impedance state only. The DSDCK1 bit, if cleared (=0), disables SDCLK1.

If your system does not use SDRAM, set both DSDCTL and DSDCK1 to 1.

If your system uses SDRAM, but the clock load is minimal, set DSDCTL to
0 and DSDCK1 to 1 This setting enables the SDCLK0 pin and all related
SDRAM control pins, but disables the second clock pin SDCLK1.

If your system uses SDRAM and has a heavy clock load such as a system
using registered buffers and eight 4-bit SDRAMs to get 32-bit data, set
both DSDCTL and DSDCK1 to 0. This setting enables SDCLK0, SDCLK1, and all
SDRAM control pins. In this configuration, SDCLK0 and SDCLK1 can each
share half of the clock load.

Setting the Number of SDRAM Banks (SDBN)
The SDBN bit defines the number of banks in the SDRAM device. The
SDRAM controller uses this value and the value assigned to the SDPGS
(page size) bit to map the address bits on the processor’s internal 32-bit
address (DMA/PMA/EPA) bus into SDRAM column address, row
address, and bank select address. The SDBN bits in the SDCTL register select
the number of banks the SDRAM as follows: 0 = 2 banks, 1 = 4 banks.
ADSP-21161 SHARC Processor Hardware Reference 8-15

SDRAM Configuration for Runtime
Setting the External Memory Bank (SDEMx)
The SDCTL register can be programmed to select the external memory
banks that have SDRAM devices by using the SDEMx bits. For example, if
external memory banks 1 and 3 have SDRAMs, SDEM1 and SDEM3 bits are
written with 1. However the controller tracks only the previously accessed
page/bank.

When using SDRAM, connect its CS line to any of the processor’s external
memory banks MS3-0. In the SDCTL register, configure that bank for
SDRAM operation.

Program a zero (0) wait state for the external memory bank to
which the SDRAM device maps by setting EBxWS to 000 in the WAIT
register.
Do not use external handshake mode DMA on the external mem-
ory bank mapped to an SDRAM device.

The SDEMx bits in the SDCTL register configure the processor’s external
memory banks for SDRAM operation as follows:

SDEM [0-3] = 0000 bits 16-19, No SDRAM enabled

SDEM0 = 1 Bank 0 SDRAM Enable

SDEM1 = 1 Bank 1 SDRAM Enable

SDEM2 = 1 Bank 2 SDRAM Enable

SDEM3 = 1 Bank 3 SDRAM Enable

Setting the SDRAM Buffering Option (SDBUF)
Systems that use several SDRAM devices connected in parallel may
require buffering between the processor and multiple SDRAM devices in
order to meet overall system timing requirements.
8-16 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
To meet such timing requirements and enable intermediary buffering, the
processor supports pipelining of SDRAM address and control signals.

The pipeline bit SDBUF (bit 23) in the SDCTL register enables this mode:

SDBUF = 0 Disable pipelining

SDBUF = 1 Enable pipelining

When SDBUF is set (=1), the SDRAM controller delays the data in write
accesses by one cycle, enabling the processor to latch the address and con-
trols externally. In read accesses, the SDRAM controller samples data one
cycle later.

Figure 8-5 shows another single processor example in which the SDRAM
interface connects to multiple banks of SDRAM to provide 512 M of
SDRAM in a 4-bit I/O configuration. This configuration results in
16 M x 32-bit words. In this example, OxA and OxB output from the regis-
tered buffers are the same signal, but are buffered separately. In the
registered buffers, a delay of one clock cycle occurs between the input (Ix)
and its corresponding output (OxA or OxB).

Selecting the CAS Latency Value (SDCL)
The CAS latency value defines the delay, in number of clock cycles,
between the time that the SDRAM detects the read command and the
time that it provides the data at its output pins. This parameter facilitates
matching the SDRAM operation with the processor’s ability to latch the
data output.

CAS latency does not apply to write cycles.

The SDCL bits in the SDCTL register select the CAS latency value as follows:
01 = 1 clock cycle, 10 = 2 clock cycles and 11= 3 clock cycles.

Generally, the frequency of the operation determines the value of the CAS
latency. For more details, see the SDRAM device documentation.
ADSP-21161 SHARC Processor Hardware Reference 8-17

SDRAM Configuration for Runtime
Selecting the SDRAM Page Size (SDPGS)
The processor's SDRAM controller SDPGS bit defines for the page size, in
number of words, of the SDRAM’s banks. The SDRAM controller uses
this value and the value assigned to the SDBN (number of banks) bit to map
the address bits on the processor’s internal 32-bit address
(DMA/PMA/EPA) bus into SDRAM column address, row address, and
bank select address.

Figure 8-5. Uniprocessor System With Multiple SDRAM Devices

DATA[31-0]

ADSP-21065L

MS3

RAS

CAS

DQM

SDWE

SDCLK0

SDCKE

C
O
N
T
R
O
L

A[13:11]

A[9:0]

SDA10

SDCLK1

Registered
Buffers

I0

I5

I4

I3

I2

I1

O0A

O5A

O4A

O3A

O2A

O1A

O0B

O5B

O4B

O3B

O2B

O1B

Ix[13:0] Oxa[13:0]

Oxb[13:0]

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #1
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM
WE

CLK
CKE

SDRAM #3
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK

CKE

SDRAM #2
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM
WE

CLK
CKE

SDRAM #4
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #8
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #6
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #7
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

RAS

CAS

DQM

WE

CLK
CKE

SDRAM #5
4M x 4 x 4

DATA [3:0]

A[13:0]
CS

Ab[13:0]

Aa[13:0]

[23:20]

[27:24]

[31:28]

[7:4]

[15:12]

[11:8]

[19:16][3:0]

Ab[13:0]

D Q

D Q

Addr [14]

Ctrl [6]

20

20 SDRAM Bank 1
Addr & Ctrl

SDRAM Bank 2
Addr & Ctrl
8-18 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
Page length depends on the I/O organization and column addressing of
the SDRAM’s internal banks. For example, a 16 Mbits SDRAM organized
as 2 M x 4 I/O x 2 banks has a page size of 1024 words.

The SDPGS bits (bits 12 and 13) in the SDCTL register select the SDRAM
page length: 00= 256 words, 01 = 512 words, 10= 1024 words and 11 =
2048 words.

Setting the SDRAM Power-Up Mode (SDPM)
To avoid unpredictable start-up modes, SDRAM devices must follow a
specific initialization sequence during power up. The processor provides
two commonly used power-up options.

The SDPM bit (bit 11) in the SDCTL register selects the SDRAM power-up
mode. When the SDPM bit is cleared (=0), the SDRAM controller sequen-
tially issues: a PRE command, eight CBR refresh cycles, and an MRS (Mode
Register Set) command. When the SDPM bit is set (=1), the SDRAM con-
troller issues, in this order: a PRE command, an MRS (Mode Register Set)
command, and eight CBR refresh cycles.

For details, see the SDRAM device documentation.

Starting the SDRAM Power-Up Sequence (SDPSS)
Before starting the power-up sequence, write to the SDCTL register to con-
figure the SDRAM parameters. Be sure to write to all the register bits,
regardless of the number of parameter values that do not change.

To start the SDRAM power-up sequence, write 1 to the SDPSS bit (bit 14)
in the SDCTL register. The SDPSS bit always reads as zero (0). The initializa-
tion sequence executed during power-up depends on the value of the SDPM
bit.
ADSP-21161 SHARC Processor Hardware Reference 8-19

SDRAM Configuration for Runtime
Initialize the SDRDIV register before the ADSP-21161 processor
starts the SDRAM power-up sequence. After power up, make sure
that the processor waits one cycle before writing the SDCTL register
to issue another SDRAM command.

For more details, see the SDRAM device documentation.

Starting Self-Refresh Mode (SDSRF)
The processor supports SDRAM self-refresh mode. In self-refresh mode,
the SDRAM performs refresh operations internally, without external con-
trol, which reduces the SDRAM’s power consumption.

The SDSRF bit (bit 15) in the SDCTL register enables and disables the
self-refresh option:

SDSRF = 0 Disable self-refresh mode

SDSRF = 1 Enable self-refresh mode

When SDSRF is set (=1), the processor’s SDRAM controller issues a SREF
command to the SDRAM device or devices, putting them into self-refresh
mode immediately. For details, see “Self Refresh Command (SREF)” on
page 8-39.

Selecting the Active Command Delay (SDTRAS)
The tRAS value (Active Command Delay) defines the required delay, in
number of clock cycles, between the time the SDRAM controller issues an
ACT command and the time it issues a PRE command.
8-20 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
The SDTRAS bits (bits 4, 5, 6, and 7) in the SDCTL register select the tRAS
value. For example:

SDTRAS=0001 1 clock cycle
SDTRAS=0010 2 clock cycles
SDTRAS=0111 7 clock cycles
SDTRAS=1111 15 clock cycles

For more details, see the SDRAM device documentation.

Selecting the Precharge Delay (SDTRP)
The tRP value (precharge delay) defines the required delay, in number of
clock cycles, between the time the SDRAM controller issues a PRE com-
mand and the time it issues an ACT command.

The SDTRP bits (bits 8, 9, and 10) in the SDCTL register select the tRP value.
For example:

SDTRP = 001 1 clock cycle
SDTRP = 010 2 clock cycles
SDTRP = 111 7 clock cycles

Selecting the RAS-to-CAS Delay (SDTRCD)
The vendor-specific SDRAM value tRCD defines the required delay in
number of clock cycles between an ACT command and the start of the first
read or write operation. The SDTRCD[2:0] bits in the SDCTL register select
the tRCD (RAS to CAS delay) value as follows: 001= 1 clock cycle, 010= 2
clock cycles, and 111= 7 clock cycles. For more details, see the SDRAM
device documentation.

SDTRP, SDTRAS, and SDTRCD settings represent the number of core
clock (CCLK) cycles.
ADSP-21161 SHARC Processor Hardware Reference 8-21

SDRAM Controller Standard Operation
SDRAM Controller Standard Operation
The ADSP-21161 processor SDRAM controller uses a burst length one
for page read/write operations. Burst length determines the maximum
number of column locations that can be accessed for a given read or write
operation.

The ADSP-21161 processor supports burst length one mode. This
does not have an adverse impact on the throughput as compared to
burst lengths of 2, 4, 8 and full page. Instead of applying the first
address and continuing access to data on successive clocks (during
which the controller drives the NOP command), the ADSP-21161
processor SDRAM controller applies the command at every cycle
continuously accessing the data.

Table 8-2 lists the data throughput rates for the processor’s core or DMA
read/write accesses to SDRAM. The following assumptions are made for
the information in this table:

• SDCLK is running at core clock speed (SDCKR =1)

• CAS latency = 2 cycles (SDCL=2)

• No SDRAM buffering (SDBUF=0)

• Precharge (tRP) = 2 cycles (SDTRP=2)

• Active command time (tRAS) = 3 cycles (SDTRAS=3)

• tRCD = 2 cycles (SDTRCD=2)

Understanding DAG and DMA Operation
For either core-driven accesses via the DAGs or DMA data transfers to
and from SDRAM, one full page can be accessed at full throughput if the
data address generator or external address increment is equal to one. If the
8-22 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
modify register or external address register is greater than a value of 1,
then one full page can be written at full throughput, but reads increase the
amount of processing time required.

Table 8-2. Throughput for Core or DMA Read/Write
Operations

Accesses Operations Page Throughput per CCLK
(32-bit words)1, 2

Sequential,
uninterrupted

Read Same 1 word/1 cycle

Sequential,
uninterrupted

Write Same 1 word/1 cycle

Nonsequential,
Uninterrupted

Read Same 1 word/5 cycles
(CL + 3)

Nonsequential,
Uninterrupted

Write Same 1 word/1 cycle

Both Alternating read/write Same Average rate = 3 cycles per word
(reads = 5 cycles, writes = 1 cycle)

Nonsequential Reads Different 1 word/10 cycles
(tRP + CL + tRCD + 4)

Nonsequential Writes Different 1 word/7 cycles
(tRP + tRCD + 3)

Auto refresh
before read

Reads Different 1 word/15 cycles
(2tRP + tRAS + CL + tRCD + 4)

Auto refresh
before write

Writes Different 1 word/11 cycles
(2tRP + tRAS + tRCD + 2)

1 When executing 48-bit packed instructions from 32-, 16-, or 8-bit SDRAM memories:
- Add one clock cycle to the throughput value or to the average access rate for 32-bit wide SDRAM
- Add three clock cycles to the throughput value or to the average access rate for 16-bit wide SDRAM
- Add six clock cycles to the throughput value or to the average access rate for 8-bit wide SDRAM
2 With SDRAM buffering enabled (SBUF=1), replace any instance of (CL) with (CL + 1).
ADSP-21161 SHARC Processor Hardware Reference 8-23

SDRAM Controller Standard Operation
Whenever a page miss happens, the SDRAM controller executes a PRE
command followed by a bank activate command before executing a
read/write command. For SDRAM reads, a latency (equal to CAS latency)
exists from the start of the read command until data is available from the
SDRAM. For the first read in a sequence of reads, the latency always
exists. Subsequent reads will not have latency if the address is sequential
and uninterrupted.

A fresh access to SDRAM always aligns to the CLKIN rising edge. So, inter-
rupted access to SDRAM incur the overhead of additional cycles,
depending on the CLK CFG setting. For example, WRT-NOP-WRT-NOP-WRT has
a 6-cycle overhead for CLK-CFG-2:1 and SDCKR=1. Every write in the above
sequence starts at the rising edge of CLKIN, and two core cycles transpire in
every CLKIN. The last WRT completes in the first core cycle of the third
CLKIN cycle (which is the ninth core cycle). If the three writes had been
consecutive, the third write would be over by the third core cycle of the
first CLKIN. As a result, the writes complete six core clock cycles later.

Programmable refresh counter provides that can be used to set up a count,
depending on the required refresh rate and the clock rate used. The refresh
count is specified in the SDRDIV, a memory mapped IOP register. For more
information on SDRDIV, see “Setting the Refresh Counter Value
(SDRDIV)” on page 8-13.

Multiprocessing Operation
In a multiprocessing environment, the SDRAM is shared among two or
more ADSP-21161 processors. SDRAM input signals (including clock)
are always driven by the bus master. The slave processors track the com-
mands that the master processor issues to the SDRAM. This feature or
function helps to synchronize the SDRAM refresh counters and to prevent
needless refreshing operations. A simplified multiprocessing is shown in
Figure 8-6.
8-24 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
When a ADSP-21161 processor receives the bus mastership, it executes a
PRE command prior to the first access to SDRAM. This occurs only if the
previous master had accessed the SDRAM. In the user application code,
the SDCTL and SDRDIV registers of both ADSP-21161 processors must be
initialized to the same value. If there is no SDRAM used in the system (as
indicated in SDCTL), then the bus transition process is the same as in the
ADSP-21160.

Accessing SDRAM
To access SDRAM, the SDRAM controller multiplexes the internal 32-bit
non-multiplexed address into a row address, a column address, and a bank
select address for the SDRAM device, as shown in Figure 8-7. Lower bits
are mapped into the column, next bit/bits are mapped into the bank
select, and remaining bits are mapped into the row. This mapping is based
on the page size and the number of banks in SDRAM (entered into the
SDCTL register).

Figure 8-6. Multiprocessing: Dual Processor System Example

1
0ADSP-21161N

ID 1

EP

SDRAM

PA

ID=001

BMSTR

1
0

EP

ADSP-21161N

ID 2

BRST

ACK

DATA47:16

SDRAM CONTROL

SDRAM

CONTROLLER
SDRAM

CONTROLLER

ADDR 23:0

ID=001

BMSTR

BR2-1
ADSP-21161 SHARC Processor Hardware Reference 8-25

SDRAM Controller Standard Operation
Based on the values programmed in the SDCTL register for page size and
number of SDRAM banks, the SDRAM controller maps bits as follows:

• the lower ADDR bits into the column address

• the next bit or bits into the bank select address

• the remaining higher order bits into the row address

The following tables show how the SDRAM controller maps the SDRAM
address bits on the processor’s internal address bus to its external address
pins that connect to the SDRAM. The internal and external address bus
pins in the tables are defined as follows:

EA = External address pins
IA = Internal address bus

For 16 M SDRAMs, A11 is the Bank Select pin. When using a
16 M SDRAM, connect the processor's A14 pin to the SDRAM’s
A11 pin.

Figure 8-7. Multiplexed 32-Bit SDRAM Address

252627

Ext. Memory
Bank Select
00 = MS0~
01 = MS1~
10 = MS2~
11 = MS3~

0

Row SDRAM Column
Addr.Addr. Bank

Select
8-26 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
Address Mapping for SDRAM

Table 8-3 through Table 8-7 provide information needed for interfacing
to various SDRAMs.

Table 8-3. SDRAM Size = 16 Mbit

16 Mbit SDRAM
(Page Size x No. of
Banks)

Column Address
(Page Access)

Bank Select Row Address
(Bank Activate)

256 x 2 IA[7:0]=>EA[7:0] IA[8]=>EA[14] IA[19:9]=>EA[10:0]

512 x 2 IA[8:0]=>EA[8:0] IA[9]=>EA[14] IA[20:10]=>EA[10:0]

1024 x 2 IA[9:0] =>EA[9:0] IA[10]=>EA[14] IA[21:11]=>EA[10:0]

Table 8-4. SDRAM Size = 64 Mbit

64 Mbit SDRAM
(Page Size x No.
of Banks)

Column Address Bank Select Row Address

256 x 2 IA[7:0]=> EA[7:0] IA[8] =>EA[14] IA[21:9]=>EA[12:0]

512 x 2 IA[8:0]=>EA[8:0] IA[9]=>EA[14] IA[22:10]=>EA[12:0]

1024 x 2 IA[9:0]=>EA[9:0] IA[10]=>EA[14] IA[23:11]=>EA[12:0]

256 x 4 IA[7:0]=>EA[7:0] IA[9:8]=>EA[14:13] IA[21:10]=>EA[11:0]

512 x 4 IA[8:0]=>EA[8:0] IA[10:9]=>EA[14:13] IA[22:11]=>EA[11:0]

1024 x 4 IA[9:0]=>EA[9:0] IA[11:10]=>EA[14:13] IA[23:12]=>EA[11:0]
ADSP-21161 SHARC Processor Hardware Reference 8-27

SDRAM Controller Standard Operation
Table 8-5. SDRAM Size = 128 Mbits

128 Mbit
SDRAM
(Page Size x No.
of Banks)

Column Address Bank Select Row Address

256 x 4 IA[7:0]=>EA[7:0] IA[9:8]=>EA[14:13] IA[21:10]=>EA[11],
SDA10, EA [9:0]

512 x 4 IA[8:0]=>EA[8:0] IA[10:9]=>EA[14:13] IA[22:11]=>EA[11:0]

1024 x 4 IA[9:0]=>EA[9:0] IA[11:10]=>EA[14:13] IA[23:12]=>EA[11:0]

2048 x 4 IA[10:0]=>EA[11, 9:0] IA[12:11]=>EA[14:13] IA[24:13]=>EA[11:0]

Table 8-6. SDRAM Size = 256 Mbit

256 Mbit
SDRAM
(Page Size x No.
of Banks)

Column Address Bank Select Row Address

512 x 4 IA[8:0]=>EA[8:0] IA[10:9]=>EA[14:13] IA[23:11]=>EA[12:0]

1024 x 4 IA[9:0]=>EA[9:0] IA[11:10]=>EA[14:13] IA[24:12]=>EA[12:0]

2048 x 4 IA[10:0]=>EA[11, 9:0] IA[12:11]=>EA[14:13] IA[25:13]=>EA[12:0]

Table 8-7. Address Ranges for Various SDRAM Device Densities and Page
Size Combinations

SDRAM Device Size Page Size Address Range

16 Mbit1 1Mx16
2Mx8
4Mx4

256
512
1024

0 - 0x000F FFFF (1 Mwords)
0 - 0x001F FFFF (2 Mwords)
0 - 0x003F FFFF (4 Mwords)

64 Mbit 2Mx32
4Mx16
8Mx8
16Mx4

512
256
512
1024

0 - 0x001F FFFF (2 Mwords)
0 - 0x003F FFFF (4 Mwords)
0 - 0x007F FFFF (8 Mwords)
0 - 0x00FF FFFF (16 Mwords)
8-28 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
Understanding DQM Operation
The processor’s DQM (Data I/O Mask) pin is used only during the SDRAM
powerup sequence and during a precharge command.

Executing a Parallel Refresh Command During
Host Control

The ADSP-21161 processor’s SDRAM interface includes a separate A10
pin (SDA10) to enable the controller to execute a parallel refresh command
with any non-SDRAM access. This separate pin allows the SDRAM con-
troller to precharge the SDRAM before it issues a refresh command.

Connecting this pin to the SDRAM’s A10 line, instead of ADDR10 to pre-
charge the SDRAM device, enables the processor to retain control of the
SDRAM device while a host requests (using the HBR pin) and controls the
external ADDR23-0 bus. Figure 8-8 shows an example ADSP-21161 system
containing both a host and SDRAM. During host bus requests, the pro-
cessor still retains mastership of the control pins of the SDRAM (RAS, CAS,

128 Mbit 2 4Mx32
8Mx16
16Mx8
32Mx4

1024
512
1024
2048

0 - 0x003F FFFF (4 Mwords)
0 - 0x007F FFFF (8 Mwords)
0 - 0x00FF FFFF (16 Mwords)
0 - 0x01FF FFFF (32 Mwords)

256 Mbit 16Mx16
32Mx8
64Mx4

512
1024
2048

0 - 0x00FF FFFF (16 Mwords)
0 - 0x01FF FFFF (32 Mwords)
0 - 0x03FF FFFF (64 Mwords)

1 16M and 64M devices do not have a page size of 2048.
2 128M and 256M devices do not have a page size of 256.

Table 8-7. Address Ranges for Various SDRAM Device Densities and Page
Size Combinations (Cont’d)

SDRAM Device Size Page Size Address Range
ADSP-21161 SHARC Processor Hardware Reference 8-29

SDRAM Controller Standard Operation
SDWE, SDCKE, SDCLK, MSx and SDA10) when the host assumes control of the
system bus—HBG is asserted. As a result, the single processor (or master
processor in a multiprocessor system) can issue REF commands as required.

Powering Up After Reset
After reset, once the SDCTL register is written to in the user application
code, the controller initiates the selected power-up sequence. The exact
sequence is determined by SDPM bit of the SDCTL register. In a multipro-
cessing environment, the power-up sequence is initiated by any one of the
ADSP-21161 processors. Note that a software reset does not reset the con-
troller and does not re-initiate a power-up sequence.

Figure 8-8. SDRAM Interface – Bus Slave

1X OR 1/2X CCLK

RD

MSx

RESET

ACK

CKE

RAS

A12:0

D31:0

DQ31:0

ADSP-21161

CLK

BA0/BA1

CAS

WE

CS

WR

DQM

A10

A23:0

SDCKE

RAS

SDCLK

A14/A13

CAS

SDWE

MSx

DQM

SDA10

A23:0

D31:0

A23:0
MUX

BUFFER

REQUEST

CS

OE

ENABLE STROBES

HBRHBGREDY SBTS CS

CLEAR DEADLOCK

21161
CORE

CONTROLLER

HOST

SDRAM
(JEDEC)
8-30 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
Entering and Exiting Self-Refresh Mode
Writing 1 to the SDSRF bit in the SDCTL register causes the SDRAM con-
troller to issue an SREF command to the SDRAM device.

During entry into Self refresh, make sure that no SDRAM accesses are
occurring and that the SDRAM has stopped bursting out data.

Once the SDRAM device enters into self-refresh mode, the SDRAM con-
troller resets the SDSRF bit in the SDCTL register. The SDSRF bit always reads
as 0, regardless of a pending request. The SDRAM controller ignores
other self-refresh requests (SDSRF=1) when the SDRAM device is already in
self-refresh mode.

The application cannot clear the SDSRF bit (SDSRF=0) to cancel self-refresh
mode. The SDRAM device exits self-refresh mode only when it receives a
core or DMA access request from the SDRAM controller.

SDRAM Controller Commands
This section describes each command that the SDRAM controller uses to
manage the SDRAM interface. These commands are transparent to
applications.

A summary of the various commands used by the on chip controller for
the SDRAM interface is as follows:

• ACT (bank activate). Activates a page in the required bank

• MRS (mode register set). Initializes the SDRAM operation param-
eters during the power-up sequence

• PRE (precharge). Precharges the active bank

• Read/Write
ADSP-21161 SHARC Processor Hardware Reference 8-31

SDRAM Controller Commands
• REF (refresh). Causes the SDRAM to enter refresh mode and gen-
erate all addresses internally

• SREF (self-refresh). Places the SDRAM in self-refresh mode, in
which it controls its refresh operations internally

Bank Activate (ACT) Command
A Bank Activate (ACT) command is required if the next data access is on a
different page. The SDRAM controller executes a precharge (PRE) com-
mand followed by bank active (ACT) command to activate the page in the
required bank. Only one bank is active at a time.

The SDRAM pin state during the ACT command is shown in Table 8-9.

Mode Register Set (MRS)
Mode Register Set (MRS) is a part of the power up sequence. MRS initializes
SDRAM operation parameters by using address bits A0-A15 of the
SDRAM as data input. An SDRAM power-up sequence is initiated by
writing 1 to the SDPSS bit in SDCTL register. The exact power up sequence
is determined by the SDPM bit of the SDCTL register.

Table 8-8. Pin State During ACT Command

Pin State

MSx Low

CAS High

RAS Low

SDWE High

SDCKE High
8-32 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
MRS initializes the following SDRAM parameters:

• Burst length = 1, bits 2-0, hardwired to zero in ADSP-21161
processor

• Wrap type = sequential, bit 3, hardwired to zero in ADSP-21161
processor

• Ltmode = latency mode (CAS latency), bits 6-4, programmable in
SDCTL

• Bits (14-7) always 0, hardwired in the ADSP-21161 processor

While executing mode register set command, the SDRAM controller sets
the unused address pins to zero. During the two clock cycles following
MRS, ADSP-21161 processor does not issue any other commands. The
SDRAM pin state during the MRS command is shown in Table 8-10.

Precharge Command (PRE)
The PRE command is issued to precharge the active bank. The SDRAM
controller executes this command if the data to be accessed is located in a
different bank or in a different page in the same bank. After power up, a
PRE command is issued to the SDRAM device’s banks.

The SDRAM pin state during the PRE command is shown in Table 8-10.

Table 8-9. Pin State During MRS Command

Pin State

MSx Low

CAS Low

RAS Low

SDWE Low

SDCKE High
ADSP-21161 SHARC Processor Hardware Reference 8-33

SDRAM Controller Commands
Read/Write Command
The SDRAM controller executes a Read/Write command if the next
read/write data falls in the present (currently active) page.

In general, a Read interrupts a previous Read when the next access is a
nonsequential address but a page miss does not occur. When a page miss
does occur, the SDRAM controller precharges and activates (PRE and ACT
commands) the SDRAM before issuing a Read or Write command. If the
internal refresh counter (SDRDIV) asserts a refresh request, any new access
is delayed until a refresh command is executed.

Read Commands

For the Read command, the CAS, MSx and SDA10 are asserted low to enable
the SDRAM to latch the column address. The start address is set accord-
ing to the column address. The delay between Active and Read commands
is determined by the tRCD parameter (see “SDRAM Timing Specifica-
tions” on page 8-8). Data is available after the tRCD and CAS latency
requirements are met.

The SDRAM read timing is shown in Figure 8-9 and the pin state during
the Read command is shown in Table 8-11.

Table 8-10. Table 10. Pin State During PRE Command

Pin State

MSx Low

CAS High

RAS Low

SDWE Low

SDCKE High

SDA10 High
8-34 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE

T11

ncy

NOP
Figure 8-9. Read Timing Diagram

Table 8-11. Pin State During a Read Command

Pin State

MSx Low

CAS Low

RAS High

SDWE High

SDCKE High

SDA10 Low

SDCLK

Command

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

tRCDCAS latency = 1
tCKE1, DQs

*burst ends after a delay = CAS late

*

tRP

ReadNOP ReadActNOPPre NOPRead Read NOP NOP

Data Data
A0 A1 A2 A3

Data Data

Data Data Data Data
A0 A1 A2 A3

Data Data Data Data
A0 A1 A2 A3

CAS latency = 2
tCKE2, DQs

CAS latency = 3
tCKE3, DQs
ADSP-21161 SHARC Processor Hardware Reference 8-35

SDRAM Controller Commands
Write Commands

For the write command, CAS, MSx, SDWE, and SDA10 are asserted low to
enable the SDRAM to latch the column address. Data is also asserted in
the same cycle. The start address is set according to the column address.
The write timing is shown in Figure 8-10

The SDRAM pin state during the Write command is shown in Table 8-12
below:

Figure 8-10. Write Timing Diagram

Table 8-12. Pin State During Write Command

Pin State

MSx Low

CAS Low

RAS High

SDWE Low

Pre Act Write A BstopNOP NOP NOPWrite B NOP NOP NOP NOP

Data
A0 B0 B1

DataData Data
B2

masked
data

2xCLKIN

Cmd

CAS latency = 1, 2, 3
DQs

DQM

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

tRCDtRP
8-36 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
DMA Transfers

In cases where a DMA channel is performing reads from SDRAM, the
SDRAM controller issues a read command if at least one location is avail-
able in the external port DMA buffer (EPBx) FIFO. Whenever the FIFO is
full, a NOP command is issued.

In cases where a DMA channel is performing writes to SDRAM, the
SDRAM controller issues a write command if at least one word is available
in the EPBx buffer. Whenever no data is available to write, an NOP com-
mand is issued.

Refresh (REF) Command
This command is a request to the SDRAM to perform a CBR (CAS before
RAS) transaction. REF causes all addresses to be generated internally in the
SDRAM. This command is issued to all the external banks having
SDRAMs as defined by the SDEM bits.

Before executing the REF command, the SDRAM controller executes a
precharge (PRE) command to the active bank (after meeting tRAS min).
The next active (ACT) command is given by the controller only after a min-
imum delay equal to tRC.

Setting the Delay Between Refresh Commands

The SDRDIV register in the ADSP-21161 processor is used to set the num-
ber of clock cycles between two REF commands. Program the SDRDIV
register before writing to the SDCTL register. An internal CBR REF request is

SDCKE High

SDA10 Low

Table 8-12. Pin State During Write Command (Cont’d)

Pin State
ADSP-21161 SHARC Processor Hardware Reference 8-37

SDRAM Controller Commands
made to the SDRAM controller based on this refresh divisor value. The
controller completes the present burst before servicing the refresh request.
The master ADSP-21161 processor always performs the refresh command.

Understanding Multiprocessing Operation

In a multiprocessing environment, all ADSP-21161 processors share the
SDRAM. While the ADSP-21161 processor bus master always drives
SDRAM input signals (including the clock), the slave ADSP-21161 pro-
cessors track the commands the master processor issues to the SDRAM.
This tracking helps to synchronize the SDRAM refresh counters and to
prevent needless refreshing operations.

Whenever a ADSP-21161 processor needs to transfer the bus mastership
to other ADSP-21161 processor, it transfers the bus only after meeting
tRAS min - 1 number of cycles for the presently active row. If the refresh
timer makes a refresh request during this process, the present bus master
executes a refresh command (after executing precharge command to
SDRAM). The current bus master continues to hold the bus for
tRAS min – 1 cycles before giving up the bus to the new bus master.

If the REF request arrives from the refresh counter during a bus transition
cycle, the new bus master immediately issues a REF command. The new
bus master becomes aware of this request because the refresh counter is
running on all ADSP-21161 processors. The reloading of the refresh
counter occurs synchronously on all processors, as the slaves watch the
external SDRAM control pins to see when the refresh command is exe-
cuted by the master. When a processor receives the bus mastership, it
executes a PRE command prior to the first access to the SDRAM.

The current ADSP-21161 processor bus master retains mastership of the
control pins of the SDRAM (RAS, CAS, SDWE, SDCKE, SDCLK, MSx, SDA10)
when the host assumes control of the system bus - HBG is asserted. This
enables the master ADSP-21161 processor to issue a REF command as
required.
8-38 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
The SDRAM pin state during the REF command is shown in Table 8-13
below:

Self Refresh Command (SREF)
The SREF command causes the SDRAM to perform refresh operations
internally, without any external control. Before executing the SREF com-
mand, the SDRAM precharges the active bank.

SREF mode is enabled by writing a 1 to the SDSRF bit of the SDCTL register.

During entry into SREF, make sure that no SDRAM accesses are occurring
and the SDRAM has stopped bursting data. The controller automatically
asserts a SREF exit cycle if a SDRAM access occurs during the SREF period.
After executing a SREF exit command, the controller waits for 2 + tRC
cycles to execute a CBR (CAS before RAS) refresh cycle if the refresh counter
is expired already. After the CBR refresh command, the SDRAM controller
waits for tRC number of cycle before executing a bank activate command.

The SDRAM pin state during the SREF command is shown in Table 8-14.

Table 8-13. Pin State During REF Command

Pin State

MSx Low

CAS Low

RAS Low

SDWE High

SDCKE High
ADSP-21161 SHARC Processor Hardware Reference 8-39

SDRAM Controller Commands
Programming Example
This section provides a programming example written for the
ADSP-21161 processor. The example shown in Listing 8-1 demonstrates
how to set up the SDRAM controller to work with the ADSP-21161 pro-
cessor EZ-KIT Lite®.

Listing 8-1. SDRAM Controller Setup for 21161 EZ-KIT Lite

/**

* Setup for the SDRAM Controller for 21161 EZ-KIT Lite *

* Assumes SDRAM part# Micron MT48LC16M16A1-7SE *

* SDCLK=100MHz

* tCK=8ns min @ CL=2 -> SDCL=1 [CAS Latency] *
* tRAS=50ns min -> SDTRAS=3 [active command delay] *
* tRP=20ns min -> SDTRP=2 [precharge delay] *

* tRCD=20 ns min -> SDTRCD=2 [CAS-to-RAS delay] *

* tREF=64ms/4K rows *

* ->SDRDIV=(2(30MHz)-CL-tRP-4)64ms/4096=937cycles *

* 3 SDRAMs by 16 bits wide total = 16Mbit x 48 *

* Mapped to MS0 addresses 0x00200000-0x002fffff *

*

***/

Table 8-14. Pin State During SREF Command

Pin State

MSx Low

CAS Low

RAS Low

SDWE High

SDCKE Low
8-40 ADSP-21161 SHARC Processor Hardware Reference

SDRAM INTERFACE
#include "def21161.h"

.SEGMENT/PM pm_code;

.GLOBAL init_21161_SDRAM_controller;

init_21161_SDRAM_controller:

ustat1=dm(WAIT);

bit clr ustat1 0x000FFFFF; // Clear MSx waitstate and mode

dm(WAIT)=ustat1;

ustat1=0x1000; //Refresh rate

dm(SDRDIV)=ustat1;

ustat1=dm(SDCTL); // Mask in SDRAM settings

// SDCTL = 0x02214231;

// SDCLKx = CCLK frequency, no SDRAM buffering option, 2 SDRAM banks

// SDRAM mapped to bank 0 only, no self-refresh, page size 256 words

// SDRAM powerup mode is prechrg, 8 CRB refs, and then mode reg set

cmd

// tRCD = 2 cycles, tRP=2 cycles, tRAS=3 cycles, SDCL=1 cycle

// SDCLK0, SDCLK1, RAS, CAS and SDCLKE activated

bit set ustat1

SDTRCD2|SDCKRx1|SDBN2|SDEM0|SDPSS|SDPGS256|SDTRP2|SDTRAS3|SDCL1;

bit clr ustat1 SDBUF|SDEM3|SDEM2|SDEM1|SDSRF|SDPM|DSDCK1|DSDCTL;

dm(SDCTL)=ustat1;

rts;
ADSP-21161 SHARC Processor Hardware Reference 8-41

SDRAM Controller Commands
8-42 ADSP-21161 SHARC Processor Hardware Reference

9 LINK PORTS

The ADSP-21161 processor has two 8-bit wide link ports, which can con-

nect to other processor or peripheral link ports. These bidirectional ports
have eight data lines, an acknowledge line, and a clock line. Link ports can
operate at frequencies up to the same speed as the processor’s internal
clock, letting each port transfer up to 8 bits of data per internal clock
cycle. Link ports also have the following features:

• Operate independently and simultaneously.

• Pack data into 32- or 48-bit words; this data can be directly read by
the processor or DMA-transferred to or from on-chip memory.

• Are accessible by the external host processor, using direct reads and
writes.

• Have double-buffered transmit and receive data registers.

• Include programmable clock and acknowledge controls for link
port transfers. Each link port has its own dedicated DMA channel.

• Provide high-speed, point-to-point data transfers to other proces-
sors, allowing differing types of interconnections between multiple
DSPs.

ADSP-21161 processor link ports are logically (but not electrically)
compatible with previous SHARC processor (ADSP-2106x family)
link ports. For more information, see “Link Data Path and Com-
patibility Modes” on page 9-9.
ADSP-21161 SHARC Processor Hardware Reference 9-1

Table 9-2 lists the pins associated with each link port. Each link port con-
sists of eight data lines (LxDAT7-0), a link clock line (LxCLK), and a link
acknowledge line (LxACK). The LxCLK line allows asynchronous data
transfers and the LxACK line provides handshaking. When configured as
a transmitter, the port drives both the data and LxCLK lines. When con-
figured as a receiver, the port drives the LxACK line. Figure 9-1 shows
link port connections.

The link port data pins (L0DAT7-0 and L1DAT7-0)are multiplexed
internally with data lines DATA15-0. If link ports are used, you can-
not execute full instruction width (48-bit) transfers. To perform
48-bit transfers, you must set the correct bits IPACK[1:0] in the
SYSCON register and disable the link ports.

Table 9-1. Link Port Pins

Link Port Pin(s) Link Port Function

LxDAT7-0 Link Port x Data

LxCLK Link Port x Clock

LxACK Link Port x Acknowledge

 “x” denotes the link port number, 0-1

Figure 9-1. Link Port Pin Connections

“X” DENOTES THE LINK PORT NUMBER, 0-5.

TRANSMITTER

EACH
LINK
PORT

LXCLK

LXACK

LXDAT7-0

RECEIVER

8

LXCLK

LXACK

LXDAT7-0

EACH
LINK
PORT
9-2 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Link Port to Link Buffer Assignment
There are two buffers, LBUF0 and LBUF1, that buffer the data flow through
the link ports. These buffers are independent of the link ports and may be
connected to any of the two link ports. The link ports receive and transmit
data on their LxDAT7-0 data pins. Any of the two link buffers may be
assigned to handle data for a particular link port. The data in the link
buffers can be accessed with DMA or processor core control.

“Link port x” does not necessarily connect to “link buffer x.”

One link control register (LCTL) controls the two link ports. The link
assignment register and common control information have been com-
bined into the link control register in the ADSP-21161 processor.

Link assignment bits in LCTL (similar to the LAR functionality in the
ADSP-21160) assign the link buffer-to-port connections. Mem-
ory-to-memory transfers may be accomplished by assigning the same link
port to two buffers, setting up a loopback mode.

Figure 9-2 shows a block diagram of the link ports and link buffers.
ADSP-21161 SHARC Processor Hardware Reference 9-3

Link Port DMA Channels
Link Port DMA Channels
DMA channels 8 and 9 support buffers 0 and 1. The buffer channel pair-
ings are listed in Table 9-2. For more information, see “Link Port DMA”
on page 6-81.

Do not enable SPI and link port DMA simultaneously. SPI and
link port are mutually exclusive when one of the peripherals is
enabled.

Figure 9-2. Link Ports and Buffers

External Packing Register

8/4

8/4

Link Clock
(1x, 1/2x, 1/3x, 1/4x)

mx

Cross-Bar
Connection

Link Buffers 0-1

LAB[0,1] – Link Assignment bits in LCTL

LDAT7-0

Internal IOP Register

DM Data Bus
PM Data Bus
I/O Data

32/48/64

32/48

10

LBUF0
LBUF1

Link Port 0
Link Port 1

32/48

Link Ports 0-1
9-4 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Link Port Booting
Systems may boot the processor through a link port. For more informa-
tion, see “Bootloading Through The Link Port” on page 6-88.

Setting Link Port Modes
The SYSCON and LCTL registers (Figure 9-3) control the link ports operat-
ing modes for the I/O processor. Table A-18 on page A-60 lists all the bits
in SYSCON and Table A-25 on page A-93 lists all the bits in LCTL.

The following bits control link port modes. Bits in the SYSCON and LCTL
registers setup DMA and I/O processor related link port features. For
information on these features, see “Link Port DMA” on page 6-81.

Table 9-2. DMA Channel/Link Buffer Pairing

DMA Channel # Link Buffer Supported

DMA Channel 8 Link Buffer 0

DMA Channel 9 Link Buffer 1
ADSP-21161 SHARC Processor Hardware Reference 9-5

Setting Link Port Modes
Figure 9-3. LCTL Register

L0EN
Link Buffer 0 Enable
1=enable, 0=disable

L0DEN
Link Buffer 0 DMA Enable

L0TRAN
Link Buffer 0 Data Direction
1=Transmit, 0=Receive

L0EXT
Link Buffer 0 Extended Word Size

L0CLKD[1:0]
CCLK Divide Ratio- LBUF0
00=divide by 4, 01=divide by 1,
10=divide by 2, 11=divide by 3

L1EXT

L1TRAN

L1CLKD
CCLK Divide Ratio 0 - LBUF1

Link Buffer 1 Extended Word Size
1=48-bit transfers, 0=32-bit transfers

Link Buffer 1 Data Direction
1=Transmit, 0=Receive

L1CHEN
Link Buffer 1 DMA Chaining Enable
1=enable chaining, 0=disable chaining

L1DEN
Link Buffer 1 DMA Enable
1=enable DMA, 0=disable DMA

L1EN
Link Buffer 1 Enable
1=enable DMA, 0=disable DMA

L0DPWID
Link Buffer 0 Data Path Width
1=8-bits, 0=4-bits

L1CLKD
CCLK Divide Ratio 1 - LBUF1
00=divide by 4, 01=divide by 1
10=divide by 2, 11=divide by 3

L1PDRDE
Link Port 1 Pulldown Resister Disable

L1DPWID
Link Buffer 1 Data Path Width
1=8-bits, 0=4-bits

LAB0
Link Port Assignment for LBUF0
0=Link Port 0, 1=Link Port 1

LAB1
Link Port Assignment for LBUF1
0=Link Port 0, 1=Link Port 1

1=enable DMA 0=disable DMA

L0CHEN
Link Buffer 0 DMA Chaining Enable
1=enable chaining, 0=disable chaining

1=48 -bit transfers, 0=32 -bit transfers

L0PDRDE
Link Port 0 Pulldown Resister Disable

LCTL
0xCC

L0STAT[1:0]
Link Buffer 0 Status (Read-Only)
11=Full, 00=Empty, 10=one word

L1STAT[1:0]
Link Buffer 1 Status (Read- Only)
11=Full, 00=Empty, 10=one word

LRERR0
Rcv. Pack Error Status for Link Buffer 0
1=incomplete, 0=complete

LRERR1
Rcv. Pack Error Status for Link Buffer 1
1=incomplete, 0=complete

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9-6 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Link Port Control Register (LCTL) Bit Descriptions
Note: x denotes 0 for LBUF0-related control bits, or 1 for LBUF1-related
control bits.

• Link Buffer Enable. Bits 0 and 10 (LxEN). This bit enables (if set,
=1) or disables (if cleared, =0) the corresponding link buffer (LBUF0
or LBUF1). When the processor disables the buffer (LxEN transitions
from high to low), the processor clears the corresponding LxSTAT
and LxRERR bits.

• Link Buffer DMA Enable. Bits 1 and 11 (LxDEN). This bit enables
(if set, =1) or disables (if cleared, =0) DMA transfers for the corre-
sponding link buffer (LBUF0 or LBUF1).

• Link Buffer DMA Chaining Enable. Bits 2 and 12 (LxCHEN). This
bit enables (if set, =1) or disables (if cleared, =0) DMA chaining for
the corresponding link buffer (LBUF0 or LBUF1)

• Link Buffer Transfer Direction. Bits 3 and 13 (LxTRAN). This bit
selects the transfer direction (transmit if set, =1) (receive if cleared,
=0) for corresponding link buffer (LBUF0 or LBUF1).

• Link Buffer Extended Word Size. Bits 4 and 14 (LxEXT). This bit
selects the transfer extended word size (48-bit if set, =1) (32-bit if
cleared, =0) for the corresponding link buffer (LBUF0 or LBUF1).
Programs must not change a buffer’s LxEXT setting while the buffer
is enabled.

The buffer’s LxEXT setting overrides the internal memory block’s
setting IMDWx for Normal word width. Whether buffer is set for 48-
or 32- bit words, programs must index (IIx) the corresponding
DMA channel with a Normal word address.
ADSP-21161 SHARC Processor Hardware Reference 9-7

Setting Link Port Modes
• Link Port Clock Divisor. Bits 6-5 and 16-15 (LxCLKD). These bits
select the transfer clock divisor for link buffer x (LBUF0 or LBUF1).
The transfer clock equals the processor core clock divided by
LxCLKD, where L0CLKD[6-5] and L1CLKD[16-15]is: 01=1, 10=2,
11=3, or 00=4.

• Link Port Pulldown Resistor Disable. Bit 8 and 18 (LxPDRDE).This
bit disables (if set, =1) or enables (if cleared, =0) the internal pull-
down resistors on the LxCLK, LxACK, and LxDAT7-0 pins of the
corresponding unassigned or disabled link port; this bit applies to
the port which is not necessarily the port assigned to link buffer x
(LBUF0 or LBUF1). For revisions 0.3, 1.0 and 1.1, LxCLK,LxDAT7-0
and LxACK have a 50kΩ internal pulldown resistor. For revisions
1.2 and greater, LxDAT7-0 has a 20kΩ internal pulldown resistor.
See Table 13-3 for a description of resistor values of the pins.

Systems should not leave link port pins (LxCLK, LxACK, and
LxDAT7-0) unconnected without clearing the corresponding LxP-
DRDE bit or applying an external pulldown. In systems where several
DSPs share a link port, only one processor should have this bit
cleared.

• Link Port Data Path Width. Bits 9 and 19 (LxPDPWID). This bit
selects the link port data path width (8-bit if set, =1) (4-bit if
cleared, =0) for the corresponding link buffer (LBUF0 or LBUF1).

Systems using a 4-bit width should connect the lower link port
data pins (LxDAT3-0) for data transfers and leave the upper pins
(LxDAT7-4) unconnected. In the 4-bit mode, the processor applies
pulldowns to the upper pins.

• Link Port Assignments for LBUF0. Bit 20 (LAB0). This bit assigns
link buffer 0 to link port 1 if set (=1) or link port 0 if cleared (=0).

• Link Port Assignments for LBUF1. Bit 21 (LAB1). This bit assigns
link buffer 1 to link port 1 if set (=1) or link port 0 if cleared (=0).
9-8 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
• Link Buffer Status. Bits 23-22 and 25-24 (LxSTAT). These bits
identify the status of the corresponding link buffer as follows:
11=full, 00=empty, 10=one word.

• Receive Packing Error Status. Bit 27 and 26 (LRERRx). This bit
indicates if the packed bits in the corresponding link buffer were
receive completely (=0), without error, or incompletely (=1).

If multiple link ports are bussed together and the link port pull-
down resistor is enabled on all the processors, the line is heavily
loaded. Ensure only one processor has this functionality.

The processor’s internal clock (CCLK) is the CLKIN frequency multi-
plied by a clock ratio (CLK_CFG1-0)and the CLKDBL pin (1:1 or 2:1
ratio). For more information, see the clock ratio pin description in
Table 13-1 on page 13-4.

When link buffers are enabled or disabled, the I/O processor may
generate unwanted interrupt service requests if Link Service
Request (LSRQ) interrupts are unmasked. To avoid unwanted inter-
rupts, programs should mask the LSRQ interrupts while enabling or
disabling link buffers. For more information, see “Using Link Port
Interrupts” on page 9-17.

Link Data Path and Compatibility Modes
The link ports can transmit and received data using all eight of the link
port’s data pins (LxDAT7-0) or the four lower data pins (LxDAT3-0). The
LxDPWID bit in the LCTL register selects the link port data path width (8-bit
if set, =1) (4-bit if cleared, =0). Before changing the mode of the link port,
disable the link port. After the port is disabled, a new control word can be
written to LCTL.

When LxDPWID is cleared (4-bit data path), the ADSP-21161 pro-
cessor can be connected to link ports of previous SHARC
processors (ADSP-2106x family). The link port receiver must run
ADSP-21161 SHARC Processor Hardware Reference 9-9

Using Link Port Handshake Signals
at the same speed or faster than the transmitter. Connecting to an
ADSP-2106x may require that the ADSP-21161 processor be con-
figured for 1/2 core clock rate operation. For more information, see
“Using Link Port Handshake Signals” on page 9-10.

Using Link Port Handshake Signals
The LxCLK and LxACK pins of each link port allow handshaking for asyn-
chronous data communication between DSPs. Other devices that follow
the same protocol may also communicate with these link ports. The pro-
cessor link ports are backward compatible with the SHARC link ports for
basic transfers, including LSRQ functions.

A SHARC compatible link can be enabled by adjusting the upper LxCLKD
bit in the LCTL register and by clearing the LxDPWID bit in the LCTL register,
enabling the 4-bit data path.

The link port receiver must run at the same speed or faster than the
transmitter. Connecting to an ADSP-2106x may require that the
ADSP-21161 processor be configured for 1/2 core clock rate
operation.

A link-port-transmitted word consists of 4 bytes (for a 32-bit word) or 8
nibbles or 6 bytes (for a 48-bit word) or 12 nibbles. The transmitter
asserts the clock (LxCLK) high with each new byte of data. The falling edge
of LxCLK is used by the receiver to latch the byte. The receiver asserts LxACK
when it is ready to accept another word in the buffer. The transmitter
samples LxACK at the beginning of each word transmission (that is, after
every 4 or 6 bytes). If LxACK is deasserted at that time, the transmitter does
not transmit the new word. For more information, see Figure 9-4. The
transmitter leaves LxCLK high and continues to drive the first byte if LxACK
is deasserted. When LxACK is eventually asserted again, LxCLK goes low and
begins transmission of the next word. If the transmit buffer is empty,
LxCLK remains low until the buffer is refilled, regardless of the state of
LxACK.
9-10 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
The receive buffer may fill if a higher priority DMA, core I/O processor
register access, direct read, direct write or chain loading operation is
occurring. LxACK may de-assert when it anticipates the buffer may fill.
LxACK is reasserted by the receiver as soon as the internal DMA grant sig-
nal has occurred, freeing a buffer location.

Data is latched in the receive buffer on the falling edge of LxCLK. The
receive operation is purely asynchronous and can occur at any frequency
up to the processor clock frequency.

When a link port is not enabled, LxDAT7-0, LxCLK and LxACK are
three-stated. When a link port is enabled to transmit, the data pins are
driven with whatever data is in the output buffer, LxCLK is driven high and
LxACK is three-stated. When a port is enabled to receive, the data pins and
LxCLK are three-stated and LxACK is driven high.

Figure 9-4. Link Port Handshake Timing

LXCLK

LXACK

TRANSMITTER SAMPLES
LACK HERE TO DETERMINE
WHETHER TO TRANSMIT
NEXT WORD

LXDAT7-0 BYTE 1 BYTE 2 BYTE 0 (MSBS)

MINIMUM LACK SET-UP TIME

LCLK STAYS HIGH AT BYTE 0 IF LACK IS SAMPLED LOW ON
PREVIOUS LCLK RISING EDGE—LCLK HIGH INDICATES A STALL

LXACK MAY DEASSERT
AF TER BYTE 0

LACK WILL REASSERT
AS SOON AS THE LINK
BUFFER IS "NOT FULL "

RECEIVER WILL ACCEPT REMAINING B YTES IN
THE CURRENT WORD EVEN IF LACK IS DEASSERTED.

THE TRANSMITTER WILL NOT SEND TH E FOLLOWING WORD.

TRANSMIT DATA FOR NEXT WORD
IS HELD UNTIL LACK IS ASSERTED

BYTE 3 (32-BIT) OR
BYTE 5 (48-BIT) (LSBS)
ADSP-21161 SHARC Processor Hardware Reference 9-11

Using Link Buffers
To allow a transmitter and a receiver to be enabled (assigned and link
buffer enabled) at different times, LxACK, LxCLK, and LxDAT7-0 may be held
low with their internal pull-down resistor if LxPDRDE is cleared when the
link port is disabled. LxDAT7-0 is kept at the previously driven value by
internal keeper latches on the link port data lines if LxPDRDE is cleared
when the link port is disabled. If the transmitter is enabled before the
receiver, LxACK is low and the transmission is held off. If the receiver is
enabled before the transmitter, LxCLK is held low by the pulldown and the
receiver is held off. If many link ports are bused together, the systems may
need to enable only one of the internal resistors to pull down each bused
pin, so the bused lines are not pulled down too strongly or too heavily
loaded.

Refer to Table 13-1 on page 13-4 for detailed pin descriptions and
Table 13-3 on page 13-22 for more information on pull down resistors.

LxACK, LxCLK, and LxDAT7-0 should not be left unconnected unless
external pull-down resistors are used.

Using Link Buffers
Each link buffer consists of an external and an internal 48-bit register. For
more information, see Figure 9-2 on page 9-4. When transmitting, the
internal register is used to accept core data or DMA data from internal
memory. When receiving, the external register performs the packing and
unpacking for the link port, most significant nibble or byte first. These
two registers form a two-stage FIFO for the LBUFx buffer. Two writes (32-
or 48-bit) can occur to the register by the DMA or the core, before it sig-
nals a full condition. As each word is unpacked and transmitted, the next
location in the FIFO becomes available and a new DMA request is made.
If the register becomes empty, the LxCLK signal is de-asserted. When trans-
mitting, only the number of words written are transmitted.
9-12 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Full/empty status for the link buffer FIFOs is given by the LxSTAT bits of
the LCTL register. This status is cleared for a link buffer when its LxEN
enable bit is cleared in the LCTL register.

During receiving, the external buffer is used to pack the receive link port
data (most significant nibble or byte first) and pass it to the internal regis-
ter before DMA-transferring it to internal memory. This buffer is a
two-deep FIFO. If the processor’s DMA controller does not service it
before both locations are filled, the LxACK signal is de-asserted.

The link buffer width may be selected to be either 32 or 48 bits. This
selection is made individually for each buffer with the LxEXT bits in the
LCTLx register. For 40-bit extended precision data or 48-bit instruction
transfers, the width must be set to 48 bits.

Core Processor Access To Link Buffers
In applications where the latency of link port DMA transfers to and from
internal memory is too long, or where a process is continuous and has no
block boundaries, the processor core may read or write link buffers
directly using the full or empty status bit of the link buffer to automati-
cally pace the operation. The full or empty status of a particular LBUFx
buffer can be determined by reading the LxSTATx bits in LCTL. DMA
should be disabled when using this capability (LxDEN=0).

If a read is attempted from an empty receive buffer, the core stalls (hangs)
until the link port completes reception of a word. If a write is attempted
to a full transmit buffer, the core stalls until the external device accepts the
complete word. Up to four words (2 in the receiver and 2 in the transmit-
ter) may be sent without a stall before the receiver core or DMA must read
a link buffer register.
ADSP-21161 SHARC Processor Hardware Reference 9-13

Using Link Buffers
To support debugging buffer transfers, the processor has a Buffer Hang
Disable (BHD) bit. When set (=1), this bit prevents the processor core from
detecting a buffer-related stall condition, permitting debugging of this
type of stall condition. For more information, see the BHD discussion on
page on page 6-43.

Host Processor Access To Link Buffers
When a 32-bit, 16-bit, or 8-bit host processor normally accesses IOP reg-
ister space (with the exception of LBUFx and EPBx buffers), the
ADSP-21161 defaults to pack and unpack data internally (independent of
the setting of the PMODE bits in the DMACx register) to a 32-bit access.

The link buffers LBUF0 and LBUF1 can also be accessed by an external host
processor, using direct reads and writes to IOP register space. However,
there is a difference in how data is accessed with the link buffers compared
to other IOP registers accessed as 32-bit data. Host accessing link port
buffers pack or unpack to 48-bits internally, ignoring the value of PMODE in
DMACx, but using the HBW bits in SYSCON to set the external packing mode.

In the case where a host processor reads or writes to the LBUF0 and LBUF1
link buffers, the PMODE bits in DMACx external port DMA control register
are ignored and are hardwired to a special 48-bit internal packing mode. A
fixed packing mode for an 8-, 16-, or 32-bit (corresponding to the host
bus width (HBW) bits in SYSCON) external host to 48-bits internal is selected.
This fixed 48-bit internal packing mode is required due to the fact that
the ADSP-21161 link port buffers can transmit/receive 48-bit words.

It may be desirable in some applications for a host processor to transfer
instruction opcodes to another SHARC indirectly via the directly con-
nected SHARC's link port by reading or writing the opcode data to or
from the LBUF0 and LBUF1 link buffers through the external port. For
example, with a 16-bit host, the packing mode internally defaults to
48-bit packed transfers. The packing mode is 16 external to 48-bit
internal.
9-14 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Depending on the HBW (host bus width) bits in SYSCON, the appropriate
48-bit internal packing mode is selected. Table 6-7 on page 6-36 summa-
rizes the packing mode bit settings for access to link port buffers.

Host packing examples are shown below for host direct read/write access
to LBUFx link port data buffers. When interfacing to a host processor, the
HMSWF bit determines whether the I/O processor packs to most significant
16-bit word first (=1)or least significant 16-bit word first (=0). The pack-
ing mode defaults to 48-bit internal packing for host accesses to LBUFx,
ignoring PMODE value in DMACx.

Table 9-3. Packing Sequence for 16-Bit Bus (MSW First)

Transfer Data Bus Pins 31-16

First Word 1; bits 47-32

Second Word 1; bits 31-16

Third Word 1; bits 15-0

Table 9-4. Packing Sequence for 16-Bit Bus (LSW First)

Transfer Data Bus Pins

First Word 1; bits 15-0

Second Word 1; bits 31-16

Third Word 1; bits 47-32
ADSP-21161 SHARC Processor Hardware Reference 9-15

Using Link Port DMA
To write a single 48-bit word or an odd number of 48-bit words to LBUFx,
write a dummy access to completely fill the packing buffer, or write the
HPFLSH bit in SYSCON to flush the partially filled packing buffer and remove
the unused word. The HPFLSH bit clears the HPS bits in SYSTAT as well.

Using Link Port DMA
DMA channels 8-9 support link buffers 0-1. These DMA channels are
shared with the SPI transmit and receive buffers. A maskable interrupt is
generated when the DMA block transfer has completed. For more infor-

Table 9-5. Packing Sequence from 8-bit bus (MSW first)

Transfer Data Bus Pins 23-16

First Word 1; bits 47-40

Second Word 1; bits 39-32

Third Word 1; bits 31-24

Fourth Word 1; bits 23-16

Fifth Word 1; bits 15-8

Sixth Word 1; bits 7-0

Table 9-6. Packing sequence from 8-bit bus (LSW first)

Transfer Data Bus Pins 23-16

First Word 1; bits 7-0

Second Word 1; bits 15-8

Third Word 1; bits 23-16

Fourth Word 1; bits 31-24

Fifth Word 1; bits 39-32

Sixth Word 1; bits 47-40
9-16 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
mation on link port interrupts, see “Using Link Port Interrupts” on
page 9-17. For more information on link port DMA, see “Link Port
DMA” on page 6-81.

The link port channels share DMA channels 8 and 9 with the SPI
transmit and receive buffers. Do not enable SPI and link port
DMA simultaneously. SPI and link port are mutually exclusive
when one of the peripherals is enabled.

In chained DMA operations, the processor automatically sets up another
DMA transfer when the current DMA operation completes. The chain
pointer register (CPLB0, and CPLB1) is used to point to the next set of
buffer parameters stored in memory. The processor’s DMA controller
automatically downloads these buffer parameters to set up the next DMA
sequence. For information on setting up DMA chaining, see “Chaining
DMA Processes” on page 6-25.

Using Link Port Interrupts
Three types of interrupts are dedicated to the link ports:

The I/O processor generates a DMA channel interrupt when a DMA
block transfer through the link port with DMA enabled (LxDEN=1)
finishes.

• The I/O processor generates a DMA channel interrupt when DMA
for the link buffer channel is disabled (LxDEN=0) and the buffer is
not full (for transmit) or the buffer is not empty (for receive).

• The I/O processor generates a Link Services Request (LSRQ) inter-
rupt when an external source accesses a disabled link port, an
unassigned link port or assigned port with buffer disabled.

Although the link ports and the SPI port share DMA channels 8 and 9,
there are different interrupt vector locations dedicated for these two
peripherals. The LIRPTL register controls both the link port and SPI trans-
ADSP-21161 SHARC Processor Hardware Reference 9-17

Using Link Port Interrupts
mit/receive interrupt latching and masking functions. The IRPTL register
controls a single global link port interrupt that latches the LPISUM bit. This
bit indicates whether at least one of the two unmasked link port interrupt
is latched. Refer to Figure 9-5 and Table A-10 on page A-34 for complete
bit description of the LIRPTL register.

During reset, if a link port boot is enabled, the mask bit for LBUF0 (bit 16)
is set (for example, the interrupt is unmasked). If a SPI boot is enabled,
the mask bit for SPI receive (bit 18) is set.

Link Port Interrupts With DMA Enabled
A link port interrupt is generated when the DMA operation is done—
when the block transfer has completed and the DMA count register is
zero.

Figure 9-5. LIRPTL Register

LIRPTL
LP0MSK
Link Buffer 0 DMA
Interrupt Mask
LP1MSK
Link Buffer 1 DMA
Interrupt Mask

SPITMSKP

SPIRMSK

SPI Transmit DMA
Interrupt Mask Pointer

SPI Receive DMA
Interrupt Mask

SPIRMSKP

SPITMSK

SPI Receive DMA
Interrupt Mask Pointer

SPI Transmit DMA
Interrupt Mask

LP1MSKP
Link Buffer 1 DMA
Interrupt Mask Pointer
LP0MSKP
Link Buffer 0 DMA
Interrupt Mask Pointer

LP0I
Link Buffer 0 DMA Interrupt Latch

LP1I
Link Buffer 1 DMA Interrupt
Latch (0x3c)

Interrupt Vector Address Offset-0x38
SPITI

SPIRI
SPI Receive DMA
Interrupt Latch (0x40)

SPI Transmit DMA
Interrupt Latch (0x44)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9-18 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
One way programs can use this interrupt is to send additional control
information at the end of a block transfer. Because the receive DMA
buffer is empty when the DMA block has completed, the external bus
master can send up to two additional words to the slave processor’s buffer,
which has space for the two words. When the slaves’s DMA completes,
there is an interrupt. In the associated interrupt service routing, the buffer
can be read in order to use these control words to determine the next
course of action.

Link Port Interrupts With DMA Disabled
If DMA is disabled for a link port buffer, then the buffer may be written
or read by the processor core as a memory-mapped I/O processor register.

If the DMA is disabled but the associated link buffer is enabled, then a
maskable interrupt is generated whenever a receive buffer is not empty or
when a transmit buffer is not full. This interrupt is the same interrupt vec-
tor associated with the completion of the DMA block transfers.

The interrupt latch bit in LIRPTL may be unmasked by the corresponding
mask bit in the same register. When initially enabling the mask bit, the
corresponding latch bit in LIRPTL should be cleared first to clear out any
request that may have been inadvertently latched.

The interrupt service routine should test the buffer status after each read
or write to check when the buffer is empty or full, in order to determine
when it should return from interrupt. This will reduce the number of
interrupts it must service.

Link Port Service Request Interrupts (LSRQ)
Link port service requests let a disabled (unassigned or assigned with
buffer disabled) link port cause an interrupt when an external access is
attempted. The transmit and receive request status bits of the LSRQ register
indicate when another processor is attempting to send or receive data
ADSP-21161 SHARC Processor Hardware Reference 9-19

Using Link Port Interrupts
through a particular link port. Two processors can communicate without
prior knowledge of the transfer direction, link port number, or exactly
when the transfer is to occur. The LRSQ register is shown in Figure 9-6 and
described in Table A-26 on page A-98.

In Figure 9-6, for transmit request status bits, LxTRQ=1 means
LxACK=1, LxTM=1, and LxEN=0; for receive request status bits,
LxRRQ=1 means LxCLK=1, LxRM=1, and LxEN=

When LxACK or LxCLK is asserted externally, a link service request (LSR) is
generated in a disabled (unassigned or assigned with buffer disabled) link
port. LSRs are not generated for a link port that is disabled by loopback
mode. Each LSR is gated by mask bits before being latched in the LSRQ
register. The two possible receive LSRs and the two possible transmit
LSRs are gated by mask bits and then ORed together to generate the link
service request interrupt. The LSRQ interrupt request may be masked by

Figure 9-6. LSRQ Register

11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

L0TM
Link Port 0 Transmit Mask

L0RML1TM

L1RM

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16LSRQ

L0TRQ

L0RRQL1TRQ

L1RRQ

Link Port 0 Receive MaskLink Port 1 Transmit Mask

Link Port 1 Receive Mask

Link Port 0 Receive Request

Link Port 0 Transmit RequestLink Port 1 Receive Request

Link Port 1 Transmit Request

0xD0
9-20 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
the LSRQI mask bit of the IMASK register. When the mask bit is set, the
interrupt is allowed to pass into the interrupt priority encoder. A diagram
of this logic appears in Figure 9-7.

The interrupt routine must read the LSRQ register to determine which link
port to service and whether it is a transmit or receive request. LSR inter-
rupts have a latency of two cycles. Note that the link service request
interrupt is different from the link receive and transmit interrupt—this is
also true in IMASK.

The 32-bit LSRQ register holds the masked link status of each link port and
the corresponding interrupt mask bits. The link service request status of
the port is set whenever the port is not enabled and one of LxACK or LxCLK
is asserted high. The LSRQ status bits are read-only. Table A-26 on
page A-98 shows the individual bits of the LSRQ register.

To determine which link port to service, programs can transfer
LSRQ to a register Rx (in the register file) and use the leading 0s
detect instruction: Rn=LEFTZ Rx. Here, Rn indicates which link port
is active in order of priority.

If link service requests are in use, they should be masked out when the
assigned link buffers are being enabled, disabled, or when the link port is
being unassigned in LCTL. Otherwise, spurious service requests may be
generated.

Figure 9-7. Logic for Link Port Interrupts

LXRRQ

LXTRQ LSR MASK

LSR STATUS

LSRQ

IRPTL, LSRQI

MODE1, IRPTEN

IMASK, LSRQI
LINK
SER VICE
REQUEST
INTERRUPT
ADSP-21161 SHARC Processor Hardware Reference 9-21

Detecting Errors on Link Transmissions
The need for masking is due to a delay before LxCLK or LxACK (if already
asserted) signals are pulled (if pulldowns enabled) or driven externally (if
pulldowns disabled) below logic threshold. During this delay, these signals
are sampled asserted and generate an LSRQ.

To avoid the possibility of spurious interrupts, programs should
mask the LSRQ interrupt or the appropriate request bit in the LSRQ
register and allow a delay before unmasking. Alternatively, pro-
grams can mask the LSRQ interrupt and poll the appropriate request
status bit until it is cleared and then unmask the interrupt.

Detecting Errors on Link Transmissions
Transmission errors on the link ports may be detected by reading the
LRERRx bits (bits 26 and 27) in the LCTL register. These bits reflects the sta-
tus of each nibble or byte counter. The LRERRx bit is cleared (=0) if the
pack counter of the corresponding link buffer is zero—a multiple of 8 or
12 nibbles or bytes have been received. If LRERR is set (=1) when a trans-
mission has completed, then an error occurred during transmission.

The DMA word count provides an exact count of the number of
words to be transferred.

To allow checking of this status, the transmitter and receiver should fol-
low a protocol such as the following:

• Transmitter Protocol—To make use of the LRERRx status, one
additional dummy word should always be transmitted at the end of
a block transmission. The transmitter must then deselect the link
port and re-enable as a receiver to allow the receiver to send an
appropriate message back to the transmitter.

• Receiver Protocol—When the receiver has received the data block,
indicated by a the same interrupt vector associated with the com-
pletion of the link port DMA, it checks that it has received an
9-22 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
additional word in the link buffer and then reads the LRERR bit.
The receiver may then clear the link buffer (LxEN=0) and transmit
the appropriate message back to the transmitter on the same, or a
different, link port.

Link Port Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example shown in Listing 9-1 demonstrates
how the core directly writes to the link port transmit buffer and reads
from the link port receive buffer after an interrupt. The example shown in
Listing 9-2 demonstrates how the core directly reads from the link port
receive buffer and writes to the link port transmit buffer.

Listing 9-1. Interrupt Core-Driven Link Loopback Example

/*__

ADSP-21161 Interrupt Core-Driven LINK Loopback Example

This example shows an internally looped-back link port 32-bit

transfer. The core directly writes to the transfer link buffer

(LBUF1) and reads from the receive link buffer (LBUF0). The core
will hang on the read of LBUF0 until the data is ready. Loopback
is achieved by assigning the transmit and receive link buffers to
the same port. (Port 0)

__*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /* Reset vector from ldf file */

nop;

jump start;
ADSP-21161 SHARC Processor Hardware Reference 9-23

Detecting Errors on Link Transmissions
.section/dm seg_dmda; /* Data section from ldf file */

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm lp1i_svc; /*Link Port 1 interrupt vector from ldf

 file */

jump lpISR1; nop; nop; nop;

.section/pm lp0i_svc; /*Link Port 0 interrupt vector from ldf

 file */

jump lpISR1; nop; nop; nop;

/*_____________________Main Routine________________________*/

.section/pm seg_pmco; /* Main code section from ldf file */

start:

B0=source; /* Set pointers for source and dest */

L0=@source;

B1=dest;

L1=@dest;

/*Enable Global, Link Port, and Link Port Buffer 1 interrupts*/

bit set imask LPISUMI;

bit set lirptl LP1MSK;

bit set mode1 IRPTEN | CBUFEN; /* Enable circular buffers */

ustat1=dm(LCTL);

/* LCTL REGISTER--LBUF1=TX, LBUF0=RX, 1/2x CCLK RATE, LBUF 0 &

1ENABLED, LBUF 0 & 1 -> PORT 0 */

bit clr ustat1 L0TRAN | LAB0 | LAB1 | L0CLKD0 | L1CLKD0;

bit set ustat1 L1TRAN | L1EN | L0EN | L0CLKD1 | L1CLKD1;

dm(LCTL)=ustat1;
9-24 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
wait: idle;

jump wait;

lpISR1: /* Link Port Service Routine */

R0=dm(I0,1); /* Get data for TX */

dm(LBUF1)=R0; /* Write data to LBUF1 */

R1=dm(LBUF0); /* Read data-core will hang here until data is

 received. */

dm(I1,1)=R1; /* Store incoming data to dest buffer */

rti;

Listing 9-2. Core-Driven Link Loopback Example

/*__

 ADSP-21161 Core-Driven LINK Loopback Example

This example shows an internally looped-back link port 32-bit

transfer. The core directly writes to the transfer link buffer
(LBUF1) and reads from the receive link buffer (LBUF0). The core
will hang on the read of LBUF0 until the data is ready. Loopback
is achieved by assigning the transmit and receive link buffers to
the same port. (Port 0)

__*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /* Reset vector from ldf file */

nop;

jump start;

.section/dm seg_dmda; /* Data section from ldf file */

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;
ADSP-21161 SHARC Processor Hardware Reference 9-25

Detecting Errors on Link Transmissions
.var dest[N];

/*________________________Main Routine________________________*/

.section/pm seg_pmco; /* Main code section from ldf */
start:

r0=0; DM(LCTL)=r0; /* Clear LCTL register */

B0=source; /* Set up pointers for source and dest */

L0=@source;

B1=dest;

L1=@dest;

ustat1=dm(LCTL);

/* LCTL REGISTER-->LBUF1=TX, LBUF0=RX, 2x CLK RATE, LBUF 0 & 1

ENABLED, LBUF 0 & 1 -> PORT 0 */

bit clr ustat1 L0TRAN | L0CLKD0 | L1CLKD0 | LAB0 | LAB1;

bit set ustat1 L1TRAN | L1EN | L0EN | L0CLKD1 | L1CLKD1;

dm(LCTL)=ustat1;

lcntr=N, do transfer until lce;

R0=dm(I0,1); /* Test data to TX */

dm(LBUF1)=R0; /* Write data to LBUF1 */

R1=dm(LBUF0); /* Read data-core will hang here until data is

 received. */

transfer: dm(I1,1)=R1; / *Store incoming data to dest buffer */

wait: idle;

jump wait;
9-26 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Using Token Passing With Link Ports
When two DSPs communicate using a link port only one can be the trans-
mitter or receiver. Token passing is a protocol that assists the DSPs
alternate control. Figure 9-8 shows a flow chart of the token passing
process.

In token passing, the token is a software flag that passes between the pro-
cessors. At reset, the token (flag) is set to reside in the link port of one
device, making it the master and the transmitter. When a receiver link
port (slave) wants to become the master, it may assert its LxACK line
(request data) to get the master’s attention. The master knows, through
software protocol, whether it is supposed to respond with actual data or
whether it is being asked for the token.

The token release word can be any user-defined value. Since both the
transmitter and receiver are expecting a code word, this does not need to
be exclusive of normal data transmission.

If the master wishes to give up the token, it may send back a user-defined
token release word and thereafter clear its token flag. Simultaneously, the
slave examines the data sent back and if it is the token release word, the
slave will set its token, and can thereafter transmit. If the received data is
not the token release word, then the slave must assume the master was
beginning a new transmission.

Through software protocol, the master can also ask to receive data by
sending the token release word without the LxACK (data request) going low
first.
ADSP-21161 SHARC Processor Hardware Reference 9-27

Using Token Passing With Link Ports
Figure 9-8. Token Passing Flow Chart

ORIGINAL MASTER ORIGINAL SLAVE

• DMA TRANSFER COMPLETE
• LBUF DISABLED
• LSRQ INTERRUPT ENABLED

• DMA TRANSFER COMPLETE
• LBUF DISABLED
• LBUF RX NON-DMA ENABLED

• READ LBUF
• TEST FOR TRW

• ACCEPT TOKEN BY EMPTYING LBUF FIFOS
THROUGH 3 MORE READS WITHIN THE
ALLOTTED TIME PERIOD

• DISABLE LBUF AND LSRQ INTERRUPT
• POLL LSRQ STATUS FOR LINK PORT TRANSMIT

REQUEST TO BE SURE THAT THE ORIGINAL
MASTER IS NOW A SLAVE

• LACK ASSERTION ASSURES THAT IT IS SAFE
TO BEGIN TRANSMITTING

• SETUP LBUF FOR TX NON-DMA TO SEND
DMA SIZE

• SETUP LBUF FOR TX DMA AND DMA
COMPLETE INTERRUPT

• DMA TRANSFER COMPLETE
• SETUP LBUF FOR TX NON-DMA

• LACK ASSERTION CAUSES LSRQ INTERRUPT
• LBUF TX NON-DMA ENABLED
• SEND TRW 4 TIMES TO FILL LBUF FIFOS ON BOTH SIDES
• CHECK LCTL FOR SLAVE READ OF TRW

BEFORE ACCEPTANCE TEST

• CHECK LCTL TO SEE IF SLAVE ACCEPTED
TOKEN BY EMPTYING FIFOS IN AN ALLOTTED
TIME PERIOD

• SETUP LBUF FOR RX NON-DMA TO ACCEPT
DMA SIZE

• SETUP LBUF FOR RX DMA AND DMA COMPLETE IRQ

• DMA TRANSFER COMPLETE
• SETUP LBUF FOR RX NON-DMA
9-28 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
To use the example, the example code is to be loaded on both the original
master and the original slave. The code is ID intelligent for multiprocessor
systems: ID1 is the original master (transmitter) and ID2 is original slave
(receiver). The master transmits a buffer via DMA through link port 0
using LBUF1 and the slave receives through link port 0 using LBUF0. The
slave then requests the token by generating an LSRQ interrupt in the dis-
abled link port of the master (LPORT0). The master responds by sending
the token release word and waiting to see if it is accepted. The slave checks
to see that it is the token release word and accepts the token by emptying
the master’s link buffer FIFO within a predetermined amount of time. If
the token is accepted the slave becomes the master and transmits a buffer
of data to the new slave. If the token is rejected, the master transmits a sec-
ond buffer. When complete, the original master will finish by setting up
LBUF0 to receive without DMA, and the original slave sets up LBUF1 to
transmit without DMA.

The following is a list of the areas of concern when a program implements
a software protocol scheme for token passing:

• The program must make sure that both link buffers are not enabled
to transmit at the same time. In the event that this occurs, data
may be transmitted and lost due to the fact that neither link port is
driving LxACK. In the example, the LSRQ register status bits are
polled to ensure that the master becomes the slave before the slave
becomes the master, avoiding the two transmitter conflict.

• The program must make sure that the link interrupt selection
matches the application. If a status detection scheme using the sta-
tus bits of the LSRQ register is to be used, it is important to note the
following: If a link port that is configured to receive is disabled
while LxACK is asserted, there is an RC delay before the 50kΩ pull-
down resistor1 on LxACK (if enabled) can pull the value below logic

1 LxACK has a 20kΩ pulldown resistor for revisions 1.2 and higher.
ADSP-21161 SHARC Processor Hardware Reference 9-29

Designing Link Port Systems
threshold. If the appropriate request status bit is unmasked in the
LSRQ register (in this instance), then an LSR is latched and the LSRQ
interrupt may be serviced, even though unintended, if enabled.

• The program must make sure that synchronization is not disrupted
by unrelated influences at critical sections where timing control
loops are used to synchronize parallel code execution. Disabling of
nested interrupts is one technique to control this.

Designing Link Port Systems
The ADSP-21161 processor link ports support I/O with peripherals and
other processor link ports. While link ports require few connections, there
are a number of design issues that systems using these ports must
accommodate.

Terminations for Link Transmission Lines
The link ports are designed to allow long distance connections to be made
between the driver and the receiver. This is possible because the links are
self-synchronizing—the clock and data are transmitted together. Only rel-
ative delay, not absolute delay between clock and data is relevant.

In addition, the LxACK signal inhibits transmission of the next word, not of
the current nibble or byte. For example, the current word is always
allowed to complete transmission. This allows delays of 3 to 5 cycles for
the LxACK signal to reach the transmitter.

The links are designed to drive transmission lines with characteristic
impedances of 50Ω or greater. A higher transmission line impedance
reduces the on-chip effect of driver impedance variations for distances
longer than six inches.
9-30 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
The ADSP-21161 processor contains internal series resistance
equivalent to 50Ω on all I/O drivers except the CLKIN and XTAL
pins. Therefore, for traces longer than six inches, external series
resisters on control, link port data, clock or frame sync pins are not
required to dampen reflections from transmission line effects for
point-to-point connections.

Peripheral I/O Using Link Ports
The example shown in Figure 9-9 shows how a multiprocessing system
can use link ports to connect to local memories and I/O devices. An ASIC
implements the interface between the link port and DRAM or an I/O
device. This minimal hardware solution frees the processor’s external bus
for other shared-bus communication. The DRAM and ASIC may be
implemented on a single 10-pin SIMM module.

Accesses to the DRAM over a link is most efficient under DMA control.
The ASIC receives DMA control information from the link port and sets
up the access to the DRAM. It unpacks 16-bit data words from the
DRAM or packs 8-bit bytes from the link. At the end of the DMA trans-
fer, an interrupt lets the processor send new control information to the
ASIC. The ASIC always reverts to receive mode at the end of a transfer.
The LxACK signal is deasserted by the ASIC whenever a page change, mem-
ory refresh cycle, or any other access to the DRAM occurs.

Memory modules may be shared by multiple DSPs when the link port is
bused. Each link port supports 100 Mbyte per second access throughput
for either instructions or data. The ASIC is responsible for generating the
clock when transmitting to the processor. The ASIC is also responsible for
generating sequential DMA addresses based on a start address and word
count.
ADSP-21161 SHARC Processor Hardware Reference 9-31

Designing Link Port Systems
Figure 9-9. Local DRAM With Link Ports

ADSP-21161

LINK PORT 0

LINK PORT 1

EXTERNAL
PORT

I/O DEVICE

EXTERNAL
MEMORY

DMA DEVICE

HOST

LI
N

K
BU

S
1

LIN
K

BU
S

0

DRAM 0

20 MHZ CYCLE

DATA

LINK
INTERFACE

ASIC

CLK

ADDRESS &
CONTROL

16

L0DAT7-0
L0CLK
L0ACK

10

DRAM 1

20 MHZ CYCLE

DATA

LINK
INTERFACE

ASIC

CLK

ADDRESS &
CONTROL

16

L1DAT7-0
L1CLK
L1ACK

10

ADSP-21161

LINK PORT 0

LINK PORT 1

EXTERNAL
PORT
9-32 ADSP-21161 SHARC Processor Hardware Reference

Link Ports
Data Flow Multiprocessing With Link Ports
Figure 9-10 shows examples of different link port communications
schemes.

For more information on the multiprocessor interface, see “Multiprocess-
ing System Architectures” on page 7-90.

Figure 9-10. Link Port Communication Examples

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

SHARC CLUSTER

EXPANDING CLUSTERS

DATAFLOW

RING TOPOLOGY

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

ADSP-21161

LINK
PORTS

EXTERNAL
PORT

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS

ADSP-21161

LINK
PORTS
ADSP-21161 SHARC Processor Hardware Reference 9-33

Designing Link Port Systems
9-34 ADSP-21161 SHARC Processor Hardware Reference

10 SERIAL PORTS

The ADSP-21161 processor has four independent, synchronous serial

ports (SPORTs) that provide an I/O interface to a wide variety of periph-
eral devices: SPORT0, SPORT1, SPORT2 and SPORT3. Each serial port
has its own set of control registers and data buffers. With a range of clock
and frame synchronization options, the SPORTs allow a variety of serial
communication protocols and provide a glueless hardware interface to
many industry-standard data converters and CODECs.

Serial ports can operate at half the full clock rate of the processor, at a
maximum data rate of n/2 Mbit/s, where n equals the processor core-clock
frequency. Bidirectional (transmit or receive) functions provide greater
flexibility for serial communications. Serial port data can be automatically
transferred to and from on-chip memory using DMA block transfers. In
addition to standard synchronous serial mode, each serial port offers a
Time Division Multiplexed (TDM) multichannel mode and I2S mode.

Serial ports offer the following features and capabilities:

• Two bi-directional channels per serial port, configurable as either
transmitters or receivers. Each serial port can be configured as two
receivers or two transmitters, permitting two unidirectional
streams into or out of the same serial port. This bi-directional
functionality provides greater flexibility for serial communications.
Two SPORTs can be combined to allow full-duplex, dual-stream
communications.
ADSP-21161 SHARC Processor Hardware Reference 10-1

• Double-buffers data – all serial data pins have programmable
receive and transmit functions and thus have one transmit and one
receive data buffer register and a bi-directional shift register associ-
ated with each serial data bin. Double-buffering provides
additional time to service the SPORT.

• Compression/decompression – A-law and µ-law hardware com-
panding on transmitted and received words.

• Provides internally-generated serial clock and frame sync signals in
a wide range of frequencies, or accepts clock and frame sync input
from an external source.

• Performs interrupt-driven, single-word transfers to and from
on-chip memory controlled by the processor core.

• Executes DMA transfers to and from on-chip memory. Each
SPORT can automatically receive or transmit an entire block of
data.

• Permits chaining of DMA operations for multiple data blocks.

• Three operation modes: standard DSP serial, I2S, and multichan-
nel. In I2S mode, one or both channels on each SPORT can
transmit or receive. Each channel either transmits or receives left
and right channels. In standard DSP serial and I2S modes, when
both A and B channels are used, they transmit or receive data
simultaneously, sending or receiving bit 0 on the same edge of the
serial clock, bit 1 on the next edge of the serial clock, and so on. In
multichannel mode, SPORT0 or SPORT1 can receive A channel
data, and SPORT2 or SPORT3 transmits A channel data selec-
tively from up to 128 channels of a time-division-multiplexed serial
bitstream. This mode is useful for T1 or H.100/H.110 interfaces.
In multichannel mode, SPORT0 and SPORT2 work as a pair, and
SPORT1 and SPORT3 work as a pair.
10-2 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
• Can be configured to transfer data words between 3 and 32 bits in
length, either MSB-first or LSB-first. Words must be between 8
and 32 bits in length for I2S mode.

• 128-channel TDM is supported in multichannel mode operation.

Receive comparison and 2-dimensional DMA are not supported in
the ADSP-21161 processor.

Serial Port Pins
Figure 10-1 shows the pin connections between serial ports. A serial port
receives serial data on one of its bi-directional serial data pins configured
as an input or transmits serial data on the bi-directional serial data pins
configured as an output. It can receive or transmit on both channels
simultaneously and uni-directionally, where the pair of data pins can both
be configured as either transmitters or receivers.

Figure 10-1. SPORT Pins

 D2a
D2b
 FS2

SCLK2

D3a
 D3b
 FS3

SCLK3

D0b
FS0
SCLK0

D1b
FS1
SCLK1

D0a

D1a

SPORT0 SPORT2

SPORT1 SPORT3

SPORTS Pin List:
D0a = SPORT0 channel A data (Rx or Tx)
D0b = SPORT0 channel B data (Rx or Tx)
SCLKx0 = SPORT0 Serial clock
FS0 = SPORT0 Frame sync
D1a = SPORT1 channel A data (Rx or Tx)
D1b = SPORT1 channel B data (Rx or Tx)
SCLKx1 = SPORT1 Serial clock
FS1 = SPORT1 Frame sync
D2a = SPORT2 channel A data (Rx or Tx)
D2b = SPORT2 channel B data (Rx or Tx)
SCLKx2 = SPORT2 Serial clock
FS2 = SPORT2 Frame sync
D3a = SPORT3 channel A data (Rx or Tx)
D3b = SPORT3 channel B data (Rx or Tx)
SCLKx3 = SPORT3 Serial clock
FS3 = SPORT3 Frame sync
ADSP-21161 SHARC Processor Hardware Reference 10-3

Serial Port Pins
 The A and B channel data pins on each SPORT cannot transmit
and receive data simultaneously for full-duplex operation. Two
SPORTs must be combined to achieve full-duplex operation. The
DDIR bit in the SPCTL register controls the same direction for both
the A and B channel pins. Therefore, the direction of the A and B
channel on a particular SPORT must be the same.

Serial communications are synchronized to a clock signal. Every data bit
must be accompanied by a clock pulse. Each serial port can generate or
receive its own clock signal (SCLKx). Internally-generated serial clock fre-
quencies are configured in the DIVx registers. the A and B channel data
pins shift data based on the rate of SCLKx.

In addition to the serial clock signal, data may be signaled by a frame syn-
chronization signal. The framing signal can occur at the beginning of an
individual word or at the beginning of a block of words. The configura-
tion of frame sync signals depends upon the type of serial device
connected to the processor. Each serial port can generate or receive its own
frame sync signal (FS) for transmitting or receiving data. Internally-gener-
ated frame sync frequencies are configured in the DIVx registers. Both the
A and B channel data pins shift data based on the corresponding FSx pin.

Figure 10-2 shows a block diagram of a serial port. The SCLKx and FSx sig-
nals are internally connected to all four A and B channel data buffers. The
setting of the DDIR bit enables the data buffer path, which, once activated,
responds by shifting data in response to a frame sync at the rate of SCLKx.
Your application program must use the correct serial port data buffers,
according to the value of DDIR bit. The DDIR bit enables the transmit data
buffers for the transmission of A and B channel data, or it enables the
receive data buffers for the reception of A and B channel data. Inactive
data buffers are not used.

The DDIR bit in the SPCTLx register affects the operation of the
transmit data path or the receive data path. The data path includes
the data buffers and the shift registers. When DDIR = 0, the primary
and secondary RXx data registers and receive shift registers are acti-
10-4 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports

_in
vated, and the transmit path is disabled. When DDIR = 1, the
primary and secondary TXx data register and transmit shift registers
are activated, and the receive path is disabled.

If the serial data pin is configured as a serial transmitter, the data to be
transmitted is written to the TXxA/TXxB buffer. The data is (optionally)
compressed in hardware on the primary A channel (SPORT2 and

Figure 10-2. Serial Port Block Diagram

DDIR=1
TX Enable

TXxA
Transmit Data Buffer

32

TXxB
Transmit Data Buffer

RXxA
Receive Data Buffer

RXxB
Receive Data Buffer

Hardware
Companding

(compression)
SPORTs 2 & 3 Only

Hardware
Companding
(expansion)

SPORTs 0 and 1 Only

3232 32323232 3232

3232

3232

3232

3232

Transmit Shift
Register

Transmit Shift
Register

Receive Shift
Register

Receive Shift
Register

Serial Port
Control

DxA SCLKxFSx

DM, PM, I/O Data bus

DxB

DDIR
CTL

SCLKx

FSx

DDIR=1
TX Enable

DDIR=0
RX Enable

DDIR=0
RX Enable

DxA_out DxA_in DxB_out DxB
ADSP-21161 SHARC Processor Hardware Reference 10-5

Serial Port Pins
SPORT3 only), then automatically transferred to the transmit shift regis-
ter. Companding is not supported on the secondary B channels, thus the
data is automatically transferred from the TXxB buffer to the shift register.
The data in the shift register is then shifted out on the SPORT’s Dxy pin,
synchronous to the SCLKx clock. If framing signals are used, the FSx signal
indicates the start of the serial word transmission. The Dxy pin is always
driven (for example, three-stated) if the serial port is enabled (SPEN_A or
SPEN_B =1 in the SPCTLx control register), unless it is in multichannel
mode and an inactive time slot occurs.

When the SPORT is configured as a transmitter (DDIR=1), the TXxA and
TXxB registers and the channel transmit shift registers respond to SCLKx
and FSx for transmission of data. The receive RXxA and RXxB buffer regis-
ters and receive shift registers are inactive and do not respond to SCLKx
and FSx signals. Since these registers are inactive, reading from an empty
buffer will cause the core to hang indefinitely.

Do not read from the inactive RXxA and RXxB registers (since the
receive buffer status is always empty) if the SPORTs are configured
as transmitters (DDIR bit = '1' in SPCTL), as this will cause a core
hang indefinitely.

If the serial data pin is configured as a serial receiver (DDIR=0), the receive
portion of the SPORT shifts in data from the Dxy pin, synchronous to the
SCLKx receive clock. If framing signals are used, the FSx signal indicates the
beginning of the serial word being received. When an entire word is
shifted in on the primary A channel, the data is (optionally) expanded
(SPORT0 and SPORT1 only), then automatically transferred to the RXxA
buffer. When an entire word is shifted in on the secondary channel, it is
automatically transferred to the RXxB buffer (companding is not supported
on the secondary B channels).

When the SPORT is configured as a receiver (DDIR=0), the RXxA and RXxB
registers, along with the corresponding A and B channel receive shift regis-
ters are activated, responding to SCLKx and FSx for reception of data. The
transmit TXxA and TXxB buffer registers and transmit A and B shift registers
10-6 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
are inactive and do not respond to the SCLKx and FS. Since the TXxA and
TXxB registers are inactive, writing to a transmit data buffer will cause the
core to hang indefinitely.

Do not write to the inactive TXxA and TXxB registers if the SPORTs
are configured as receivers (DDIR bit = '0' in SPCTL). If the core
keeps writing to the inactive buffer, the transmit buffer status will
become full. Since data is never transmitted out of the deactivated
transmit data buffers, this results in a core hang indefinitely.

The SPORTs are not UARTs and cannot communicate with an RS-232
device or any other asynchronous communications protocol. One way to
implement RS-232 compatible communications with the ADSP-21161
processor is to use two of the FLAG pins as asynchronous data receive and
transmit signals. For an example, see Chapter 11 “Software UART” in the
Digital Signal Processing Applications Using The ADSP-2100 Family, Vol-
ume 2.

SPORT Interrupts
Each serial port has a transmit DMA interrupt and a receive DMA inter-
rupt. For each SPORT, both the A and B channel transmit or receive data
buffers share the same interrupt vector. If a given SPORT is configured to
transmit data, both the TXxA and TXxB data buffers use the interrupt vector
when previous data has been transmitted. If the SPORT is configured to
receive data, both the RXxA and RXxB data buffers use the interrupt vector
when new data has been received. When serial port DMA is not enabled,
interrupts occur based on the SPORT transmit or receive FIFO status. If
ADSP-21161 SHARC Processor Hardware Reference 10-7

SPORT Reset
on the transmit side the FIFO is empty or on the receive side the FIFO is
full, interrupts is generated. The priority of the serial port interrupts is
shown in Table 10-1.

SPORT interrupts occur on the second system clock (CLKIN) after
the last bit of the serial word is latched in or driven out.

SPORT Reset
There are two ways to reset the serial ports: a software reset and a hard-
ware reset. Each method has a different effect on the serial port.

A software reset of the SPEN enable bit(s) disables the serial port(s) and
aborts any ongoing operations. Status bits are also cleared. The serial ports
are ready to start transmitting or receiving data two SCLK cycles after they
are enabled in the SPCTLx control register. No serial clocks are lost from
this point on.

A hardware reset (RESET) disables the whole processor including the serial
ports by clearing the SPCTLx control register. Any ongoing operations are
aborted.

Table 10-1. Priority of the Serial Port Interrupts

Interrupt Name1

1 The interrupt names are defined in the def21161.h file supplied with the ADSP-21xxx Develop-
ment Software.

Interrupt

SP0I SPORT0 DMA Channels 0 and 1 (Highest Priority)

SP1I SPORT1 DMA Channels 2 and 3

SP2I SPORT2 DMA Channels 4 and 5

SP3I SPORT3 DMA Channels 6 and 7 (Lowest Priority)
10-8 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
SPORT Control Registers and Data Buffers
ADSP-21161 processor has four serial ports. Each SPORT has two data
paths corresponding to the A and B Channel. These data buffers are TXxA
and RXxA (primary) and TXxB and RXxB (secondary). Channel A and B in
all four SPORTS operate in parallel, for example, they share clock and
control signals. Companding is supported only on primary channels.

For more information, see “Serial Port Registers” on page A-100.

The following is the list of registers that each SPORT has (where x = 0, 1,
2, or 3):

• Four 32-bit, 2-deep data buffers (TXxA/RXxA and TXxB/RXxB)

• One 32-bit clock and frame sync divide register (DIVx)

• One 32-bit control register (SPCTLx)

• Four 32-bit multichannel select receive registers (MR1CSx, MR0CSx)

• Four 32-bit multichannel select transmit registers (MT2CSx, MT3CSx)

• Four 32-bit multichannel receive compand select signals (MR1CCSx,
MR0CCSx)

• Four 32-bit multichannel transmit compand select signals
(MT2CCSx, MT3CCSx)

• One multichannel control register (SPxyMCTL)

The registers used to control and configure the serial ports are part of the
IOP register set. Each SPORT has its own set of 32-bit control registers
and data buffers.

The SPORT control registers are programmed by writing to the appropri-
ate address in memory. The symbolic names of the registers and individual
control bits can be used in processor programs. The definitions for these
ADSP-21161 SHARC Processor Hardware Reference 10-9

SPORT Control Registers and Data Buffers
symbols are contained in the file def21161.h located in the INCLUDE direc-
tory of the ADSP-21xxx Development Software. The def21161.h file is
shown in the registers appendix section “Register and Bit #Defines
(def21161.h)” on page A-121. All control and status bits in the SPORT
registers are active high unless otherwise noted.

Since the SPORT registers are memory-mapped, they cannot be written
with data directly from memory. Instead, they must be written from (or
read into) core registers, usually one of the general-purpose universal reg-
isters of the(R15-R0) register file. The SPORT control registers can also be
written or read by external devices (for example, another processor or a
host processor) to set up a serial port DMA operation.

Table 10-2 provides a complete list of the SPORT registers, showing the
memory-mapped IOP address and a brief description of each register.

Table 10-2. SPORT Registers

Register IOP Address Reset Description

SPCTL0 0x1C0 0x0000
0000

SPORT0 serial control register

TX0A 0x1C1 None SPORT0 transmit data buffer; A channel data

TX0B 0x1C2 None SPORT0 transmit data buffer; B channel data

RX0A 0x1C3 None SPORT0 receive data buffer; A channel data

RX0B 0x1C4 None SPORT0 receive data buffer; B channel data

DIV0 0x1C5 None SPORT0 divisor for transmit/receive SCLKx0
and FS0

CNT0 0x1C6 None SPORT0 count register

MR0CS0 0x1C7 None SPORT0 multichannel receive select 0
(Channels 31-0)

MR0CCS0 0x1C8 None SPORT0 multichannel receive compand select 0
(Channel 31-0)

MR0CS1 0x1C9 None SPORT0 multichannel receive select 1
(Channels 63-32)
10-10 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
MR0CCS1 0x1CA None SPORT0 multichannel receive compand select 1
(Channel 63-32)

MR0CS2 0x1CB None SPORT0 multichannel receive select 2
(Channels 95-64)

MR0CCS2 0x1CC None SPORT0 multichannel receive compand select 2
(Channel 95-64)

MR0CS3 0x1CD None SPORT0 multichannel receive select 3
(Channels 127-96)

MR0CCS3 0x1CE None SPORT0 multichannel receive compand select 3
(Channel 127-96)

0x1CF Reserved

SPCTL2 0x1D0 0x0000
0000

SPORT2 serial control register

TX2A 0x1D1 None SPORT2 transmit data buffer; A channel data

TX2B 0x1D2 None SPORT2 transmit data buffer; B channel data

RX2A 0x1D3 None SPORT2 receive data buffer; A channel data

RX2B 0x1D4 None SPORT2 receive data buffer; B channel data

DIV2 0x1D5 None SPORT2 divisor for transmit/receive SCLKx1
and FS1

CNT2 0x1D6 None SPORT2 Count Register

MT2CS0 0x1D7 None SPORT2 multichannel transmit select 0
(Channels 31-0)

MT2CCS0 0x1D8 None SPORT2 multichannel transmit compand select
0 (Channel 31-0)

MT2CS1 0x1D9 None SPORT2 multichannel transmit select 1
(Channels 63-32)

MT2CCS1 0x1DA None SPORT2 multichannel transmit compand select
1 (Channel 63-32)

Table 10-2. SPORT Registers (Cont’d)

Register IOP Address Reset Description
ADSP-21161 SHARC Processor Hardware Reference 10-11

SPORT Control Registers and Data Buffers
MT2CS2 0x1DB None SPORT2 multichannel transmit select 2
(Channels 95-64)

MT2CCS2 0x1DC None SPORT2 multichannel transmit compand select
2 (Channel 95-64)

MT2CS3 0x1DD None SPORT2 multichannel transmit select 3
(Channels 127-96)

MT2CCS3 0x1DE None SPORT2 multichannel transmit compand select
3 (Channel 127-96)

SP02MCTL 0x1DF None SPORTs 0/2 multichannel control register

SPCTL1 0x1E0 0x0000
0000

SPORT1 serial control register

TX1A 0x1E1 None SPORT1 transmit data buffer; A channel data

TX1B 0x1E2 None SPORT1 transmit data buffer; B channel data

RX1A 0x1E3 None SPORT1 receive data buffer; A channel data

RX1B 0x1E4 None SPORT1 receive data buffer; B channel data

DIV1 0x1E5 None SPORT1 divisor for transmit/receive SCLKx0
and FS0

CNT1 0x1E6 None SPORT1 Count Register

MR1CS0 0x1E7 None SPORT1 multichannel receive select 0
(Channels 31-0)

MR1CCS0 0x1E8 None SPORT1 multichannel receive compand select 0
(Channel 31-0)

MR1CS1 0x1E9 None SPORT1 multichannel receive select 1
(Channels 63-32)

MR1CCS1 0x1EA None SPORT1 multichannel receive compand select 1
(Channel 63-32)

MR1CS2 0x1EB None SPORT1 multichannel receive select 2
(Channels 95-64)

Table 10-2. SPORT Registers (Cont’d)

Register IOP Address Reset Description
10-12 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
MR1CCS2 0x1EC None SPORT1 multichannel receive compand select 2
(Channel 95-64)

MR1CS3 0x1ED None SPORT1multichannel receive select 3
(Channels 127-96)

MR1CCS3 0x1EE None SPORT1 multichannel receive compand select 3
(Channel 127-96)

0x1EF Reserved

SPCTL3 0x1F0 0x0000
0000

SPORT3 serial control register

TX3A 0x1F1 None SPORT3 transmit data buffer; A channel data

TX3B 0x1F2 None SPORT3 transmit data buffer; B channel data

RX3A 0x1F3 None SPORT3 receive data buffer; A channel data

RX3B 0x1F4 None SPORT3 receive data buffer; B channel data

DIV3 0x1F5 None SPORT3 divisor for transmit/receive SCLKx1
and FS1

CNT3 0x1F6 None SPORT3 count register

MT3CS0 0x1F7 None SPORT3 multichannel transmit select 0
(Channels 31-0)

MT3CCS0 0x1F8 None SPORT3 multichannel transmit compand select
0 (Channel 31-0)

MT3CS1 0x1F9 None SPORT3 multichannel transmit select 1
(Channels 63-32)

MT3CCS1 0x1FA None SPORT3 multichannel transmit compand select
1 (Channel 63-32)

MT3CS2 0x1FB None SPORT3 multichannel transmit select 2
(Channels 95-64)

MT3CCS2 0x1FC None SPORT3 multichannel transmit compand select
2 (Channel 95-64)

Table 10-2. SPORT Registers (Cont’d)

Register IOP Address Reset Description
ADSP-21161 SHARC Processor Hardware Reference 10-13

SPORT Control Registers and Data Buffers
Serial Port Control Registers (SPCTLx)
The main control register for each serial port is the serial port control reg-
ister, SPCTLx. These registers are defined in Figure 10-3 through
Figure 10-7. When changing operating modes, a serial port control regis-
ter should be cleared before the new mode is written to the register.

The Transmit Underflow Status bit (TUVF_A/DERR_A and TUVF_B/DERR_B)
is set when the FSx signal occurs from either an external or internal source
while the TXxA or TXxB buffer is empty. The internally generated FS may be
suppressed whenever TXxA or TXxB is empty by clearing the DITFS control
bit.

When DITFS is cleared (the default setting) the frame sync signal (FSx) is
dependent upon new data being present in the transmit buffer. The FSx
signal is only generated for new data. Setting DITFS to 1 selects data-inde-
pendent frame syncs which causes the FSx signal to be generated whether
or not new data is present. With each FSx signal, the SPORT will transmit
the contents of the transmit buffer. Serial port DMA typically keeps the
transmit buffer full. When the DMA operation is complete the last bit in
the transmit buffer is continuously transmitted.

The DXS_A or DXS_B status bits indicate whether the DXA or DXB buffer is
full (11), empty (00), or partially full (10). To test for space in DXA/DXB,
test whether DXS_A (bit 30) is equal to zero for the A channel, or whether

MT3CS3 0x1FD None SPORT3 multichannel transmit select 3
(Channels 127-96)

MT3CCS3 0x1FE None SPORT3 multichannel transmit compand select
3 (Channel 127-96)

SP13MCTL 0x1FF None SPORTs 1/3 multichannel control register

Table 10-2. SPORT Registers (Cont’d)

Register IOP Address Reset Description
10-14 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
DXS_B (bit 27) is equal to zero for the B channel. To test for the presence
of any data in DXA/DXB, test whether DXS_A (bit 31) is equal to one for the
A channel, or whether DXS_B (bit 28) is equal to one for the B channel.

There is one global control and status register for each paired SPORT
(SPORT0 and SPORT2, SPORT1 and SPORT3) for multichannel oper-
ation, SP02MCTL and SP13MCTL, to define the number of channels, provide
status of the current channel, enable multichannel operation, and set the
multichannel frame delay. Since ADSP-21161 processor supports 128
TDM operations, the number of bits is increased to seven and are stored
in a separate register, SP02MCTL or SP13MCTL. The SPxyMCTL register is
shown in Figure A-35 on page A-111.

The SPCTLx registers control the serial ports’ operating modes for the I/O
processor. Table 10-3 lists all the bits in SPCTLx.

Table 10-3. SPCTLx Control Bits Comparison in Three SPORT Modes of
Operation

Bit I2S Mode Standard DSP Serial
Mode

Multichannel Mode
Receive Control Bits
(SPORT0 and
SPORT1)

Multichannel Mode
Transmit Control
Bits (SPORT2 and
SPORT3)

0 SPEN_A SPEN_A Reserved Reserved

1 Reserved DTYPE DTYPE DTYPE

2 Reserved DTYPE DTYPE DTYPE

3 Reserved SENDN SENDN SENDN

4 SLEN0 SLEN0 SLEN0 SLEN0

5 SLEN1 SLEN1 SLEN1 SLEN1

6 SLEN2 SLEN2 SLEN2 SLEN2

7 SLEN3 SLEN3 SLEN3 SLEN3

8 SLEN4 SLEN4 SLEN4 SLEN4

9 PACK PACK PACK PACK
ADSP-21161 SHARC Processor Hardware Reference 10-15

SPORT Control Registers and Data Buffers
10 MSTR ICLK ICLK Reserved

11 OPMODE OPMODE OPMODE OPMODE

12 Reserved CKRE CKRE CKRE

13 Reserved FSR Reserved Reserved

14 Reserved IFS IRFS Reserved

15 DITFS DITFS Reserved Reserved

16 L_FIRST LFS LRFS LTDV

17 Reserved LAFS Reserved Reserved

18 SDEN_A SDEN_A SDEN_A SDEN_A

19 SCHEN_A SCHEN_A SCHEN_A SCHEN_A

20 SDEN_B SDEN_B Reserved Reserved

21 SCHEN_B SCHEN_B Reserved Reserved

22 FS_BOTH FS_BOTH Reserved Reserved

23 Reserved Reserved Reserved Reserved

24 SPEN_B SPEN_B Reserved Reserved

25 DDIR DDIR Reserved Reserved

26 DERR_B DERR_B Reserved Reserved

27 DXS_B DXS_B Reserved Reserved

28 DXS_B DXS_B Reserved Reserved

29 DERR_A DERR_A ROVF_A TUVF_A

30 DXS_A DXS_A RXS_A TXS_A

31 DXS_A DXS_A RXS_A TXS_A

Table 10-3. SPCTLx Control Bits Comparison in Three SPORT Modes of
Operation (Cont’d)

Bit I2S Mode Standard DSP Serial
Mode

Multichannel Mode
Receive Control Bits
(SPORT0 and
SPORT1)

Multichannel Mode
Transmit Control
Bits (SPORT2 and
SPORT3)
10-16 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Figure 10-3. SPCTL Register – DSP Serial Mode

SDEN_A
SPORT DMA enable A channel
1=enable, 0=disable

FS_BOTH
1=issue WS only if data is
present in both Tx
0=issue WS if data is
present in either Tx

LFS
Active Low FS
0=active high, 1=active low
LAFS
Late FS
0=early FS, 1=late FS

SDEN_B

SCHEN_B

SCHEN_A
DMA chaining enable A channel
1=enable, 0=disable

SPORT DMA enable B channel
1=enable, 0=disable

DMA chaining enable B channel
1=enable, 0=disable

SPEN_A
SPORT Enable A
(1=enable, 0=disable)
DTYPE
Data type
00=right-justify; fill MSB with 0s
01=right-justify; sign extend MSB
10=compand mu-law
11=compand A-law

SENDN
Endian word format
0=MSB first, 1=LSB first

SLEN
Serial Word Length-1

PACK
16/32 packing
1=packing, 0=no packing

FSR
FS requirement

1=FS required, 0=FS not required

IFS
Internally generated FS

1=internal FS, 0=external FS

DITFS
Data Independent ‘tx’ FS (if DDIR=1)

1=data independent, 0= data dependent

CKRE
Clock edge for data Frame Sync sampling

or driving (1=rising edge, 0=falling edge)

ICLK
Internally generated SCLK

1=internal clock, 0=external clock

OPMODE
SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=I2S mode

DXS_A
DXA Data Buffer Status

11=full, 10=partially full, 00=empty

DERR_A
DXA Error Status (sticky)

DDIR=1,‘transmit underflow’ status
DDIR=0, ‘receive overflow’ status

DXS_B*

DERR_B*

DDIR**
Data Direction Control

1=Active Transmit Buffers TXnB/TXnA
0=Enable Receive Buffers RXnB/RXnA

SPEN_B
SPORT Enable B

1=enable, 0=disable

DXB Data Buffer Status
11=full, 10=partially full ,00=empty

DXB Error Status (sticky)

* Status is read-only
** Do not read/write from/to inactive
RXn/TXn buffers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPCTL0 (0x01c0) DSP Serial Mode
SPCTL1 (0x01e0)

SPCTL2 (0x01d0)

SPCTL3 (0x01f0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference 10-17

SPORT Control Registers and Data Buffers

first

oth Tx
Tx

le)
Figure 10-4. SPCTLx Register – I2S Mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Left or Right I2S channel RX/TX first
1=start left data first 0= start right data

SDEN_A
SPORT Transmit DMA enable Ach.
1=enable, 0=disable

FS_BOTH
1=issue WS only if data is present in b
0= issue WS if data is present in either

L_FIRST

SDEN_B

SCHEN_B

SCHEN_A
DMA chaining enable A channel
1=enable, 0=disable

SPORT transmit DMA enable Bch.
1=enable, 0=disable

DMA Chaining enable B channel
1=enable, 0=disable

SPCTL0 (0x01c0)
SPCTL1 (0x01e0)
SPCTL2 (0x01d0)
SPCTL3 (0x01f0)

I2S Mode

DXS_A
DXA Data Buffer Status

11=full, 10=partially full, 00=empty

DERR_A
DXA Error Status (sticky)

DDIR=1,‘transmit underflow’ status
DDIR=0, ‘receive overflow’ status

DXS_B*

DERR_B*

D DIR**
Data Direction Control

1=Active Transmit Buffers TXnA/TXnB
0=Enable Receive Buffers RXnA/RXnB

SPEN_B
SPORT Enable B

1=enable, 0=disable

DXB Data Buffer Status
11=full, 10=partially full, 00=empty

DXB Error Status (sticky)

* Status is read-only
** Do not read/write from/to inactive

RXn/TXn buffers

(Reserved bits must be cleared for I 2S operation)

SPEN_A
SPORT Enable A (1=enable, 0=disab

SLEN
Serial Word Length- 1

PACK
16/32 packing
1=packing, 0=no packingMSTR

DITFS
Data Independent ‘tx’ FS (if DDIR=1)

1=data independent, 0=data dependent

I2S serial and L/R clock Master
1=internal SCLK and WS, TX/RX is master
0=external SLCK and WS, TX/RX is slave

OPMODE
SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=I 2S mode
10-18 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports

ceive

e A

0s
MSB
Figure 10-5. SPCTL Receive Control Bits in Multichannel Mode for
SPORT0 and SPORT1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LRFS
Active Low Multichannel Re
FS0/FS1
0=active high, 1=active low

SDEN_A
SPORT receive DMA enabl
1=enable, 0=disable

SCHEN_A
SPORT receive DMA
chaining enable A
1=enable, 0=disable

RXS_A*
RXA Data Buffer Status

11=full, 10=partially full, 00=empty

ROVF_A*
RXA Underflow Status (sticky)

*Status is read-only

SENDN
Endian word format
0=MSB first, 1=LSB first

SLEN
Serial W ord Length -1

CKRE

sampling (1=rising edge, 0=falling edge)

OPMODE
SPORT Operation Mode

1=I2S mode

IRFS

1=internal FS0/FS1, 0=external FS0/FS1

ICLK
Internally -generated Receive clock

1=internal clock, 0=external clock

Active clock edge for data & frame sync

0=DSP serial mode/multichannel mode

PACK
16/32 packing
1=packing, 0=no packing

Internally Generated Multichannel rx FS

(Reserved bits must be cleared for multichannel operation)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

SPCTL0 (0x01C0)

SPCTL1 (0x01E0)

Multichannel Mode
Receive Control Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DTYPE
Data type
00=right-justify; fill MSB with
01=right-justify; sign extend
10=compand mu-law
11=compand A-law
ADSP-21161 SHARC Processor Hardware Reference 10-19

SPORT Control Registers and Data Buffers
Figure 10-6. SPCTL Transmit Control Bits in Multichannel Mode for
SPORT2 and SPORT3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*Status is read-only

(Reserved bits must be cleared for multichannel operation)

DTYPE
Data type

SENDN
Endian word format
0=MSB first, 1=LSB first

SLEN
Serial Word Length -1

PACK
16/32 packing

1=packing, 0=no packing

Reserved**

OPMODE
SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=I2S mode

LTDV
Active Low MC Transmit Data Valid
0=active high TVD2/TDV3
1=active low TDV2/TDV3

SDEN_A

SCHEN_A
SPORT transmit DMA
chaining enable A
1=enable, 0=disable

SPORT transmit DMA enable A
1=enable, 0=disable

TXS_A*
TXA Data Buffer Status

11=full, 10=partially full, 00=empty

TUVF_A*
TXA Underflow Status (sticky)

SPCTL2 (0x01d0)
SPCTL3 (0x01f0)

Multichannel Mode
Transmit Control Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**The CKRE values for SPCTL2 and SPCTL3
come from SPCTL0 and SPCTL1 (respectively)
in multichannel mode.“

x0=right-justify; fill MSB with 0s
x1=right-justify; sign extend MSB
0x=compand mu-law
1x=compand A-law
10-20 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
The following bits control serial port modes and are part of the SPCTLx
control registers. Other bits in the SPCTLx registers set up DMA and I/O
processor related serial port features.

• Current Channel Selected. SP02MCTL or SP13MCTL Bits 16-22
(CHNL). These read-only, sticky status bits identify the currently
selected transmit channel slot (0 to 127). These bits apply to multi-
channel mode only.

• Clock Rising Edge Select. SPCTLx Bit 12 (CKRE).This bit selects
whether the serial port uses the rising edge (if set, =1) or falling
edge (if cleared, =0) of the clock signal for sampling data and the
frame sync. This bit applies to DSP standard serial and multichan-
nel modes only.

Figure 10-7. SPxyMCTL Control Bits for Multichannel Mode

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHNL
Current Channel (read-only)

MCE
Multichannel enable (1=enable, 0=disable)

MFD
Multichannel Frame Delay

NCH
Number of Channels - 1

SPL
SPORTLoopback

SPORT0 & SPORT2 only
SPORT1 & SPORT3 only

SP02MCTL

SP13MCTL
(0x01DF)
(0x01FF)
ADSP-21161 SHARC Processor Hardware Reference 10-21

SPORT Control Registers and Data Buffers
• Data Direction Control. SPCTLx Bit 25 (DDIR). This bit controls
the data direction of the serial port channel A and B pins.

0 = SPORT is configured to receive on both channels A and B

1 = SPORT is configured to transmit on both channels A and B

When configured to receive, the RXxA and RXxB buffers are acti-
vated, while the receive shift registers are controlled by SCLKx and
FS. The TXxA and TXxB buffers are inactive.

When configured to transmit, the TXxA and TXxB buffers are acti-
vated, while the transmit shift registers are controlled by SCLKx and
FSx. The RXxA and RXxB buffers are inactive. This bit applies to all
registers for I2S and DSP standard serial modes.

Reading from or writing to inactive buffers will cause a core hang
indefinitely until the SPORT is cleared. A hardware reset or host
reset will clear the SPORT.

• Data Independent Transmit Frame Sync Select. SPCTLx Bit 15
(DITFS).This bit selects whether the serial port uses a data-inde-
pendent transmit frame sync (sync at selected interval, if set to 1)
or a data-dependent TFS (sync when data is in the transmit buffer,
if cleared to 0) when DDIR=1.

When DITFS =0, a transmit FSx signal is generated only when new
data is in the SPORT channel’s transmit data buffer. Applications
must also program the DIVx register.

When DITFS = 1, a transmit FSx signal is generated, regardless of
the validity of the data present in the SPORT channel’s transmit
data buffer. The processor generates the transmit FSx signal at the
frequency specified by the value loaded in the DIV register.
This bit applies to all SPCTLx registers in I2S and DSP standard
serial modes, and SPCTL2 and SPCTL3 register transmit control for
multichannel mode.
10-22 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
• DXS Data Buffer Status. SPCTLx Bits 30 and 31(DXS_A) and Bits
27 and 28 (DXS_B). These read-only, sticky bits indicate the status
of the serial port’s data buffer as follows: 11= buffer full, 00= buffer
empty, 10=buffer partially full, 01= reserved. These bits apply to
I2S and DSP standard serial modes.

When the SPORT is configured as a transmitter, these bits reflect
transmit buffer status for the TXxA and TXxB registers. When the
SPORT is configured as a receiver, these bits reflect receive buffer
status for the RXxA and RXxB registers.

• Data Buffer Error Status (sticky, read-only). SPCTLx Bit 29 and
26 (DERR).These bits indicate whether the serial transmit operation
has underflowed (if set, =1 and DDIR=1) or a receive operation has
overflowed (if cleared, =0 and DDIR=0) in the DXA and DXB data
buffers. These bits apply to I2S and DSP standard serial modes.

When the SPORT is configured as a transmitter, this bit provides
transmit underflow status and indicates whether the FSx signal
(from internal or external source) occurred while the DXS buffer was
empty. The SPORTs transmit data whenever they detect a FSx
signal.

0 = No FS signal occurred.

1 = FS signal occurred.

When the SPORT is configured as a receiver, these bits provide
receive overflow status. As a receiver, it indicates when the channel
has received new data while the RXS_A buffer is full. New data over-
writes existing data.

0 = No new data.

1 = New data.
ADSP-21161 SHARC Processor Hardware Reference 10-23

SPORT Control Registers and Data Buffers
• Data Type Select. SPCTLx Bits 2-1 (DTYPE).These bits select the
companding and MSB data type formatting of serial words loaded
into the transmit and receive buffers. The transmit shift register
does not zero fill or sign-extend transmit data words. This bit
applies to DSP standard serial and multichannel modes only.

For standard mode, selection of companding mode and MSB for-
mat are exclusive:

00 = Right justify; fill unused MSBs with 0s.

01 = Right justify; sign-extend into unused MSBs.

10 = Compand using µ_law. (Primary channels only)

11 = Compand using A_law. (Primary channels only)

For multichannel mode, selection of companding mode and MSB
format are independent:

x0 = Right justify; fill unused MSBs with 0s.

x1 = Right justify; sign-extend into unused MSBs.

0x = Compand using µ_law.

1x = Compand using A_law.

• Frame Sync Both Enable. SPCTLx Bit 22 (FS_BOTH). This bit
applies when the SPORTS channels A and B are configured to
transmit data. If set (=1), this bit issues word select only when
data is present in both transmit buffers, TX0A and TX0B. If cleared
(=0), a word select is issued if data is present in either transmit
buffers. This bit applies to I2S and DSP standard serial modes only.

• Internal Transmit Clock Select. SPCTLx Bit 10 (ICLK). This bit
selects the internal (if set, =1) or external (if cleared, =0) transmit
or receive clock. This bit applies to DSP standard serial and multi-
10-24 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
channel modes for SPCTL0 and SPCTL1 registers. In these modes
only, set this parameter separately for all four SPORTs, where each
SPCTL register contains an ICLK bit.

• Receive Multichannel Frame Sync Source. SPCTL0 and SPCTL1 Bit
14 (IRFS).This bit selects whether the serial port uses an internal
clock generated frame sync (if set, =1) or an external (if cleared, =0)
source. This bit applies to multichannel mode only.

• Internal Frame Sync Select. SPCTLx Bit 14 (IFS).This bit selects
whether the serial port uses an internal clock generated frame sync
(if set, =1) or an external (if cleared, =0) source. This bit applies to
DSP standard serial mode only.

• Late Transmit Frame Sync Select. SPCTLx Bit 17 (LAFS). This bit
selects when to generate the frame sync signal. This bit selects a late
frame sync if set (=1) during the first bit of each data word. This
bit selects an early frame sync if cleared (=0) during the serial clock
cycle immediately preceding the first data bit. This bit applies to
DSP standard serial mode only.

• Left/Right Channel Transmit or Receive First. SPCTLx Bit 16
(L_FIRST).This bit selects the left channel first (if set, =1) or right
channel first (if cleared, =0) for transmit or receive. This bit applies
to I2S mode only.

• Low Active Frame Sync Select. SPCTLx Bit 16 (LFS).This bit
selects the logic level of the (transmit or receive) frame sync signals.
Active high (0) is the default. This bit selects an active low frame
sync (if set, =1) or active high frame sync (if cleared, =0). This bit
applies to DSP standard serial mode only.

• Active State Multichannel Receive Frame Sync Select.SPCTL0 and
SPCTL1 Bit 16 (LRFS).This bit selects the logic level of the multi-
channel received frame sync signals as active low (inverted) if set
(=1) or active high if cleared (=0). Active high (0) is the default.
This bit applies to multichannel modes only.
ADSP-21161 SHARC Processor Hardware Reference 10-25

SPORT Control Registers and Data Buffers
• Active State Transmit Data Valid. SPCTL2 and SPCTL3 Bit 16
(LTDV).This bit selects the logic level of the transmit data valid sig-
nals (TDV2, TDV3) pins as active low (inverted) if set (=1) or active
high if cleared (=0). These pins are actually FS2 and FS3 reconfig-
ured as outputs during multichannel operation, indicating which
timeslots have valid data to transmit. Active high (0) is the default.
This bit applies to multichannel mode only.

• Multichannel Mode Enable. SP02MCTL and SP13MCTL Bit 0 (MCE).
Standard and multichannel modes only. in the registers. One of
two configuration bits that enable and disable multichannel mode
on both the receive or transmit serial port channels. If MCE is
cleared (=0), then multichannel operation is disabled. If MCE is set
(=1) and OPMODE is cleared (=0), then multichannel operation is
enabled. This bit applies to DSP standard serial and multichannel
modes only.

• Multichannel Frame Delay. SP02MCTL and SP13MCTL Bit 1-4
(MFD).These bits set the interval, in terms of serial clock cycles,
between the multichannel frame sync pulse and the first data bit.
These bits provide support for different types of T1 interface
devices. Valid values range from 0 to 15. Values of 1 to 15 corre-
spond to the number of intervening serial clock cycles. A value of 0
corresponds to no delay. The multichannel frame sync pulse is con-
current with first data bit. This bit applies multichannel mode
only.

• SPORT Transmit or Receive Master Mode. SPCTLx Bit 10 (MSTR).
This bit selects the clock and word-select source for transmitting or
for receiving. If set (=1), the SPORT uses the internal clock, and
the word-select source transmitter or receiver is the master. If
cleared (=0), the SPORT transmitter or receiver is a slave. This bit
applies to I2S mode only.
10-26 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
• Number of Multichannel Slots (minus one). SP02MCTL and
SP13MCTL Bit 5 -11 (NCH).These bits select the number of channel
slots (maximum of 128) to use for multichannel operation. Valid
values for actual number of channel slots range from 1 to 128. This
bit applies to multichannel mode only. Use the following formula
to calculate the value for NCH:
NCH = Actual number of channel slots -1.

• SPORT Operation Mode. SPCTLx Bit 11 (OPMODE). This bit
enables if set (=1) or disables if cleared (=0) the I2S mode. When
this bit is set, the processor ignores the MCE bit. When this bit is
cleared, the MCE bit determines whether the SPORT is in DSP
serial mode (MCE=0) or multichannel mode (MCE=1).

• 16-bit to 32-bit Word Packing Enable. SPCTLx Bit 9 (PACK).This
bit enables (if set, =1) or disables (if cleared, =0) 16- to 32-bit word
packing. This bit applies to all operation modes.

• Frame Sync Required Select. SPCTLx Bits 13 (FSR).This bit selects
whether the serial port requires (if set, =1) or does not require (if
cleared, =0) a transfer frame sync. Only a single frame sync signal is
required to initiate communications. The frame sync is ignored
after the first bit received. This bit applies to DSP standard serial
mode only.

• Receive Overflow Status (read-only, sticky). SPCTL0 and SPCTL1
Bit 29 (ROVF). These bits indicate when the channel has received
new data if set (=1) or not if cleared (=0) while the RXS_A buffer is
full. New data overwrites existing data. This bit applies to multi-
channel mode only.

• Receive Data Buffer Status Channel A (read-only). SPCTL0 and
SPCTL1 Bits 30 and 31 (RXS_A). These bits indicate the status of the
channel's receive buffer contents as follows: 00 = buffer empty,
01 = reserved, 10 = buffer partially full, 11 = buffer full. These bits
apply to multichannel mode only.
ADSP-21161 SHARC Processor Hardware Reference 10-27

SPORT Control Registers and Data Buffers
• Serial Port DMA Chaining Enable. SPCTLx Bits 19 and 21
(SCHEN_A and SCHEN_B).These bits enable (if set, =1) or disable (if
cleared, =0) serial port’s channels A and B DMA chaining. Bit 21
applies to I2S and DSP standard serial modes only for secondary
(B) SPORT channels.

• Serial Port DMA Enable. SPCTLx Bits 18 and 20 (SDEN_A and
SDEN_B).These bits enable (if set, =1) or disable (if cleared, =0) the
serial port’s channel DMA. Bit 20 applies to I2S and DSP standard
serial modes only for secondary (B) SPORT channels.

• Serial Word Endian Select. SPCTLx Bit 3 (SENDN).This bit selects
little endian words (LSB first, if set, =1) or big endian words (MSB
first, if cleared, =0). This bit applies to DSP standard serial and
multichannel modes only.

• Serial Word Length Select. SPCTLx Bit 4-8 (SLEN).These bits select
the word length in bits. Word sizes can be from 3-bit (SLEN=2) to
32-bit (SLEN=31). These bits apply to all operation modes. Use the
following formula to calculate the value for SLEN:
SLEN = Actual serial word length – 1

SLEN cannot equal 0 or 1.

• Serial Port Enable. SPCTLx Bits 0 and 24 (SPEN_A and SPEN_B).This
bit enables (if set, =1) or disables (if cleared, =0) the corresponding
serial port channel A or B. Clearing this bit aborts any ongoing
operation and clears the status bits. The SPORTS are ready to
transmit or receive two cycles after enabling. This bit apply to I2S
and DSP standard serial modes only.
10-28 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
• SPORT Loopback Mode. SP02MCTL or SP13MCTL Bit 12 (SPL). This
bit enables, if set (=1), or disables, if cleared (=0), the channel loop-
back mode. Loopback mode enables you to run internal tests and
to debug applications. Loopback works only under the following
SPORT configurations:

• SPORT0 (configured as a receiver or transmitter) together
with SPORT2 (configured as a transmitter or receiver).
SPORT0 can only be paired with SPORT2, and controlled
via the SPL bit in the SP02MCTL register.

• SPORT1 (configured as a receiver or transmitter) together
with SPORT3 (configured as a transmitter or receiver).
SPORT1 can only be paired with SPORT3, and controlled
via the SPL bit in the SP13MCTL register.

Either of the two paired SPORTs can be set up to transmit or
receive, depending on their DDIR bit configurations. This bit
applies to DSP standard serial and I2S modes only.

• Transmit Underflow Status (sticky, read-only). SPCTL2 and
SPCTL3 Bit 29 (TUVF_A).This bit indicates (if set, =1) whether the
multichannel FSx signal (from internal or external source) occurred
while the TXS buffer was empty. The SPORTs transmit data when-
ever they detect an FSx signal. If cleared (=0), No FSx signal
occurred. This bit applies to multichannel mode only when the
SPORTs are configures as transmitters.

• Transmit Data Buffer Status (sticky, read-only). SPCTL2 and
SPCTL3 Bits 30 and 31(TXS_A). These bits indicate the status of the
serial port channel’s transmit buffer as follows: 11=buffer full,
00=buffer empty, 10=buffer partially full. These bits apply to mul-
tichannel mode only.
ADSP-21161 SHARC Processor Hardware Reference 10-29

SPORT Control Registers and Data Buffers
Register Writes and Effect Latency

SPORT register writes are internally completed at the end of the same
CLKIN cycle in which they occur. The newly written value to the SPORT
register can be read back on the very next cycle. When a read of one of the
SPCTLx control registers is immediately followed by a write to that register,
the write may take two cycles to complete.

After a write to a SPORT register, control and mode bit changes generally
take effect in the second CLKIN cycle after the write is completed. The
serial ports are ready to start transmitting or receiving two CLKIN cycles
after they are enabled (in the SPCTLx control register). No serial clocks are
lost from this point on.

Transmit and Receive Data Buffers
The transmit registers (TX0A, TX0B, TX1A, TX1B, TX2A, TX2B, TX3A, and
TX3B) are the 32-bit transmit data buffers for SPORT0, SPORT1,
SPORT2, and SPORT3, respectively. These buffers must be loaded with
the data to be transmitted if the SPORT is configured to transmit on the
A and B channels. The data is loaded automatically by the DMA control-
ler or loaded manually by the program running on the processor core.

The receive registers (RX0A, RX0B, RX1A, RX1B, RX2A, RX2B, RX3A, and RX3B)
are the receive data buffers for SPORT0, SPORT1, SPORT2, and
SPORT3 respectively. These 32-bit buffers become active when the
SPORT is configured to receive data on the A and B channels. When a
SPORT is configured as a receiver, the RXxA and RXxB registers are auto-
matically loaded from the receive shifter when a complete word has been
received. The data is then loaded to internal memory by the DMA con-
troller or read directly by the program running on the processor core.

Word lengths of less than 32 bits are automatically right-justified
in the receive and transmit buffers.
10-30 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
The transmit buffers act like a two-location FIFO because they have a data
register plus an output shift register as shown in Figure 10-2 on page
10-5. Two 32-bit words may be stored in the transmit queue at any one
time. When the transmit register is loaded and any previous word has been
transmitted, the register contents are automatically loaded into the output
shifter. An interrupt occurs when the output transmit shifter has been
loaded, signifying that the transmit buffer is ready to accept the next word
(for example, the transmit buffer is not full). This interrupt does not occur
when serial port DMA is enabled or when the corresponding mask bit in
the IMASK register is cleared.

In I2S and DSP Standard serial port modes, the DERR_A and DERR_B over-
flow/underflow status bits are set when an overflow or underflow occurs.
In multichannel mode, the DERR_A bits are redefined due to the
fixed-directional functionality of the SPCTLx registers. When the SPCTL0
and SPCTL1 registers are configured for multichannel mode, the receive
overflow bit ROVF_A indicates when the A channel has received new data
while the RXS_A buffer is full. Similarly, when the SPCTL2 and SPCTL3 reg-
isters are configured for multichannel mode, the transmit overflow bit
TUVF_A indicates that a new frame sync signal (FS0/FS1) occurred while the
TXS_A buffer was empty.

The DERR_A (Bit 29) overflow/underflow status bit in the SPCTLx
register becomes fixed in multichannel mode only as either the
RUVF_A overflow status bit (SPORTs 0 and 1) or TUVF_A underflow
status bit (SPORTs 2 and 3).

When the SPORT is configured as a transmitter (DDIR =1), a transmit
underflow status bit is set in the serial port control register when a trans-
mit frame sync occurs and no new data has been loaded into the transmit
buffer. The TUVF_A/DERR_A status bit is sticky and is only cleared by dis-
abling the serial port.

When the SPORT is configured as a receiver (DDIR =0), the receive buffers
are activated. The receive buffers act like a three-location FIFO because
they have two data registers plus an input shift register. Two complete
ADSP-21161 SHARC Processor Hardware Reference 10-31

SPORT Control Registers and Data Buffers
32-bit words can be stored in the receive buffer while a third word is being
shifted in. The third word overwrites the second if the first word has not
been read out (by the processor core or the DMA controller). When this
happens, the receive overflow status bit is set in the serial port control reg-
ister. Almost three complete words can be received without the receive
buffer being read before overflow occurs. The overflow status is generated
on the last bit of the third word. The ROVF_A/DERR_A status bit is sticky
and is cleared only by disabling the serial port.

An interrupt is generated when the receive buffer has been loaded with a
received word (for example, the receive buffer is not empty). When the
corresponding bit in the IMASK register is set, this interrupt is unmasked.

If your program causes the core processor to attempt to read from an
empty receive buffer or a write to a full transmit buffer, the access is
delayed until the buffer is accessed by the external I/O device. This delay
is called a core processor hang. If you do not know whether the core pro-
cessor can access the receive or transmit buffer without a hang, the buffer's
status should be read first (in SPCTLx) to determine if the access can be
made.

To support debugging buffer transfers, the ADSP-21161 processor
has a Buffer Hang Disable (BHD) bit. When set (=1), this bit pre-
vents the processor core from detecting a buffer-related stall
condition, permitting debugging of this type of stall condition. For
more information, see the BHD discussion on on page 6-43.

The status bits in SPCTLx are updated during reads and writes from the
core processor even when the serial port is disabled. Disable the serial port
when writing to the receive buffer or reading from the transmit buffer.

When programming the serial port channel (A or B) as a transmit-
ter, only the corresponding TXxA and TXxB buffers become active
while the receive buffers RXxA and RXxB remain inactive. Similarly,
when the SPORT channel A and B is programmed as receive only
the corresponding RXxA and RXxB is activated. Do not attempt to
10-32 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
read or write to inactive data buffers. If the ADSP-21161 processor
operates on the inactive transmit or receive buffers while the
SPORT is enabled, unpredictable results may occur.

Clock and Frame Sync Frequencies (DIV)
The DIVx registers contain divisor values that determine frequencies for
internally generated clocks and frame syncs. These registers are shown
Figure 10-8 and in “SPORT Divisor Registers (DIVx)” on page A-112

The bit field CLKDIV specifies how many times the processor’s internal
clock (CCLK) is divided to generate the transmit and receive clocks. The
frame sync FS is considered a receive frame sync if the data pins are config-
ured as receivers. Likewise, the frame sync FS is considered a transmit

Figure 10-8. DIVx Register

CLKDIV

FSDIV
Frame Sync Divisor

Clock Divisor

DIV0 (0x1C5)
DIV1 (0x1E5)
DIV2 (0x1D5)
DIV3 (0x1F5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference 10-33

SPORT Control Registers and Data Buffers
frame sync if the data pins are configured as transmitters. The divisor is a
16-bit value, allowing a wide range of serial clock rates. Use the following
equation to calculate the serial clock frequency:

The maximum serial clock frequency is equal to half the processor’s inter-
nal clock (CCLK) frequency, which occurs when CLKDIV is set to zero. Use
the following equation to determine the value of CLKDIV to use, given the
CCLK frequency and desired serial clock frequency:

The processor’s internal clock (CCLK) is the clock ratio determined by the
CLKDBL pin and the CLK_CFG[1-0] pins.

The bit field FSDIV specifies how many transmit or receive clock cycles are
counted before generating a FS pulse (when the frame sync is internally
generated). In this way, a frame sync can initiate periodic transfers. The
counting of serial clock cycles applies to internally or externally generated
serial clocks. The formula for the number of cycles between frame sync
pulses is:

of serial clocks between frame syncs = FSDIV + 1

Use the following equation to determine the value of FSDIV, given the
serial clock frequency and desired frame sync frequency:

FSCLK
fCCLK

2 CLKDIV 1+()
---=

CLKDIV
fCCLK

2 fSCLK()
---------------------- 1–=

FSDIV
fSCLK
fSFS

-------------- 1–=
10-34 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
The frame sync is continuously active when FSDIV = 0. The value of FSDIV
should not be less than the serial word length minus one (the value of the
SLEN field in the serial port control register), as this may cause an external
device to abort the current operation or cause other unpredictable results.
If the serial port is not being used, the FSDIV divisor can be used as a
counter for dividing an external clock or for generating a periodic pulse or
periodic interrupt. The serial port must be enabled for this mode of oper-
ation to work.

Exercise caution when operating with externally generated transmit
clocks near the frequency of half the processor’s internal clock.
There is a delay between when the clock arrives at the SCLKx pin
and when data is output—this delay may limit the receiver’s speed
of operation. Refer to the data sheet for exact timing specifications.
For reliable operation, use full-speed serial clocks only when receiv-
ing with an externally generated clock and externally generated
frame sync (ICLK = 0, IFS = 0).

Externally-generated late transmit frame syncs also experience a delay
from when they arrive to when data is output. This can also limit the max-
imum serial clock speed. Refer to the ADSP-21161N DSP Microcomputer
Data Sheet for exact timing specifications.

Data Word Formats
The format of the data words transmitted over the serial ports is config-
ured by the DTYPE, SENDN, SLEN, and PACK bits of the SPCTLx control
registers.
ADSP-21161 SHARC Processor Hardware Reference 10-35

Data Word Formats
Word Length
Serial ports can process word lengths of 3 to 32 bits for serial and multi-
channel modes and 8 to 32 bits for I2S mode. Word length is configured
using the 5-bit SLEN field in the SPCTLx control registers. The value of SLEN
is given as follows:

SLEN = serial word length – 1

Do not set the SLEN value to zero or one. Words smaller than 32 bits are
right-justified in the receive and transmit buffers, residing in the least sig-
nificant bit positions.

Although serial ports process word lengths of 3 to 32 bits, trans-
mitting or receiving words smaller than 7 bits at half the full clock
rate of the processor may cause incorrect operation when DMA
chaining is enabled. Chaining disables the processor’s internal I/O
bus for several cycles while the new TCB parameters are being
loaded. Receive data may be lost (for example, overwritten) during
this period.

Transmitting or receiving words smaller than five bits may cause
incorrect operation when all the DMA channels are enabled with
no DMA chaining.

Endian Format
Endian format determines whether serial words transmit MSB-first or
LSB-first. Endian format is selected by the SENDN bit in the SPCTLx control
registers. When SENDN = 0, serial words transmit (or receive) MSB-first.
When SENDN = 1, serial words transmit (or receive) LSB-first.
10-36 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Data Packing and Unpacking
Received data words of 16 bits or less may be packed into 32-bit words,
and 32-bit words being transmitted may be unpacked into 16-bit words.
Word packing and unpacking is selected by the PACK bit in the SPCTLx
control registers.

When PACK = 1 in the control register, two successive words received are
packed into a single 32-bit word, and each 32-bit word is unpacked and
transmitted as two 16-bit words.

The first 16-bit (or smaller) word is right-justified in bits 15-0 of the
packed word, and the second 16-bit (or smaller) word is right-justified in
bits 31-16. This applies to both receive (packing) and transmit (unpack-
ing) operations. Companding may be used when word packing or
unpacking is being used.

When serial port data packing is enabled, the transmit and receive inter-
rupts are generated for the 32-bit packed words, not for each 16-bit word.

When 16-bit received data is packed into 32-bit words and stored
in normal word space in processor internal memory, the 16-bit
words can be read or written with short word space addresses.

Data Type

The DTYPE field of the SPCTLx control registers specifies one of four data
formats (for non-multichannel operation) shown in Table 10-4. This bit
field is reserved for I2S mode.

Table 10-4. DTYPE and Data Formatting (DSP Serial Mode)

DTYPE Data Formatting

00 Right-justify, zero-fill unused MSBs

01 Right-justify, sign-extend into unused MSBs
ADSP-21161 SHARC Processor Hardware Reference 10-37

Data Word Formats
These formats are applied to serial data words loaded into the receive and
transmit buffers. Transmit data words are not zero-filled or sign-extended,
because only the significant bits are transmitted.

For multichannel operation, the companding selection and MSB-fill selec-
tion is independent (Table 10-5).

Linear transfers occur if the channel is active and companding is not
selected for that channel. Companded transfers occur if the channel is
active and companding is selected for that channel. The multichannel
compand select registers, MTzCCSx and MRzCCSx, specify the transmit and
receive channels that are companded.

Transmit or receive sign extension is selected by bit 0 of DTYPE in the
SPCTLx register and is common to all transmit or receive channels. If bit 0
of DTYPE is set, sign extension occurs on selected channels that do not have
companding selected. If this bit is not set, the word contains zeros in the
MSBs.

10 Compand using µ-law (primary A channels only)

11 Compand using A-law (primary A channels only)

Table 10-5. DTYPE and Data Formatting (Multichannel)

DTYPE Data Formatting

x0 Right-justify, zero-fill unused MSBs

x1 Right-justify, sign-extend into unused MSBs

0x Compand using µ-law (primary A channels only)

1x Compand using A-law (primary A channels only)

Table 10-4. DTYPE and Data Formatting (DSP Serial Mode) (Cont’d)

DTYPE Data Formatting
10-38 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Companding
Companding (compressing/expanding) is the process of logarithmically
encoding and decoding data to minimize the number of bits that must be
sent. The serial ports support the two most widely used companding algo-
rithms, A-law and µ-law, performed according to the CCITT G.711
specification. The type of companding can be selected independently for
each SPORT. Companding is selected by the DTYPE field of the SPCTLx
control register.

Companding is supported on the A channel only. SPORTs 2 and 3
primary channels are capable of compression, while SPORTs 0 and
1 primary channels are capable of expansion.

When companding is enabled, the data in the RX0A and RX1A buffers is the
right-justified, sign-extended expanded value of the eight received LSBs. A
write to TX2A and TX3A compresses the 32-bit value to eight LSBs
(zero-filled to the width of the transmit word) before it is transmitted. If
the 32-bit value is greater than the 13-bit A-law or 14-bit µ-law maxi-
mum, it is automatically compressed to the maximum value.

Since the values in the transmit and receive buffers are actually com-
panded in-place, the companding hardware can be used without
transmitting (or receiving) any data, for example during testing or debug-
ging. This operation requires one cycle of overhead, as described below.
For companding to execute properly, program the SPORT registers prior
to loading data values into the SPORT buffers.

To compand data in-place, without transmitting:

1. Enable companding in the DTYPE field (bits 2–1) and enable the
DDIR bit (bit 25) of the SPCTLx transmit control register.

2. Write a 32-bit data word to the transmit buffer. The companding
is calculated in this cycle.
ADSP-21161 SHARC Processor Hardware Reference 10-39

Clock Signal Options
3. Wait one cycle. A NOP instruction can be used to do this; if a NOP is
not inserted, the core is held off for one cycle anyway. This allows
the serial port companding hardware to reload the transmit buffer
with the companded value.

4. Read the 8-bit companded value from the transmit buffer. The fol-
lowing is an example for companding data in-place.

R0=0x2000004;

Dm(0x1f0)=r0; //Set up SPCTL3

Nop;nop;nop;nop;

R0=0x1234;

Dm(0x1f1)=r0; // Write 0x1234 to TX3A

Nop;

R0=dm(0x1f1); // Read compressed value (0x8D) from TX3A

To expand data in-place, use the same sequence of operations with the
receive buffer instead of the transmit buffer. When expanding data in this
way, set the appropriate serial word length (SLEN) in the SPCTLx control
register.

With companding enabled, interfacing the serial port to a codec requires
little additional programming effort. If companding is not selected, two
formats are available for received data words of fewer than 32 bits: one
that fills unused MSBs with zeros, and another that sign-extends the MSB
into the unused bits.

Clock Signal Options
Each serial port has a clock signal (SCLKx) for transmitting and receiving
data on the two associated data pins. The clock signals are configured by
the ICLK and CKRE bits of the SPCTLx control registers. The serial clock fre-
quency is configured in the DIVx. A single clock pin clocks both data pins
(either configured as inputs or outputs) to receive or transmit data at the
same rate.
10-40 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
The serial clock can be independently generated internally or input from
an external source. The ICLK bit of the SPCTLx control registers determines
the clock source.

When ICLK is set (=1), the clock signal is generated internally by the pro-
cessor and the SCLKx pins are outputs. The clock frequency is determined
by the value of the serial clock divisor (CLKDIV) in the DIVx registers.

When ICLK is cleared (=0), the clock signal is accepted as an input on the
SCLKx pins, and the serial clock divisors in the DIVx registers are ignored.
The externally generated serial clock does not need to be synchronous
with the system clock.

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. A vari-
ety of framing options are available on the SPORTs. The FSx signals are
independent and are separately configured in the control register.

Framed Versus Unframed
The use of frame sync signals is optional in serial port communications.
The FSR (transmit frame sync required) control bit determines whether
frame sync signals are required. Active-low or active-high frame syncs are
selected using the LFS bit in DSP serial mode and the LRFS bit in multi-
channel mode. These bits are located in the SPCTLx control registers.

When FSR is set (=1), a frame sync signal is required for every data word.
To allow continuous transmission from the processor, each new data word
must be loaded into the transmit buffer before the previous word is shifted
out and transmitted.
ADSP-21161 SHARC Processor Hardware Reference 10-41

Frame Sync Options
When FSR is cleared (=0), the corresponding frame sync signal is not
required. A single frame sync is required to initiate communications but it
is ignored after the first bit is transferred. Data words are then transferred
continuously in what is referred to as an unframed mode.

 When DMA is enabled in a mode where frame syncs are not
required, DMA requests may be held off by chaining or may not be
serviced frequently enough to guarantee continuous unframed data
flow.

Figure 10-9 illustrates framed serial transfers.

Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be generated internally or input
from an external source. The IFS bit of the SPCTLx control register deter-
mines the frame sync source.

Figure 10-9. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

SCLK

FRAMED
DATA

UNFRAMED
DATA
10-42 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
When IFS is set (=1), the corresponding frame sync signal is generated
internally by the processor, and the FSx pin is an output. The frequency of
the frame sync signal is determined by the value of the frame sync divisor
(FSDIV) in the DIVx register.

When IFS is cleared (=0), the corresponding frame sync signal is accepted
as an input on the FSx pins, and the frame sync divisors in the DIVx regis-
ters are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be active high or active low (for example,
inverted). Active-low or active-high frame syncs are selected using the LFS
bit in DSP serial mode and the LRFS bit in multichannel mode. These bits
are located in the SPCTLx control registers. LFS determines the frame sync’s
logic level:

• When LFS is cleared (=0), the corresponding frame sync signal is
active high.

• When LFS is set (=1), the corresponding frame sync signal is active
low.

Active high frame syncs are the default. The LFS bit is initialized to 0 after
a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on the rising or falling edges of the
serial port clock signals. The CKRE bit of the SPCTLx control registers selects
the sampling edge.
ADSP-21161 SHARC Processor Hardware Reference 10-43

Frame Sync Options
For receive/transmit data and frame syncs, setting CKRE to 1 in SPCTLx
selects the rising edge of SCLKx. When CKRE is cleared (=0), the processor
selects the falling edge. Note that data and frame sync signals change state
on the clock edge that is not selected.

For example, the transmit and receive functions of any two serial ports
connected together should always select the same value for CKRE so inter-
nally generated signals are driven on one edge and received signals are
sampled on the opposite edge.

Early Versus Late Frame Syncs
Frame sync signals can be early or late. Frame sync signals can occur dur-
ing the first bit of each data word or during the serial clock cycle
immediately preceding the first bit. The LAFS bit of the SPCTLx control
register configures this option.

When LAFS is cleared (=0), early frame syncs are configured. This is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available (and the first bit of the receive data word is latched) in
the serial clock cycle after the frame sync is asserted. The frame sync is not
checked again until the entire word has been transmitted (or received). In
multi-channel operation, this is the case when frame delay is 1.

If data transmission is continuous in early framing mode (for example, the
last bit of each word is immediately followed by the first bit of the next
word), the frame sync signal occurs during the last bit of each word. Inter-
nally generated frame syncs are asserted for one clock cycle in early
framing mode.

When LAFS is set (=1), late frame syncs are configured. In this mode, the
first bit of the transmit data word is available (and the first bit of the
receive data word is latched) in the same serial clock cycle that the frame
sync is asserted. In multichannel operation, this is the case when frame
delay is zero. Receive data bits are latched by serial clock edges, but the
frame sync signal is checked only during the first bit of each word. Inter-
10-44 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
nally generated frame syncs remain asserted for the entire length of the
data word in late framing mode. Externally generated frame syncs are only
checked during the first bit. They do not need to be asserted after that
time period.

Figure 10-10 illustrates the two modes of frame signal timing.

Data-Independent Transmit Frame Sync
Normally, the internally generated frame sync signal, in the case of trans-
mitting data out of the SPORT (DDIR = 1), is output only when the
transmit buffer has data ready to transmit. The Data-Independent Trans-
mit Frame Sync (DITFS) mode allows the continuous generation of the FSx
signal, with or without new data in the transmit register. The DITFS bit of
the SPCTLx control register configures this option.

When DITFS is cleared (= 0), the internally generated (transmit) frame
sync is only output when a new data word has been loaded into the trans-
mit buffer. Once data is loaded into the transmit buffer, it is not
transmitted until the next frame sync is generated. This mode of operation
allows data to be transmitted only at specific times.

Figure 10-10. Normal vs. Alternate Framing

B3 B2 B1 B0

SCLK

LATE
FRAME
SYNC

DATA

EARLY
FRAME
SYNC
ADSP-21161 SHARC Processor Hardware Reference 10-45

SPORT Loopback
When DITFS is set (=1), the internally generated (transmit) frame sync is
output at its programmed interval regardless of whether new data is avail-
able in the transmit buffer. Whatever data is present in the transmit buffer
is retransmitted with each assertion of frame sync. Depending on the
SPORT operating mode, the TUVF_A or DERR_A/DERR_B transmit under-
flow status bit is set when this occurs (for example, when old data is
retransmitted). The TUVF_A or DERR_A/DERR_B status bit is also set if the
transmit buffer does not have new data when an externally generated
frame sync occurs. In this mode of operation, the first internally generated
frame sync is delayed until data has been loaded into the transmit buffer.

If the internally generated frame sync is used, a single write to the transmit
data register is required to start the transfer.

SPORT Loopback
When the SPORT loopback bit (SPL) is set in the SP02MCTL or SP13MCTL
control register, the serial port is configured in an internal loopback con-
nection as follows: SPORT0 and SPORT2 work as a pair for internal
loopback, SPORT1 and SPORT3 work as a pair for internal loopback.
The loopback configuration allows the serial ports to be tested internally.

When loopback is configured, the DxA, DxB, SCLKx, and FSx signals of the
SPORT0 and SPORT1 are internally connected to the DyA, DyB, SCLKy,
and FSy signals of SPORT2 and SPORT3 respectively where x = 0 or 1,
and y = 2 or 3.

In loopback mode, either of the two paired SPORTS can be a transmitter
or receiver. One SPORT in the loopback pair must be configured as a
transmitter, and the other must be configured as a receiver. For example,
SPORT0 can be a transmitter and SPORT2 can be a receiver for internal
loopback. Or, SPORT0 can be a receiver and SPORT2 can be the trans-
mitter when setting up internal loopback. The processor ignores external
10-46 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
activity on the SCLKx, FSx, A and B channel data pins when the SPORT is
configured as the receiver. This prevents contention with the internal
loopback data transfer.

Only transmit clock and transmit frame sync options may be used
in loopback mode—programs must ensure that the serial port is set
up correctly in the SPCTLx control registers. Multichannel mode is
not allowed. Only standard DSP serial and I2S modes support
internal loopback.

SPORT Operation Modes
SPORTs operate in three modes: standard DSP serial mode, I2S mode,
and multichannel mode. Depending on the operation mode, the control
bits are redefined. The operating mode bit (OPMODE) of SPCTLx register
selects between I2S mode and non I2S mode (DSP serial port/multichan-
nel mode). In the non I2S mode, bit MCE in SPxyMCTL selects between the
DSP serial port mode (standard mode) and multichannel mode. In addi-
tion to these bits, the data direction bit (DDIR) selects whether the port is a
transmitter or receiver. The definition of all the control bits changes
according to DDIR bit. The different operation modes are described in
Table 10-6.

Table 10-6. SPORT Operation Modes

OPMODE MCE Mode

0 0 Standard DSP serial port

0 1 Multichannel

1 X I2S

1 1 Reserved
ADSP-21161 SHARC Processor Hardware Reference 10-47

SPORT Operation Modes
If DDIR bit is set (=1), the SPORT becomes a transmitter and all the other
control bits are defined accordingly. Similarly for DDIR =0, the SPORT
becomes a receiver. Multichannel mode and companding is not supported
for I2S mode.

I2S Mode
I2S is a three-wire serial bus standard protocol for transmission of two
channel (stereo) Pulse Code Modulation (PCM) digital audio data, in
which each sample is sent MSB-first. Many of today's analog and digital
audio front-end devices support the I2S protocol including: audio D/A
and A/D converters, PC multimedia audio controllers, digital audio trans-
mitters and receivers that support serial digital audio transmission
standards such as AES/EBU, SP/DIF, IEC958, CP-340, and CP-1201,
digital audio signal processors, dedicated digital filter chips, and sample
rate converters.

The I2S bus transmits audio data and control signals over separate lines.
The data line carries two multiplexed data channels: the left channel and
the right channel. In I2S mode, if both channels on a SPORT are set up to
transmit, then SPORT transmit channels (TXxA and TXxB) transmit simul-
taneously, each transmitting left and right I2S channels. If both channels
on a SPORT are set up to receive, the SPORT receive channels (RXxA and
RXxB) receive simultaneously, each receiving left and right I2S channels.
Data is transmitted in MSB format.

Multichannel operation and companding are not supported in I2S
mode.

Each SPORT transmit or receive channel has channel enable, DMA
enable, and chaining enable bits in its SPCTLx control register. The FSx sig-
nal is used as the transmit and/or receive word select signal. DMA-driven
or interrupt-driven data transfers can also be selected using bits in the
SPCTLx register.
10-48 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Setting Internal Serial Clock and Frame Sync Rates

The serial clock rate (CLKDIV value) for internal clocks can be set using a
bit field in the CLKDIV register. For details, see “Clock and Frame Sync
Frequencies (DIV)” on page 10-33.

I2S Control Bits

Several bits in the SPCTLx control register enable and configure I2S opera-
tion: operation mode (OPMODE), word length (SLEN), I2S channel transfer
order (L_FIRST), frame sync (word select) generation (FS_BOTH), master
mode enable (MSTR), DMA enable (SDEN), and DMA chaining enable
(SCHEN).

Setting Word Length (SLEN)

SPORTs handle data words containing 8 to 32 bits in I2S Mode. Set the
bit length for transmit and receive data words. For details, see “Word
Length” on page 10-36.

The transmitter sends the MSB of the next word one clock cycle after the
word select (TFS) signal changes.

In I2S mode, load the FSDIV register with the same value as SLEN to trans-
mit or receive words continuously. For example, for 8-bit data words
(SLEN = 7), set FSDIV = 7.

Selecting Transmit Receive Channel Order (L_FIRST)

In master and slave modes, it is possible to configure the I2S channel that
each SPORT channel transmits or receives first. By default, the SPORT
channels transmit and receive on the right I2S channel first. The left and
right I2S channels are time-duplexed data channels.
ADSP-21161 SHARC Processor Hardware Reference 10-49

SPORT Operation Modes
To select the channel order, set the L_FIRST bit (= 1) to transmit or receive
on left channel first, or clear the L_FIRST bit (= 0) to transmit or receive
on right channel first.

Selecting the Frame Sync Options (FS_BOTH)

The processor uses FSx as transmit or receive word select signals, depend-
ing on configured direction of the data pins. When the processor generates
the transmit word select signal (based on the data in the transmit chan-
nels), set FS_BOTH (= 1) to generate the word select signal when both
transmit channels contain data. Clear FS_BOTH (= 0) to generate word
select signal if either transmit channel contains data.

The word select signal changes one clock cycle before the MSB of the data
word transmits, enabling the slave transmitter to derive synchronous tim-
ing of the serial data and enabling the receiver to store the previous data
word and clear its input for the next one.

When using both SPORT channels (DxA and DxB) as transmitters (FS_BOTH
= 1) and MSTR = 1 and DITFS = 0, the processor generates a frame sync sig-
nal only when both transmit buffers contain data because both
transmitters share the same CLKDIV and FS. For continuous transmission,
both transmit buffers must contain new data.

When using both SPORT channels as transmitters and MSTR = 1 and DITFS
= 1, the processor generates a frame sync signal at the frequency set by
FSDIV = x whether or not the transmit buffers contain new data. In this
case, the processor ignores the FS_BOTH bit. The DMA controller or the
application is responsible for filling the transmit buffers with data.

Enabling SPORT Master Mode (MSTR)

The SPORTs transmit and receive channels can be configured for master
or slave mode. In master mode, the processor generates the word select
and serial clock signals for the transmitter or receiver. In slave mode, an
external source generates the word select and serial clock signals for the
10-50 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
transmitter or receiver. When MSTR is cleared (= 0), the processor uses an
external word select and clock source. The SPORT transmitter or receiver
is a slave. When MSTR is set (= 1), the processor uses the processor’s inter-
nal clock for word select and clock source. The SPORT transmitter or
receiver is the master.

Enabling SPORT DMA (SDEN)

DMA can be enabled or disabled independently on any of the SPORT’s
transmit and receive channels. Set SDEN (= 1) to enable DMA and set
channel in DMA-driven data transfer mode. Clear SDEN (= 0) to disable
DMA and set the channel in an interrupt-driven data transfer mode.

Interrupt-Driven Data Transfer Mode

In this mode, both the A and B channels share a common interrupt vector,
regardless of being configured as a transmitter or receiver.

The SPORT generates an interrupt when the transmit buffer has a
vacancy or the receive buffer has data. To determine the source of an
interrupt, applications must check the TXSx or RXSx data buffer status bits,
respectively.

DMA-Driven Data Transfer Mode

Each transmitter and receiver has its own DMA registers. For details, see
“Serial Port DMA” on page 6-95. The same DMA channel drives the left
and right I2S channels for the transmitter or the receiver. The software
application must de-multiplex the left and right channel data received by
the receive buffer, because the left and right data is interleaved in the
DMA buffers.

Channel A and B on each SPORT share a common interrupt vector. The
DMA controller generates an interrupt at the end of DMA transfer only.
ADSP-21161 SHARC Processor Hardware Reference 10-51

SPORT Operation Modes
Figure 10-11 shows the relationship between FS (word select), serial clock,
and I2S data. Timing for word select is the same as for frame sync. Note
that this example uses early frame sync.

Multichannel Operation
The serial ports offer a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel. For example, a 24-word block of data contains one word
for each of 24 channels.

The serial port can automatically select words for particular channels
while ignoring the others. Up to 128 channels are available for transmit-
ting or receiving or both. SPORT0 and SPORT1 receive and SPORT2
and SPORT3 transmit data selectively from any of the 128 channels.

Data companding and DMA transfers can also be used in multichannel
mode on channel A. Channel B is not used in multichannel mode.

Figure 10-11. Word Select Timing in I2S Mode

SCLK

FS/WS

I2S DATA
DxA OR DxB L

3
L
2

L
1

R
3

R
2

R
1

LEFT CHANNEL RIGHT CHANNEL
10-52 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Although the four SPORTs are programmable for data direction in the
standard mode of operation, their programmability is restricted for multi-
channel operations due to implementation and backward compatibility
issues. See the configuration shown in Figure 10-12. The following points
summarize these limitations:

1. The primary A channels of SPORT0 and SPORT1 are capable
only of expansion, and the primary A channels of SPORT2 and
SPORT3 are capable only of compression.

2. In multichannel mode, SPORT0 and SPORT2 work in pairs;
SPORT0 is the receive channel, and SPORT2 is the transmit chan-
nel. The same is true for SPORT1 and SPORT3.

3. Receive comparison is not supported.

In multichannel mode, the SCLKx2 and SCLKx3 pin is an input and
is internally connected to its corresponding SCLKx0 and SCLKx1
pins. It is not necessary to externally connect SCLKx2 to SCLKx0 and
SCLKx1 to SCLKx3.

Figure 10-12. SPORT Multichannel Mode Pairings: SPORT0 and
SPORT2, SPORT1 and SPORT3

 D2a
 D2b

 TDV2
SCLK2

 D3a
 D3b

SCLK3

D0b
FS0
SCLK0

D1b
FS1
SCLK1

D0a

D1a

SPORT0 SPORT2

SPORT1 SPORT3

 TDV3
ADSP-21161 SHARC Processor Hardware Reference 10-53

SPORT Operation Modes
Figure 10-13 shows example timing for a multichannel transfer with
SPORT pairing. The transfer has the following characteristics:

• Uses the TDM method in which serial data is sent or received on
different channels sharing the same serial bus.

• FS0 signals start of frame for each multichannel SPORT pairings.

• FS2 and FS3 are used as transmit data valid for external logic. These
signals are active only during transmit channels. In a
SPORT0/SPORT2 multichannel mode pairing, FS2 is the transmit
data valid signal. In a SPORT1/SPORT3 multichannel mode pair-
ing, FS3 is the transmit data valid signal.

• Receive on channels 0 and 2; transmit on channels 1 and 2.

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The FS0 or FS1 signal is used for this reference,
indicating the start of a block (or frame) of multichannel data words.

Figure 10-13. Multichannel Operation

SCLK0

B3 B2 B1 B2D0A

FS0

B0 IGNORED B3

D2A
B2B3 B0 B3 B2B1

WORD 0 WORD 1 WORD 2

TDV2
10-54 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
When multichannel mode is enabled on a SPORT0/2 or SPORT1/3 pair,
both the transmitter and receiver use FS0/FS1 signal as a frame sync. This
is true whether FS0 or FS1 is generated internally or externally. The
FS0/FS1 signal synchronizes the channels and restarts each multichannel
sequence. FS0/FS1 assertion occurs at the beginning of the channel 0 data
word.

FS2 or FS3 is used as a transmit data valid signal, which is active during
transmission of an enabled word. Because the serial port’s D2A and D3A
pins are three-stated when the time slot is not active, the FS2/FS3 signal
specifies whether D2A/D3A is being driven by the ADSP-21161 processor.
The processor drives FS2/FS3 in multichannel mode whether or not DITFS
is cleared.

FS2 is renamed TDV2 and FS3 is renamed TDV3 in multichannel
mode. These pins become outputs. Do not connect FS2 (TDV2) to
FS0, and FS3 (TDV3) to FS1, in multichannel mode. Bus contention
between the transmit data valid and multichannel frame sync pins
will result.

After the TXxA transmit buffer is loaded, transmission begins and the
FS2/FS3 signal is generated. When serial port DMA is used, this may hap-
pen several cycles after the multichannel transmission is enabled. If a
deterministic start time is required, pre-load the transmit buffer.

Multichannel Control Bits in SPCTL

The SPCTLx control registers contain several bits that enable and configure
multichannel operations. Multichannel mode is enabled by setting the MCE
bit in the SP02MCTL or SP13MCTL control register:

• When MCE is set (= 1), multichannel operation is enabled.

• When MCE is cleared (= 0), all multichannel operations are disabled.

Multichannel operation is activated three cycles after MCE is set. Internally
generated frame sync signals activate four cycles after MCE is set.
ADSP-21161 SHARC Processor Hardware Reference 10-55

SPORT Operation Modes
Setting the MCE bit enables multichannel operation for both receive and
transmit sides of the SPORT0/2 or SPORT1/3 pair. A transmitting
SPORT2 or SPORT3 must be in multichannel mode if the receiving
SPORT0 or SPORT1 is in multichannel mode.

The number of channels used in multichannel operation is selected by the
7-bit NCH field in the SP02MCTL and SP13MCTL multichannel control regis-
ter. Set NCH to the actual number of channels minus one:

NCH = Number of Channels – 1

The 7-bit CHNL field in the SP02MCTL and SP13MCTL multichannel control
registers indicates the channel that is currently selected during multichan-
nel operation. This field is a read-only status indicator. CHNL(6:0)
increments modulo NCH(6:0) as each channel is serviced.

The 4-bit MFD field in the SP02MCTL and SP13MCTL multichannel control
registers specifies a delay between the frame sync pulse and the first data
bit in multichannel mode. The value of MFD is the number of serial clock
cycles of the delay. Multichannel frame delay allows the processor to work
with different types of T1 interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15. A new frame sync
may occur before data from the last frame has been received, because
blocks of data occur back to back.

Use a multichannel frame delay of at least one pulse when the processor is
generating frame syncs for the multichannel system and the serial clock of
the system is equal to CLKIN (the processor clock). If MFD is not set to at
least one, the master processor in a multiprocessing system does not recog-
nize the first frame sync after multichannel operation is enabled. All
succeeding frame syncs are recognized normally.
10-56 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Channel Selection Registers

Specific channels can be individually enabled or disabled to select the
words that are received and transmitted during multichannel communica-
tions. Data words from the enabled channels are received or transmitted,
while disabled channel words are ignored. Up to 128 channels are avail-
able for transmitting and up to 128 channels for receiving.

The multichannel selection registers enable and disable individual chan-
nels. The registers for each serial port are as shown in Table 10-7.

Each of the four multichannel enable and compand select registers are
32-bits in length. These registers provide channel selection for 128
(32 x 4 = 128) channel. Setting a bit enables that channel so that the serial
port selects its word from the multiple-word block of data (for either
receive or transmit). For example, setting bit 0 in MR0CS0 or MT2CS0 selects
word 0, setting bit 12 selects word 12, and so on. Setting bit 0 in MR0CS1
or MT2CS1 selects word 32, setting bit 12 selects word 44, and so on.

Table 10-7. Multichannel Selection Registers

Register Names Function

MR0CS(0-3)
MR1CS(0-3)

Multichannel Receive Select-specifies the active receive channels
(4x32-bit registers for 128 channels)

MT2CS(0-3)
MT3CS(0-3)

Multichannel Transmit Select-specifies the active transmit channels
(4x32-bit registers for 128 channels)

MR0CCS(0-3)
MR1CCS(0-3)

Multichannel Receive Compand Select-specifies which active receive
channels (out of 128 channels) are companded

MT2CCS(0-3)
MT3CCS(0-3)

Multichannel Transmit Compand Select-specifies which active trans-
mit channels (out of 128 channels) are companded
ADSP-21161 SHARC Processor Hardware Reference 10-57

Transferring Data to Memory
Setting a particular bit to 1 in the MT2CS(0-3) or MT3CS(0-3) register
causes SPORT2 or SPORT3 to transmit the word in that channel’s posi-
tion of the data stream. Clearing the bit in the MT2CS(0-3) or MT3CS(0-2)
register causes SPORT2’s D2A or SPORT3’s D3A data transmit pin to
three-state during the time slot of that channel.

Setting a particular bit to 1 in the MR0CS(0-3) or MR1CS(0-3) register
causes the serial port to receive the word in that channel’s position of the
data stream; the received word is loaded into the receive buffer. Clearing
the bit in the MR0CS(0-3)/MR1CS(0-3) register causes the serial port to
ignore the data.

Companding may be selected on a per-channel basis. Setting a bit to 1 in
any of the multichannel registers specifies that the data be companded for
that channel. A-law or µ-law companding can be selected using the DTYPE
bits in the SPCTLx control registers. SPORT0 and SPORT1 expand
selected incoming time slot data, while SPORT2 and SPORT3 compress
selected outgoing time slot data.

Transferring Data to Memory
Transmit and receive data can be transferred between the serial ports and
on-chip memory with single-word transfers or with DMA block transfers.
Both methods are interrupt-driven, using the same internally generated
interrupts.

When serial port DMA is not enabled in the SPCTLx control registers, the
SPORT generates an interrupt every time it receives a data word or starts
to transmit a data word. SPORT DMA provides a mechanism for receiv-
ing or transmitting an entire block of serial data before the interrupt is
generated. The ADSP-21161 processor’s on-chip DMA controller handles
the DMA transfer, allowing the processor core to continue running until
the entire block of data is transmitted or received. Service routines can
then operate on the block of data rather than on single words, significantly
reducing overhead.
10-58 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
DMA Block Transfers
The ADSP-21161 processor’s on-chip DMA controller allows automatic
DMA transfers between internal memory and the two serial ports. There
are eight DMA channels for serial port operations. Each SPORT has one
channel for receiving data and one channel for transmitting data. The
serial port DMA channels are numbered as shown in Table 10-8.

Data-direction programmability is supported in standard DSP serial mode
and I2S mode. The value of the DDIR bit in SPCTL (0=RX, 1=TX) in SPCTLx
determines whether the receive or transmit register for the SPORT
becomes active.

The SPORT DMA channels are assigned higher priority than all other
DMA channels (for example, link ports and the external port) because of
their relatively low service rate and their inability to hold off incoming
data. Having higher priority causes the SPORT DMA transfers to be per-
formed first when multiple DMA requests occur in the same cycle.

Table 10-8. Serial Port DMA Channels

Channel Data Buffer Description Priority

0 RX0A/TX0A SPORT0 A data Highest

1 RX0B/TX0B SPORT0 B data

2 RX1A/TX1A SPORT1 A data

3 RX1B/TX1B SPORT1 B data

4 RX2A/TX2A SPORT2 A data

5 RX2B/TX2B SPORT2 B data

6 RX3A/TX3A SPORT3 A data

7 RX3B/TX3B SPORT3 B data Lowest
ADSP-21161 SHARC Processor Hardware Reference 10-59

Transferring Data to Memory
Although the DMA transfers are performed with 32-bit words, serial ports
can handle word sizes from 3 to 32 bits (8 to 32-bits for I2S mode). If
serial words are 16 bits or smaller, they can be packed into 32-bit words
for each DMA transfer; this is configured by the PACK bit of the SPCTLx
control registers. When serial port data packing is enabled (PACK=1), the
transmit and receive interrupts are generated for the 32-bit packed words,
not for each 16-bit word.

The following sections present an overview of serial port DMA operations;
additional details are covered in the DMA chapter of this manual.

• For information on SPORT DMA Channel Setup, see “Setting Up
Serial Port DMA” on page 6-100.

• For information on SPORT DMA Parameter Registers, see “Serial
Port DMA” on page 6-95.

• For information on SPORT DMA Chaining, see “Chaining DMA
Processes” on page 6-25.

Setting Up DMA on SPORT Channels

Each SPORT DMA channel has an enable bit (SDEN) in its SPCTLx control
register. When DMA is disabled for a particular channel, the SPORT gen-
erates an interrupt every time it receives a data word or whenever there is a
vacancy in the transmit buffer. For more information, see “Single-Word
Transfers” on page 10-65.

Each channel also has a DMA chaining enable bit (SCHEN) in its SPCTLx
control register.

To set up a serial port DMA channel, write a set of memory buffer param-
eters to the SPORT DMA parameter registers shown in Table 10-9.

Load the II, IM, and C registers with a starting address for the buffer, an
address modifier, and a word count, respectively. These registers can be
written from the core processor or from an external processor.
10-60 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Once serial port DMA is enabled, the processor’s DMA controller auto-
matically transfers received data words in the receive buffer to the buffer
in internal memory. Likewise, when the serial port is ready to transmit
data, the DMA controller automatically transfers a word from internal
memory to the transmit buffer. The controller continues these transfers
until the entire data buffer is received or transmitted.

When the count register of an active DMA channel reaches zero (0), the
SPORT generates the corresponding interrupt.

SPORT DMA Parameter Registers
A DMA channel consists of a set of parameter registers that implements a
data buffer in internal memory and the hardware that the serial port uses
to request DMA service. The parameter registers for each SPORT DMA
channel and their addresses are shown in Table 10-10. These registers are
part of the processor’s memory-mapped IOP register set.

The DMA channels operate similarly to the processor’s data address gen-
erators (DAGs). Each channel has an index register (IIx) and a modify
register (IMx) for setting up a data buffer in internal memory. It is neces-
sary to initialize the index register with the starting address of the data
buffer. After it transfers each serial I/O word to (or from) the SPORT, the
DMA controller adds the modify value to the index register to generate

Table 10-9. SPORT DMA Parameter Registers

Register1 Description

IIxY DMA channel. x index; Start address for data buffer

IMxY DMA channel. x modify; Address increment

CxY DMA channel. x count; Number of words to transmit

CPxY DMA channel. x chain pointer; Address next set of data buffer parameters

GPxY DMA channel x general purpose

1 Y = A or B, and x = 0 - 3
ADSP-21161 SHARC Processor Hardware Reference 10-61

Transferring Data to Memory
the address for the next DMA transfer. The modify value in the IM register
is a signed integer, which provides capability for both incrementing and
decrementing the buffer pointer.

Each DMA channel has a count register CxA/CxB, which must be initial-
ized with a word count that specifies the number of words to transfer. The
count register decrements after each DMA transfer on the channel. When
the word count reaches zero, the SPORT generates the interrupt for the
channel and automatically disables the DMA channel.

Each SPORT DMA channel also has a chain pointer register (CPxA/CPxB)
and a general-purpose register (GPxA/GPxB). The CPx register functions in
chained DMA operations. The general-purpose registers can be used for
any purpose. For more information on SPORT DMA chaining, see “Serial
Port DMA” on page 6-95.

Table 10-10. SPORT DMA Parameter Registers Addresses

Register Address DMA Channel SPORT Data Buffer

II0A 0x60 0 RX0A or TX0A

IM0A 0x61 0 RX0A or TX0A

C0A 0x62 0 RX0A or TX0A

CP0A 0x63 0 RX0A or TX0A

GP0A 0x64 0 RX0A or TX0A

Reserved 0x65- 0x67

II0B 0x80 1 RX0B or TX0B

IM0B 0x81 1 RX0B or TX0B

C0B 0x82 1 RX0B or TX0B

CP0B 0x83 1 RX0B or TX0B

GP0B 0x84 1 RX0B or TX0B

Reserved 0x85 - 0x87

II1A 0x68 2 RX1A or TX1A
10-62 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
IM1A 0x69 2 RX1A or TX1A

C1A 0x6A 2 RX1A or TX1A

CP1A 0x6B 2 RX1A or TX1A

GP1A 0x6C 2 RX1A or TX1A

Reserved 0x6D - 0x6F

II1B 0x88 3 RX1B or TX1B

IM1B 0x89 3 RX1B or TX1B

C1B 0x8A 3 RX1B or TX1B

CP1B 0x8B 3 RX1B or TX1B

GP1B 0x8C 3 RX1B or TX1B

Reserved 0x8D - 0x8F

II2A 0x70 4 RX2A or TX2A

IM2A 0x71 4 RX2A or TX2A

C2A 0x72 4 RX2A or TX2A

CP2A 0x73 4 RX2A or TX2A

GP2A 0x74 4 RX2A or TX2A

Reserved 0x75 - 0x77

II2B 0x90 5 RX2B or TX2B

IM2B 0x91 5 RX2B or TX2B

C2B 0x92 5 RX2B or TX2B

CP2B 0x93 5 RX2B or TX2B

GP2B 0x94 5 RX2B or TX2B

Reserved 0x95 - 0x97

II3A 0x78 6 RX3A or TX3A

Table 10-10. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Data Buffer
ADSP-21161 SHARC Processor Hardware Reference 10-63

Transferring Data to Memory
When programming the serial port channel (A or B) as a transmit-
ter only the corresponding TXxA and TXxB become active, while the
receive buffers (RXxA and RXxB) remain inactive. Similarly, when
the SPORT channel A and B is programmed as receive, only the
corresponding RX0A and RX0B is activated.

When performing core-driven transfers, write to the buffer designated by
the DDIR bit setting in the SPCTL register. For DMA-driven transfers, the
serial port logic performs the data transfer from internal memory to/from
the appropriate buffer depending on DDIR bit setting. If the inactive
SPORT data buffers are read or written to by core while the port is already
being enabled, the core will hang. For example, if a SPORT is pro-
grammed to be a transmitter, while at the same time the core reads from
the receive buffer of the same SPORT, the core hangs just as it would if it
were reading an empty buffer that is currently active. This locks up the
core permanently until the SPORT is reset.

IM3A 0x79 6 RX3A or TX3A

C3A 0x7A 6 RX3A or TX3A

CP3A 0x7B 6 RX3A or TX3A

GP3A 0x7C 6 RX3A or TX3A

Reserved 0x7D - 0x7F

II3B 0x98 7 RX3B or TX3B

IM3B 0x99 7 RX3B or TX3B

C3B 0x9A 7 RX3B or TX3B

CP3B 0x9B 7 RX3B or TX3B

GP3B 0x9C 7 RX3B or TX3B

Table 10-10. SPORT DMA Parameter Registers Addresses (Cont’d)

Register Address DMA Channel SPORT Data Buffer
10-64 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
Therefore, set the direction bit, the serial port enable bit, and DMA
enable bits before initiating any operations on the SPORT data buffers. If
the processor operates on the inactive transmit or receive buffers while the
SPORT is enabled, it can cause unpredictable results.

SPORT DMA Chaining

In chained DMA operations, the processor’s DMA controller automati-
cally sets up another DMA transfer when the contents of the current
buffer have been transmitted (or received). The chain pointer register
(CPx) functions as a pointer to the next set of buffer parameters stored in
memory. The DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. For more information on
SPORT DMA chaining, see “Serial Port DMA” on page 6-95.

DMA chaining occurs independently for the transmit and receive channels
of each serial port. Each SPORT DMA channel has a chaining enable bit
(SCHEN) that when set (= 1) enables DMA chaining and when cleared (= 0)
disables DMA chaining. Writing all zeros to the address field of the chain
pointer register (CPx) also disables chaining.

Single-Word Transfers
Individual data words may also be transmitted and received by the serial
ports, with interrupts occurring as each 32-bit word is transmitted or
received. When a serial port is enabled and DMA is disabled, the SPORT
DMA interrupts are generated whenever a complete 32-bit word has been
received in the receive buffer, or whenever the transmit buffer is not full.
Single-word interrupts can be used to implement interrupt-driven I/O on
the serial ports.

When the processor core’s program reads a word from a serial port’s
receive buffer or writes a word to its transmit buffer, check the buffer's
full/empty status to avoid hanging the processor core. (This can also hap-
pen to an external device, for example a host processor, when it is reading
ADSP-21161 SHARC Processor Hardware Reference 10-65

SPORT Pin/Line Terminations
or writing a serial port buffer.) The full/empty status can be read in the
DXS bits of the SPCTLx. Reading from an empty receive buffer or writing to
a full transmit buffer causes the processor (or external device) to hang,
waiting for the status to change.

To support debugging buffer transfers, the processor has a Buffer
Hang Disable (BHD) bit. When set (= 1), this bit prevents the pro-
cessor core from detecting a buffer-related stall condition,
permitting debugging of this type of stall condition. For more
information, see the BHD discussion on page 6-43.

Multiple interrupts can occur if both SPORTs transmit or receive data in
the same cycle. Any interrupt can be masked in the IMASK register; if the
interrupt is later enabled in IMASK, the corresponding interrupt latch bit in
IRPTL must be cleared in case the interrupt has occurred in the meantime.

When serial port data packing is enabled (PACK = 1 in the SPCTLx control
registers), the transmit and receive interrupts are generated for 32-bit
packed words, not for each 16-bit word.

SPORT Pin/Line Terminations
The ADSP-21161 processor has very fast drivers on all output pins includ-
ing the serial ports. The edge rate occurs at low-speed serial clock rates.
Unlike previous SHARC processors, the ADSP-21161 processor contains
internal series resistance equivalent to 50Ω on all input drivers. Therefore,
for traces longer than six inches, external series resisters on control,
SPORT data, clock or frame sync pins are not required on the processor
side of the serial paths to dampen reflections from transmission line effects
on point-to-point connections.
10-66 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
SPORT Programming Examples
This section provides two programming examples written for the
ADSP-21161 processor. The example in Listing 10-1 demonstrates how
the core directly reads from the SPORT receive buffer and writes to the
SPORT transmit buffer. The example in Listing 10-2 demonstrates how
the core directly writes to the SPORT transmit buffer and reads from the
SPORT receive buffer after an interrupt.

Listing 10-1. Core-Driven Sport Loopback Example

/*__

ADSP-21161 Core-Driven SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-

fer. The core directly writes to the transfer buffer (TX2A) and

reads from the receive buffer (RX0A).

__*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /* Reset vector from ldf file */

nop;

jump start;

.section/dm seg_dmda;

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

/*---------------------Main Routine-------------------------*/

.section/pm seg_pmco;

start:

/* Pointers to source and dest, I0=B0 Automatically */

B0=source;
ADSP-21161 SHARC Processor Hardware Reference 10-67

SPORT Programming Examples
L0=@source;

B1=dest;

L1=@dest;

ustat3=dm(SYSCON);

bit clr ustat3 BHD; /*Disable Core Buffer Hang*/

dm(SYSCON)=ustat3;

bit set mode1 CBUFEN; /*Enable Circular Buffers*/

r0 = 0x00001000;

/*Set the SPL bit in the SPxxMCTL register to enable loopback*/

dm(SP02MCTL)=r0;

r0 = 0x0; /*Externally generated clock and framesync*/

dm(DIV0) = r0;

r0 = 0x000021f1;

/* Set bits SPEN_A, SLEN = 32, FSR--enable the A channel, set the

word length to 32 bits, and require frame synch. */

dm(SPCTL0)=r0;

r0=0x00270004;

/*TCLKDIV=[FCCLK(96Mhz)/2xFSCLKx((19.2Mhz)]-1=0x0004 */

/*TFSDIV=[FSCLKx(9.6Mhz)/TFS(.24Mhz)]-1=0x0027 */

dm(DIV2)=r0;

r0=0x20065f1;

/* Set bits SPEN_A, SLEN=32, ICLK, IFS, FSR, DDIR--enable the A

channel, set the word length to 32 bits, generate internal frame-

synch and clock, require frame synch, and set for transmit. */

dm(SPCTL2)=r0;

lcntr = N, do send until LCE;

r1=dm(i0,1); /*Test data to be transmitted*/

dm(TX2A)=r1; /*Send data to buffer*/

r0=dm(RX0A); /*Read data from buffer*/
10-68 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
send:dm(i1,1)=r0; /*Store data*/

wait: idle;

jump wait;

Listing 10-2. Core-Driven Interrupt Sport Loopback Example

/*__

ADSP-21161 Core-Driven Interrupt SPORT Loopback Example

This example shows an internally looped-back SPORT 32-bit trans-

fer. After receiving an interrupt, the core directly writes to

the transfer buffer (TX2A) and reads from the receive buffer

(RX0A).

___*/

#include "def21161.h"

#define N 8

.section/pm seg_rth; /*Reset vector from ldf file*/

nop;

jump start;

.section/dm seg_dmda;

.var source[N]= 0X11111111, 0X22222222, 0X33333333, 0X44444444,

0X55555555, 0X66666666, 0X77777777, 0X88888888;

.var dest[N];

.section/pm sp0i_svc; /*Sport 0 Interrupt*/

jump IRQ; rti; rti; rti;

/*----------------Main Routine----------------------------*/

.section/pm seg_pmco;

start:

/* Set pointers for source and dest, I0=B0 automatically */
ADSP-21161 SHARC Processor Hardware Reference 10-69

SPORT Programming Examples
B0=source;

L0=@source;

B1=dest;

L1=@dest;

ustat3=dm(SYSCON);

bit clr ustat3 BHD; /*Disable Core Buffer Hang*/

dm(SYSCON)=ustat3;

bit set imask SP0I |SP2I; /*Unmask SPORT0&2 Interrupts*/

bit set mode1 CBUFEN | IRPTEN; /*Enable Circ. buffs & Global

 inters*/

r0 = 0x00001000;

/* Set the SPL bit in the SPxxMCTL register to enable loopback */

dm(SP02MCTL)=r0;

r0 = 0x0; /* Externally generated clock and framesync */

dm(DIV0) = r0;

r0 = 0x000021f1;

/* Set bits SPEN_A, SLEN-32, FSR--enable the A channel, set the

word length to 32 bits, and require frame synch. */

dm(SPCTL0)=r0;

r0=0x00270004; /* TCLKDIV=[FCCLK(96Mhz)/2xFSCLKx((19.2Mhz)]

 -1=0x0004 */

 /* TFSDIV=[FSCLKx(9.6Mhz)/TFS(.24Mhz)]-1=0x0027 */
dm(DIV2)=r0;

r0=0x20065f1;

/* Set bits SPEN_A, SLEN=32, ICLK, IFS, FSR, DDIR--enable the A

channel, set the word length to 32 bits, generate internal frame-

synch and clock require frame synch, and set for transmit. */

dm(SPCTL2)=r0;

wait: idle;
10-70 ADSP-21161 SHARC Processor Hardware Reference

Serial Ports
jump wait;

IRQ: /*Interrupt Service Routine*/

r1=dm(i0,1); /*Test data to be transmitted*/

dm(TX2A)=r1; /*Send data to buffer*/

r0=dm(RX0A); /*Read data from buffer*/

dm(i1,1)=r0; /*Store data*/

rti;
ADSP-21161 SHARC Processor Hardware Reference 10-71

SPORT Programming Examples
10-72 ADSP-21161 SHARC Processor Hardware Reference

11 SERIAL PERIPHERAL
INTERFACE (SPI)

The ADSP-21161 processor is equipped with a synchronous serial periph-

eral interface port that is compatible with the industry-standard Serial
Peripheral Interface (SPI). The SPI port supports communication with a
variety of different peripheral devices including CODECs, data convert-
ers, sample rate converters, SP/DIF or AES/EBU digital audio
transmitters and receivers, LCDs, shift registers, microcontrollers, and
FPGA devices with SPI emulation.

The processor’s SPI port provides the following features and capabilities:

• A simple four wire interface consisting of two data pins, a device
select pin, and a clock pin

• Full-duplex operation that allow the ADSP-21161 processor to
transmit and receive data simultaneously on the same port

• Special data formats to accommodate little and big endian data,
different word lengths, and packing modes

• Master and slave modes as well as multi-master mode in which the
ADSP-21161processor can be connected to up to four other SPI
devices

• Open drain outputs to avoid data contention and to support
multi-master scenarios

• Programmable baud rates, clock polarities, and phases

• Slave booting from a master SPI device
ADSP-21161 SHARC Processor Hardware Reference 11-1

Functional Description
Functional Description
The SPI interface has two shift registers: the transmit shift register (TXSR)
and the receive shift register (RXSR). TXSR serially transmits data and RXSR
receives data synchronously with the SPI clock signal (SPICLK).
Figure 11-1 provides a block diagram of the ADSP-21161 processor SPI
interface. The data is shifted into or out of the shift registers on two sepa-
rate pins: the Master In Slave Out (MISO) pin and the Master Out Slave In
(MOSI) pin.

During data transfers one SPI device acts as the SPI master by controlling
the data flow. It does this by generating the SPICLK and asserting the SPI
device select signal (SPIDS). The SPI master receives data using the MISO
pin and transmits using the MOSI pin. The other SPI device acts as the SPI

Figure 11-1. SPI Block Diagram

SPI INTERFACE LOGIC

RX Shift Register

MOSI MISO SPICLK SPIDS

SPIRX
Receive
Register

SPI Internal
Clock
Generator

SPITX
Transmit
Register

32

DM data bus
PM data bus
I/0 data bus

M M SS

SPICTL
SPISTAT

SPI IRQ or
DMA Request

FLAGx

TX Shift Register
11-2 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
slave by receiving new data from the master into it’s receive shift register
using the MOSI pin. It transmits requested data out the transmit shift regis-
ter using the MISO pin. The SPI has two 2-deep FIFOs: the transmit data
buffer (SPITX) and the receive data buffer (SPIRX). Data to be transmitted
is written to SPITX and then automatically transferred into the transmit
shift register. Once a full data word has been received in the receive shift
register, the data is automatically transferred into SPIRX from which the
data can be read from. Programmable FLAGx pins provide slave selection.
These pins are connected to the SPIDS of the slave devices.

In a multi-master or multi-device ADSP-21161 processor environment in
which multiple ADSP-21161 processors are connected via their SPI ports,
all MOSI pins are connected together, all MISO pins are connected together,
and the SPICLK pins are connected together as well. The FLAGx pins are
connected to each of the slave SPI devices in the system via the SPIDS pins.

SPI Interface Signals
This section describes the signals used to connect the SPI ports in a system
that has multiple devices. Figure 11-2 shows the master-slave connections
between two ADSP-21161 processors.

SPICLK
The Serial Peripheral Interface Clock (SPICLK) signal is driven by the mas-
ter device and controls the data transfer rate. It is an output signal if the
device is configured as a master and an input signal if the device is config-
ured as a slave. The master transmits data at a variety of baud rates. The
SPICLK signal cycles once for each bit transmitted.

The SPICLK signal is a gated clock that is active during data transfers, only
for the length of the transferred word. SPICLK is configured with the BAUDR
bits in the SPCTL register. The SPICLK clock rate (baud rate) can go as high
as the rate given by the expression: f-core clock/8. The number of active
ADSP-21161 SHARC Processor Hardware Reference 11-3

SPI Interface Signals
clock edges is equal to the number of bits driven on the data lines. Slave
devices ignore the serial clock if the slave select input SPIDS is driven
inactive.

The SPICLK signal shifts out and shifts in the data driven on the MISO and
MOSI lines. The data is shifted out on one clock edge and sampled on the
opposite clock edge. To define the transfer format, clock polarity and
clock phase relative to data can be programmed into the SPICTL control
register.

SPIDS
The Serial Peripheral Interface Slave Device Select (SPIDS) signal is an
active low signal used to enable an SPI port of an ADSP-21161 processor
that is configured as a slave device. This input-only pin behaves like a chip
select and is provided by the master device for the slave devices. For a mas-
ter device, this signal can act as an error signal input in a multi-master
environment. In multi-master mode, SPIDS can be asserted (driven low) to
a master device to signal that another device is trying to be the master

Figure 11-2. Master-Slave Interconnections

SPICLK

FLAGN

MOSI

TXSR

ADSP-21161
SPI-COMPATIBLE MASTER DEVICE

SPICLK

SPIDS

MISO
RXSR

RXSR

MOSI

TXSR
MISO

ADSP-21161
SPI-COMPATIBLE SLAVE DEVICE

SPITX

SPIRX

SPIRX

SPITX
11-4 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
device. In this case, the ADSP-21161 processor’s SPIDS signal is used as an
input error signal from the slave device. If this signal is asserted low when
the device is in master mode, it is considered a multi-master error. For a
single-master, multiple-slave configuration in which FLAG0-3 are used as
slave selects, SPIDS must be tied high to VDD. For ADSP-21161 proces-
sor to ADSP-21161 processor SPI interaction, any of the master
processor’s FLAG0-3 pins can be used to drive the SPIDS signal on the SPI
slave device.

FLAG
The Flag (FLAGx) pins are general-purpose bidirectional I/O data pins.
Each FLAG pin can be programmed as an input or output. For SPI,
FLAG3-0 pins are used to select slaves in a system that has multiple SPI
devices.

When FLAGS are used for SPI to select a slave using and the PSSE and FLS
bits are enabled, SPI has higher priority than the core for use of the pins.
If PSSE is set (= 1), all of the four flags become slave selects. If a particular
GPIO is programmed as output, and the PSSE feature on that flag pin is
enabled at the same time, the FLAG register bit is not reflected on the flag
pin. However, if the pin is programmed as input, the status of the pin is
reflected in the FLAG register. The SPI state machine drives this pin for the
slave SPI device and the status is updated in the FLAG register. When using
this pin to drive SPIDS while some other device is using it as GPIO, for
example, the other device should not drive any data on this pin.

For related flag discussions, see the following sections:

• “Automatic Slave Selection” on page 11-26

• “Core-Based Flag Pins” on page 13-34
ADSP-21161 SHARC Processor Hardware Reference 11-5

SPI Interface Signals
MOSI
The Master Out Slave In (MOSI) pin is one of the bidirectional I/O data
pins. If the ADSP-21161 processor is configured as a master, the MOSI pin
is a data transmit pin used to transmit output data. If the ADSP-21161
processor is configured as a slave, the MOSI pin is a data receive pin used to
receive input data. In a system that has multiple SPI devices, data shifts
out from the MOSI output pin of the master and into the MOSI input(s) of
the slave(s).

MISO
The Master In Slave Out (MISO) pin is one of the bidirectional I/O data
pins. If the ADSP-21161 processor is configured as a master, the MISO pin
is a data receive pin used to receive input data. If the ADSP-21161 proces-
sor is configured as a slave, the MISO pin is a data transmit pin used to
transmit output data. In a system that has multiple SPI devices, the data
shifts out from the MISO output pin of the slave and into the MISO input
pin of the master.

Only one slave may transmit data at any given time. The user
application code must ensure that when multiple devices are
selected to transmit data from the master, only one slave will
respond with data to be transmitted back to the master during the
active transfer. The DMISO bit in the SPICTL register can be pro-
grammed to accomplish this.

Figure 11-3 illustrates an example of an ADSP-21161 processor SPI inter-
face where the processor is the SPI master. When using the SPI interface,
the processor can be directed to alter the conversion resources, mute,
modify the volume, and power down the AD1855 stereo DAC.
11-6 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Another SPI configuration example, shown in Figure 11-4, illustrates how
the ADSP-21161 processor can be used as the SPI slave device. The 8-bit
host microcontroller is the SPI master. The processor can be booted via its
SPI interface to download user application code and data prior to
runtime.

Figure 11-3. ADSP-21161 as SPI Master

Figure 11-4. ADSP-21161 as Slave SPI Device

ADSP-21161

Master Device

SPICLK

FLAG0

MOSI

AD1855
Stereo 96 kHz DAC

CCLK

CLATCH

DATA

Microcontroller

SCLK

S_SEL

MOSI

ADSP-21161
Slave SPI Device

SPICLK

SPIDS

MOSI

8-bit Host

MISO MISO
ADSP-21161 SHARC Processor Hardware Reference 11-7

SPI Interrupts
SPI Interrupts
The SPI port has two interrupts: a transmit interrupt and a receive
interrupt.

• If DMA is enabled, a maskable interrupt occurs when the DMA
block transfer has completed.

• If DMA is disabled, the core processor may read the SPIRX register
from or write to the SPITX data buffer. To enable an interrupt, pro-
gram the SPIRX interrupt enable (SPRINT) or the SPITX interrupt
enable (SPTINT) in the SPICTL register. The SPIRX and SPITX buffers
are memory mapped IOP registers. A maskable interrupt is gener-
ated when the receive buffer is not empty or the transmit buffer is
not full.

In order for the SPI hardware to work properly, interrupts must
always be enabled in the SPICTL register. If interrupts are not
wanted or needed, they can be masked at a higher level in the
LIRPTL register or the IMASK registers.

The transmit interrupt vector location (0x44) is used for both core driven
transmit interrupts and DMA driven transmit interrupts. The receive
interrupt vector location (0x40) is used for both core driven receive inter-
rupts and DMA driven receive interrupts. In order to use SPI interrupts,
unmask the IRPTEN bit in the MODE1 register, unmask the LPISUMI bit in
the IRPTL register, and unmask the SPIRMSK bit or SPITMSK bit in the
LIRPTL register.

• See “Interrupt Latch Register (IRPTL)” on page A-27 for IRPTL
register bit descriptions.

• See “Link Port Interrupt Register (LIRPTL)” on page A-34 for
LIRPTL register bit descriptions.
11-8 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
SPI IOP Registers
The SPI peripheral in the ADSP-21161 processor has two IOP registers
and two data buffers: a control register (SPICTL), and a status register
(SPISTAT), a receive data buffer (SPIRX) and a transmit data buffer (SPITX).
The IOP addresses for the SPI registers are given in Table 11-1.

SPI Control Register (SPICTL)
The SPI Control (SPICTL) register configures and operates the SPI system.
It can be read or written to at any time. During active SPI transfers, writes
to the SPICTL register are buffered and do not take effect until the current
word transfer has completed in the SPI. This occurs prior to the start of
the transfer of the next word on the SPI. The SPICTL register enables the
SPI interface, selects the device as a master or slave, and determines the
data transfer and word size.

The SPICTL register includes the SPI port enable (SPIEN) and SPI DMA
enable bits (TDMAEN/RDMAEN). The SPIEN bit can be cleared (=0) to flush the
SPI FIFO status. This clears the SPI FIFO status and any error status in
the SPISTAT register. It can also be used to disable SPI transmission imme-
diately. Table 11-2 and provides bit descriptions for the SPICTL register.
See Figure 11-5 for the SPICTL register diagram.

Table 11-1. IOP Addresses for SPI Registers

Register IOP Address

SPICTL 0xB4

SPISTAT 0xB5

SPIRX 0xB7

SPITX 0xB6
ADSP-21161 SHARC Processor Hardware Reference 11-9

SPI IOP Registers
For revisions 0.3, 1.0 and 1.1 silicon, the SPI transmit and receive FIFOs
cannot be cleared by disabling the SPI port via SPICTL. In order to clear
the SPI receive FIFO, the application program must execute up to two
dummy core reads from the SPIRX register. The number of reads needed
depends on the number of words in the FIFO as shown in the FIFO
buffer status. To clear out the SPITX FIFOs, clear all the FLS bits and then
poll the SPITX buffer status in the SPISTAT register. Note that when the
FLS bits are not set, there are no slave devices selected. However, the data
will still be driven on the appropriate data pin. This FIFO clear operation
may be important if you need to reprogram the SPI port to communicate
to a new slave, or to change from a master to a slave SPI device.

The default value of the SPICTL register at reset is 0x00000000. The value
of the SPICTL register at slave boot is 0x0A001F81

11-10 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)

it
Figure 11-5. SPICTL Register

FLS0

8-bit Packing Enable

Receive DMA Enable

SGN
Sign Extend Data

DMISO

OPD

RDMAEN

PACKEN

0=no packing, 1=8 to 32-bit packing

Disable MISO Pin (Broadcast)

Open Drain Output Enable for Data Pins
0=Normal, 1=Open Drain

SENDLW
Send Zero/Repeat Byte When TXB Empty

0=Send zero, 1=Repeat last data

0=MISO Enabled, 1=MISO Disabled

1=Enable, 0=Disable

GM
Fetch/Discard Incoming RXB data when RXB full

0=Discard incoming data
1=Overwrite with new data

0=no sign extend, 1=sign extend

SPICTL
0xB4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

FLS1
FLAG1 Slave Device Select
1=Enable, 0=Disable

FLS2
FLAG2 Slave Device Select
1=Enable, 0=Disable

FLS3
FLAG3 Slave Device Select
1=Enable, 0=Disable

NSMLS
Non-Seamless operation
0=no delay, 1=delay before next
word starts

DCPH0
Deselect SPIDS in CPHASE =0
(master mode only, NSMLS bit=1)
0=No SPI device select
1=Deselects slaves between
successive transfers

SPIEN
SPI System Enable
1=enable, 0=disable

SPRINT
SPI RX Buffer Interrupt Enable

MS
Master/Slave Mode Bit
0=SPI slave device, 1=SPI Master Device

CP
Clock polarity

CPHASE
Clock phase
0=SPICLK toggles at middle of 1st data bit
1=SPICLK toggles at beginning of 1st data b

1=enable SPI IRQ on RXB empty, 0=disable

SPTINT
SPI TX Buffer Interrupt Enable
1=enable SPI IRQ on TXB not full, 0=disable

0=SPICLK active high, low in idle state
1=SPICLK active low, high in idle state

PSSE
Programmable Slave Select Enable

0=Disable, 1=Enable

TDMAEN
Transmit DMA Enable

1=Enable, 0=Disable

DF
Data Format

0=LSB sent / received first

BAUDR
Baud Rate

CCLK / (2**(2 + BR))

FLAG0 Slave Device Select
1=Enable, 0=Disable

WL
Word Length

00=8 bits, 01=16 bits,
11=32 bits, 10=RESERVED

1=MSB sent / received first
ADSP-21161 SHARC Processor Hardware Reference 11-11

SPI IOP Registers
Table 11-2. SPI Control Register Bit Descriptions

Bit(s) Name Function

0 SPIEN SPI Port Enable. This bit enables (if set, =1) or disables (if
cleared, =0) the SPI system.

1 SPRINT SPIRX Interrupt Enable. This bit enables (if set, =1) or disables
(if cleared, =0) an SPI interrupt. An interrupt is generated when
the receive buffer is not empty.

2 SPTINT SPITX Interrupt Enable. This bit enables (if set, =1) or disables
(if cleared, =0) an SPI interrupt. An interrupt is generated when
the transmit buffer is not full.

3 MS Master Select. This bit selects the device as a master device (if
set, =1) or a slave device (if cleared, =0).

4 CP Clock Polarity. This bit selects the clock polarity. SPICLK high
is the idle state (if set, =1), or SPICLK low is the idle state (if
cleared, =0).

5 CPHASE Clock Phase. This bit selects the clock phase transfer format.
When set (=1), the SPICLK starts toggling at the beginning of
the first data transfer bit. When cleared (=0), the SPICLK starts
toggling at the middle of the first data transfer bit.

For more information, see Figure 11-7 on page 11-22

6 DF Data Format. This bit selects the data format. When set (=1), the
MSB is sent/received first. When cleared (=0), the LSB is
sent/received first.

7-8 WL Word Length. These bits selects the word length as follows: 00 =
8 bits, 01 = 16 bits, 11 = 32 bits,10 = reserved.

9-12 BAUDR Baud Rate. These bits define the SPICLK frequency per the fol-
lowing equation:

SPICLK baud rate= Core clock / 2(2 + BR)

13 TDMAEN Transmit DMA Enable. This bit enables (if set, =1) or disables
(if cleared, =0) DMA transfers to the transmit buffer. At SPI boot
this bit is 0.

Bits 14 to 24 are controlled during master mode.
11-12 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
14 PSSE Programmable Slave Select Enable. This bit is used to program
the controlled automatic generation of slave device select signals
during SPI transfers. This bit enables (if set, =1) or disables (if
cleared, =0) the programmable slave select mode. The slave selec-
tion is subsequently made using the FLS bits.

15-18 FLS Flag Select. These bits select which flag pins are used when mul-
tiple slaves are used (0=disable, 1=enable) as follows:
Bit 15= FLAG0
Bit 16= FLAG1
Bit 17= FLAG2
Bit 18= FLAG3
Note: Only Flag[0] to Flag[3] can be used this way.

19 NSMLS Non-Seamless Operation. This bit, if set (=1), indicates that
after each word transfer there is a delay before the next word
transfer starts. The delay is 2.5 SPICLK cycles. When cleared
(=0), this bit indicates no delay before the next word starts, a
seamless operation.

20 DCPH0 Deselect SPIDS in CPHASE = 0. This bit deselects when high
(=1) the slaves between successive word transfers in CPhase 0.
The slave is selected in master mode using PSSE functionality.
This bit has no effect in slave mode for the SPI port.

This functionality is valid only when NSMLS =1. It works for
CPHASE =0 and CPHASE =1. The standard SPI peripherals use
this mode only in CPHASE =0. This bit is cleared (=0) when not
in use.

25 DMISO Disable MISO Pin. This bit three-states, (if set, =1) the master
in slave out (MISO) pin or (if cleared, =0) enables MISO. This is
needed in an environment where master wishes to transmit to
various slaves at one time (broadcast). Except for the slave from
which it wishes to receive, all other slaves should have this bit set.

26 OPD Open Drain Output Enable. This bit enables an open drain for
SPICLK, MOSI and MISO pins if set (=1) or remains normal if
cleared (=0). If enabled, the MISO, MOSI and SPICLK is driven
only for logic low and pulled up by a 50kΩ resistance for a logic
high.

Table 11-2. SPI Control Register Bit Descriptions (Cont’d)

Bit(s) Name Function
ADSP-21161 SHARC Processor Hardware Reference 11-13

SPI IOP Registers
Baud Rate Example

The BAUDR bits of the SPICTL register set the baud rate using the following
formula:

f SPICLK =

If the core clock is 100 MHz and the BAUDR bits are 0xD (13), the SPICLK
frequency is determined as follows:

f SPICLK = = 3052 Hz

27 RDMAEN Receive DMA Enable. This bit enables (if set, =1) or disables (if
cleared, =0) DMA transfers from the receive buffer.

At SPI boot this bit is set to 1 to enable the booting process via
the SPI port.

28 PACKEN Packing Enable. This bit enables, if set (=1), 8- to 32-bit packing
or disables the packing, if cleared (=0). If this bit is enabled, the
receiver packs the received byte whereas the transmitter unpacks
the data before sending it. Fore more information on the pack-
ing, see “SPI Word Packing” on page 11-24.
Note: This bit should be 1 only for 8-bit data word length (WL =
00).

29 SGN Sign Extend. This bit sign extends the word if set (=1) or does
not extend the sign if cleared (=0).

30 SENDLW Send Last Data. When SPITX is empty, setting this bit(=1)
re-transmits the last data. Clearing this bit (=0) sends zeros.

31 GM Get Data. This bit fetches incoming data when set (=1) or dis-
cards incoming data when cleared (=0). The data that comes in
overwrites the previous data in the SPIRX.

Table 11-2. SPI Control Register Bit Descriptions (Cont’d)

Bit(s) Name Function

coreclock

22 BAUDR+

100MHz
22 13+

11-14 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Seamless Operation

The SPI port can transmit words seamlessly without delay by clearing (=0)
the NSMLS bit in the SPICTL register. When seamless operation is disabled
(NSMLS=1), there is a delay between word transfers from the SPI master.
During this delay, the state machine disables and enables the slaves for
DCPH0 = 1. The delay between words is 2.5 SPICLK cycles.

Some slower slaves need time between data transfers to receive data and
move new data for transmitting into the shift register. Set the NSMLS bit in
the master device in order to create enough delay for the slave to perform
data transfers.

SPI Status Register (SPISTAT)
The SPISTAT register is a read-only register that detects when an SPI trans-
fer is complete, if transmission/reception errors occur, and the status of
the SPITX and SPIRX data buffers.

For all revisions, a reset flushes the SPI FIFOS. For revisions 1.2
and higher, the SPITX and SPIRX buffers are flushed by disabling
the SPI port via the SPIEN bit in the SPICTL register.

 Figure 11-6 and Table 11-3 describe the eight status bits of the SPISTAT
register.
ADSP-21161 SHARC Processor Hardware Reference 11-15

SPI IOP Registers
Figure 11-6. SPISTAT Register

SPIF
SPI Transm it Transfer Com plete
1=transfer com ple te , 0=active transfer

M ME
Multim aster Error

TXS
SPITX Data Buffer Status (read only)
00=SPITX em pty
01=TX B partially full
11=SPITX full
10=R eserved

RBSY
Reception Error (Overflow)
1=new data received with full RXB FIFO
SPI enters idle m ode if m aster device

RXS

0=no error, 1=SPIDS~ asserted by slave

TXE
Transm ission Error (U nderflow)
1=no new data in TX FIFO,
SPI enters idle m ode if m aster device

SPISTAT
0xB5

SPIRX Data Buffer Status (Read-only)
00=SPIRX em pty
01=SPIRX partially full
11=SPIRX full
10=Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11-16 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Table 11-3. SPI Status Register Bit Descriptions

Bit(s) Name Revisions prior to 1.2
Definition

Revision 1.2 or greater
Definition

0 SPIF SPI Transmit or Receive
Transfer Complete.
This bit is set (=1) when an SPI transfer is
complete.

1) This bit is updated only during inter-
rupt or DMA driven SPI transfers. For
example:
SPRINT =1
or
SPTINT=1
or
TDMAEN=1
or
RDMAEN =1

2) The bit is set when the transmit buffer
status is empty or the receive buffer status
is full.

3) This bit does not reflect the status of
the transmit or receive shift register.

4) This bit is a sticky bit that can be reset
only by disabling the SPI (SPIEN =0).

SPI Transmit
Transfer Complete.
This bit is set (=1) when an SPI trans-
fer is complete.

1) This bit is updated during all SPI
data transfers.

2) The bit is set when the transmit
data buffer is empty and the data has
been transmitted out of the transmit
shift register.

3) This bit is not sticky.

1 MME Multimaster Error.
This bit is set when a device that is not
currently the master device tries to
become the master by driving a SPIDS
signal while the current master device is
communicating to SPI slave devices.

Multimaster Error.
Same
ADSP-21161 SHARC Processor Hardware Reference 11-17

SPI IOP Registers
2 TXE Transmission Error.
This bit is set (=1) if there is a transmis-
sion error.

1) This bit is updated only during inter-
rupt or DMA driven SPI transfers. For
example:
SPTINT=1
or
TDMAEN=1

2) This bit is set (=1) when the transmit
data buffer status is empty.

3) This bit does not reflect the status of
the transmit shift register. This bit is set
when the transmit buffer is empty and
the data in the shift register is being
transmitted.

4) This bit is a sticky bit. It can be reset
only by disabling the SPI (SPIEN =0).

Transmission Error.
This bit is set (=1) if there is a trans-
mission error.

1) This bit is updated whenever there
is a transmit error during all SPI data
transfers.

2) This bit is set when the transmit
buffer status is empty and the last
data has been transmitted out of the
transmit shift register.

3) This bit is a sticky bit. It can be
reset only by disabling the SPI
(SPIEN =0).

4-3 TXS Transmit Data Buffer Status. These bits
indicate the status (read only) of the
SPITX data buffer. These bits are
updated whenever an access (write by
core/DMA or read by shift register) is
made to the transmit data buffer. The sta-
tus is as follows:

00 = empty
01 = partially full
11 = full

Transmit Data Buffer Status.
Same

Table 11-3. SPI Status Register Bit Descriptions (Cont’d)

Bit(s) Name Revisions prior to 1.2
Definition

Revision 1.2 or greater
Definition
11-18 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
5 RBSY Reception Error.
This bit is set (=1) if there is a reception
error.

1) This bit is updated only during inter-
rupt or DMA driven SPI transfers. For
example
SPRINT =1
or
RDMAEN =1

2) This bit is set if the receive buffer sta-
tus is full.

3) This bit does not reflect the status of
the receive shift register. This bit will
show high when the receive buffer is full,
and the next data is being received by the
shift register.

4) This bit is a sticky bit. It can be reset
only by disabling the SPI (SPIEN =0).

Reception Error.
This bit is set (=1) if there is a recep-
tion error.

1) This bit is updated whenever there
is a receive error during all SPI trans-
fers.

3) This bit is set if the receive buffer
status is full and the last data has been
received completely in the receive
shift register.

2) This bit is a sticky bit. It can be
reset only by disabling the SPI
(SPIEN =0).

7-6 RXS Receive Data Buffer Status. These bits
indicate the status of the SPIRX data
buffer (read only) as follows:

00 = empty
01 = partially full
11 = full
1) These bits are updated whenever an
access (read by the core/DMA or write by
shift register) is made to the receive data
buffer.

Receive Data Buffer Status.
Same

31-8 Reserved Reserved

Table 11-3. SPI Status Register Bit Descriptions (Cont’d)

Bit(s) Name Revisions prior to 1.2
Definition

Revision 1.2 or greater
Definition
ADSP-21161 SHARC Processor Hardware Reference 11-19

SPI IOP Registers
SPI Transmit Data Buffer (SPITX)
The SPITX transmit data buffer is a 32-bit data buffer which is part of the
IOP register set. The buffer is 2-deep. The SPITX data buffer can be
accessed by the core or the DMA controller. Data is loaded into SPITX
before being transmitted. Once the SPI is enabled, data in SPITX is auto-
matically loaded into the transmit shift register.

Consecutive writes to the SPITX may cause incorrect buffer status.

A write to SPITX instruction and a read from SPISTAT instruction
must be separated by at least one instruction for TXS to be reflected
properly in SPISTAT.

For interrupt based data transfers, the write to SPITX instruction
and the RTI instruction of the ISR should be separated by at least
one instruction.

SPI Receive Data Buffer (SPIRX)
The SPIRX receive data buffer is a 32-bit read-only data buffer accessible
by the core or DMA controller. The buffer is 2-deep. After a word is
received completely in the shift register RXSR, it is automatically trans-
ferred to the SPIRX.

Do not perform a normal core write of SPITX during DMA opera-
tion. A normal core read of SPITX can be done at any time and does
not interfere with, or initiate, SPI transfers.

Do not perform a normal core read of SPIRX during DMA opera-
tion. A normal core write of SPIRX can be done at any time and
does not interfere with, or initiate, SPI transfers.

A core hang results from writing to a full SPITX buffer or from
reading from an empty SPITX buffer.
11-20 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
SPI Shift Registers
The SPI interface has two shift registers: one that serially transmits data
(TXSR) and the other that receives data (RXSR) synchronously with the SPI
clock signal (SPICLK). These registers are not directly accessible by the core
or DMA controller. The registers shift right or left depending on the
direction of the data flow (LSB first or MSB first) as defined by the DF bit
in the SPICTL register. These shift registers include 32 shift cells that can
be configured to transfer 8-, 16-, and 32-bit words.

SPI Data Word Formats
The ADSP-21161 processor SPI supports two transfer formats with
respect to clock phases and clock polarities: CPHASE = 0 and CPHASE =1.
The user application code can select one of the four combinations of serial
clock phase and polarity using the CP and CPHASE bits in the SPICTL regis-
ter. This section describes the transfer format and word packing for SPI
transfers. See Table 11-2 on page 11-12 for SPICTL register bit
description.

A master SPI transfer starts when the MS bit and the SPIEN bit are set (= 1)
in the SPICTL register. If the CPHASE bit in the SPICTL register is cleared
(=0), the SPICLK signal remains inactive for the first half of the first cycle
of SPICLK. A slave SPI transfer starts as soon as the SPIDS signal from the
master goes low without waiting for the SPICLK edge.

When CPHASE is set (=1), the transfer starts with the first edge of SPICLK
going from its inactive state to the active state for both slave and the mas-
ter devices. A transfer for a slave device is ended with SPIDS negated
(inactive on rising edge). For a master device, transfer is considered com-
plete after it transmits the last data word or receives the last data word.

Figure 11-7 and Figure 11-8 demonstrates the two basic transfer formats
as defined by the CPHASE bit. Two waveforms are shown for SPICLK: one
for CP = 0 and the other for CP=1. The diagram may be interpreted as a
ADSP-21161 SHARC Processor Hardware Reference 11-21

SPI Data Word Formats
master or slave timing diagrams since the SPICLK, MISO, and MOSI pins are
directly connected between the master and the slave. The MISO signal is the
output from the slave (slave transmission), and the MOSI signal is the out-
put from the master (master transmission). The SPICLK signal is generated
by the master, and the SPIDS signal is the slave device select input to the
slave from the master. The diagram represents an 8-bit transfer (WL=00)
with MSB first (DF=1). Any combination of the WL and DF bits of the
SPICTL register is allowed. For example, a 32-bit transfer with LSB first is
also a possible configuration.

The clock polarity and the clock phase must be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

Figure 11-7. SPI Transfer Protocol for CPHASE = 0

CLOCK CYCLE
NUMBER

SPICLK
CLKPL=0

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
FROM MASTER

SPICLK
CLKPL=1

2 3 4 5 6 7 8

* 6

6 5 4 3

3 2 1 LSB *

2 1 LSB *MSB

*UNDEFINED

1

MSB 5 4
11-22 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Enable DCPH0 (bit 20) (=1) to make the slave select line, SPIDS, inactive
(HIGH) between each serial transfer. This is controlled automatically by
hardware logic. This feature is available in both CPHASE=0 and CPHASE=1.
The standard SPI peripherals use this mode only in CPHASE=0. Clearing
the DCPH0 bit (=0) keeps SPIDS active low throughout the entire data trans-
fer for both CPHASE=0 and CPHASE=1.

Figure 11-8. SPI Transfer Protocol for CPHASE = 1

Table 11-4. SPICLK Driving and Latching Edges for SPI Data Transfers

Phase Polarity Driving Edge of SPICLK Latching Edge of SPICLK

0 0 Falling Edge Rising Edge

0 1 Rising Edge Falling Edge

1 0 Rising Edge Falling Edge

1 1 Falling Edge Rising Edge

1CLOCK CYCLE
NUMBER

SPICLK
CLKPL=0

MOSI
FROM MASTER

MISO
FROM SLAVE

SPIDS
TO SLAVE

SPICLK
CLKPL=1

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB

MSB

MSB

* = UNDEF INED

*

ADSP-21161 SHARC Processor Hardware Reference 11-23

SPI Operation Modes
SPI Word Packing
The SPI packs two 8-bit words in a 32-bit word as shown below. This
packing is set by the PACKEN bit in the SPICTL register. These words may be
sign extended depending on the SGN bit in the SPICTL register as shown
below.

SPI Operation Modes
The SPI in the ADSP-21161 processor can be used in a single master or
multi-master mode. The MOSI, MISO, and the SPICLK signals of all SPI
devices are connected together in both modes. The following sections
describe the SPI operation as a master and as a slave. Figure 11-2 on
page 11-4 shows the master-slave interconnections.

The ADSP-21161 processor is intended to be full-duplex. The
SPICLK will stall on the transmit buffer becoming empty OR on the
receive buffer becoming full. Dummy reads are necessary from the
receive buffer even if programs are not interested in the transmit-
ting data.

31 0

S S S S S S S S 1

1 if SGN=1, S is the sign bit.
if SGN=0, S is 0.

Second 8-bit word S S S S S S S S1 First 8-bit word
11-24 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Master Mode Operation
When SPI is in master mode the interface operates in the following
manner:

1. Configure the SPICTL register enabling the device as a master, spec-
ifying the appropriate word length, baud rate and any other
options needed.

2. The SPI interface sends SPIDS signal to the desired slaves using one
or more of the FLAG0-3 pins. For more information, see “Auto-
matic Slave Selection” on page 11-26.

3. Write a data word to the SPITX data buffer using the core. This
starts the SPICLK generation.

4. SPI generates the programmed clock pulses SPICLK and simulta-
neously shifts data from the transmit shift register (TXSR) out of the
MOSI pin and into the receive shift register (RXSR) via the MISO pin.
Before starting the shift, TXSR is loaded with the contents of the
transmit data buffer register SPITX. At the end of the transfer, the
receive data buffer register SPIRX is loaded with the contents of
RXSR.

5. For interrupt driven core transfers to or from SPITX or SPIRX,
enable bits SPTINT and SPRINT in the SPICTL register. An SPI inter-
rupt occurs when SPITX is partially empty or when SPIRX is
partially full. The interrupt service routine then transfers data to or
from SPI data buffers.

6. For duplex DMA transfers, enable bits RDMAEN and TDAMEN in
SPICTL. DMA requests are generated when SPITX is partially empty
or when SPIRX is partially full. The DMA controller then transfers
data between internal memory and the SPI data buffers.
ADSP-21161 SHARC Processor Hardware Reference 11-25

SPI Operation Modes
Interrupt and DMA Driven Transfers

For interrupt driven transfers, the SPTINT or SPRINT bit should be set in
the SPICTL. The interrupt routine in the user software is expected to per-
form the data transfer. For DMA driven transfers, the RDMAEN or TDMAEN
bits must be set in the SPICTL. The DMA controller does the data transfer
automatically. An interrupt is generated at the end of the DMA transfer.
For more information on interrupts, see section “SPI Interrupts” on
page 11-8.

Interrupts or DMA requests are automatically generated when the trans-
mit buffer is partially empty or when the receive buffer is partially full. In
the event that the SPITX and SPIRX interrupts are not serviced, or a higher
priority DMA occurs, resulting in the transmit buffer becoming empty or
the receive buffer becoming full, the SPI device will stall the SPI clock
until all the data is read from the receive buffer or a piece of data is written
to the transmit buffer.

Core Driven Transfers

For core driven SPI transfers, SPTINT and SPRINT are enabled in the SPI,
and the corresponding interrupt masks SPIRMSK and SPITMSK are disabled
in the LIRPTL register. The user software has to read from or write to
SPIRX and SPITX in the transmit buffer becoming empty or the receive
buffer becoming full, the SPI device will stall the SPI clock until all the
data is read from the receive buffer or a piece of data is written to the
transmit buffer.

Automatic Slave Selection

Multiple slaves are automatically controlled (selected and deselected) dur-
ing the SPI transfer by enabling the PSSE bit in the SPICTL register. This
bit locks all the four flag pins (FLAG0,FLAG1,FLAG2 and FLAG3) as SPI slave
selects. By writing to the FLS bits (bits 15-18) in the SPICTL register, the
corresponding FLAG bits are programmed as outputs for slave selection.
11-26 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
To enable the different slaves, connect the slave SPIDS pins to the pro-
grammable flag pins FLAG0-3 of the master ADSP-21161. Since these flags
are NOT open drain, slave select pins (FLAGS) cannot be shorted together
in multimaster environment. To control slave selects, an external glue
logic is required in a multi-master environment. Enable the SPI port by
setting the SPIEN bit in the SPICTL. The master’s flag pins are asserted low
and the SPIDS signals of the slaves are asserted. Upon completion of the
transfer, the FLAG pins are de-asserted, and slave selection is subsequently
disabled.

During data transfers, if the SPI clock is stalled, the slaves are automati-
cally deselected by de-asserting the flags in the master. Once data
transmission becomes possible, the slaves are automatically selected again
by asserting the flags in the master.

When DCPH0 is set, the slaves are automatically deselected and selected
again by de-asserting and asserting the flags in the master. This is done
automatically in the SPI.

There is a one cycle latency for a flag output to change after writing to the
SPICTL register (when PSSE is set and the flag is enabled). To use the PSSE
feature, systems can have five SPI devices with ADSP-21161 as the master.
The PSSE is programmed for slave selection of the other four devices. The
ADSP-21161 processor can broadcast to all the four slaves at once or can
write to individual slaves by appropriately programming the FLS bits.

User Controlled Slave Selection

The user can also control the slaves without enabling the PSSE bit in the
SPI. The user can set or clear the I/O flags directly by writing a 1 or 0 into
the FLAG register. The user can also emulate DCPH0 operation by setting or
clearing the values in the FLAG register at the appropriate time.
ADSP-21161 SHARC Processor Hardware Reference 11-27

SPI Operation Modes
When using this mode, the following sequence should be followed to
ensure proper data transfer according to the SPI protocol.

1. Enable the SPI by writing into the SPICTL register.

2. Assert the required slave select by writing a zero into the appropri-
ate bit in the FLAG register.

3. Load SPITX with the required data by enabling DMA’s, interrupts,
or by performing core writes to SPITX.

Slave Mode Operation
To prepare for the data transfer, a slave processor writes the data to be
transmitted into the transmit data buffer. The following steps illustrate
SPI operation in slave mode.

1. Configure the SPICTL register enabling the device as a slave and
specifying the appropriate word length and any other options
needed to be compatible with the master device.

2. Once the core receives the SPIDS signal from the master, it starts
sending or receiving data on the proper SPICLK edge.

3. Reception/transmission continues until SPIDS is negated.

4. SPI receives the programmed clock pulses SPICLK and shifts data
out of MISO and in from MOSI. Before starting the shift, the transmit
shift register (TXSR) is loaded with the contents of the transmit data
buffer register SPITX. At the end of the transfer, the receive data
buffer register SPIRX is loaded with the contents of the receive shift
register (RXSR).
11-28 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
5. For interrupt driven core transfers to or from SPITX or SPIRX,
enable bits SPTINT and SPRINT in the SPICTL register. An SPI inter-
rupt occurs when SPITX is partially empty or when the receive
buffer SPIRX is partially full.

6. For duplex DMA transfers, enable RDMAEN and TDAMEN in SPICTL
need. DMA requests are generated when SPITX is partially empty or
when SPIRX is partially full. The DMA controller then transfers
data between internal memory and the SPI data buffers.

Interrupts and DMA requests are automatically generated when the trans-
mit buffer is partially empty or when the receive buffer is partially full. In
case of DMA driven or core driven transfers, if the transmit buffer
becomes empty or the receive buffer becomes full, the SPI device contin-
ues to operate based on the conditions of the SENDLW and GM bits.

If the SENDLW bit is cleared (=0) and the transmit buffer is empty, the
device repeatedly transmits 0s out on the MISO pin. If the SENDLW is set (=1)
and the transmit buffer is empty, the device continues to transmit the last
word written to SPITX that was transmitted. Retransmission of the data in
SPITX occurs after the transmit buffer becomes empty.

If the GM bit is set (=1) and the receive buffer is full, the device continues
to receive new data from the MOSI pin, overwriting the previous (older)
data in the SPIRX buffer. If the GM bit is reset (=0) and the receive buffer is
full, the incoming data from the shift register is discarded and the SPIRX
register is not updated. The register ignores the new data and retains the
old information.

Error Signals and Flags
Please refer to the SPISTAT register definitions in Table 11-3 on
page 11-17 for the following discussion. Note that the functionality of
some bits differ in revisions prior to 1.2. These difference are described in
Table 11-3.
ADSP-21161 SHARC Processor Hardware Reference 11-29

Error Signals and Flags
Multi-Master Error (MME)
The MME bit is set (=1) in the SPISTAT register when the SPIDS pin of a
master ADSP-21161 processor is driven low by another device in the sys-
tem. This occurs when another device is trying to be the master. This can
cause contention between two drivers and push-pull CMOS drivers.
When this error is detected, the following actions take place:

1. The MS control bit in SPICTL is cleared (= 0), configuring the SPI
interface as a slave.

2. The SPIEN bit in SPICTL is also cleared, disabling the SPI system.

3. The MME status bit in SPISTAT is set. This bit can be polled to test
whether this error condition has occurred.

Transmission Error (TXE)
For revisions 1.1 and earlier, this error bit is updated only when SPTINT or
TDAMEN is enabled. This bit is set in the SPISTAT register when SPI is
enabled and there is no data in the transmit data buffer (SPITX). This is
true in both master and slave SPI devices.

When the device is an SPI master, upon setting the error bit, the data in
the transmit shift register (TXSR) is transmitted out. Then, the SPICLK is
stalled automatically until new data is written into the SPITX data buffer.

When the device is an SPI slave, upon setting the error bit, the data is still
transmitted as specified by the SENDLW bit in the SPICTL register.

The TXE bit is cleared (=0) only when SPIEN is disabled.

For revisions 1.2 and later, this error bit is updated during any SPI trans-
fer. This bit is set in the SPISTAT register when SPI is enabled and there is
no data in SPITX and in TXSR. This is true in both master and slave SPI
devices.
11-30 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
When the device is an SPI master, the working of the bit depends on the
mode of data transfer. For DMA or interrupt driven data transfer, the
SPICLK will stall as soon as both the SPITX and the TXSR become empty.
There is NO transmission error in this case. For core driven data transfers,
the error bit is set as soon as both the SPITX and the TXSR become empty.
The SPI continues to transmit the next data as specified by the SENDLW bit
in the SPICTL register.

Reception Error (RBSY)
For revisions 1.1 and earlier, this error bit is updated only when SPRINT or
RDAMEN is enabled. This bit is set in the SPISTAT register when SPI is
enabled and there is no space in the receive data buffer (SPIRX). This is
true in both master and slave SPI devices.

When the device is an SPI master, upon setting the error bit, one more
data is fully received in the receive shift register (RXSR). Then, the SPICLK
is stalled automatically until a data has been read out of the SPIRX data
buffer.

When the device is an SPI slave, upon setting the error bit, the data is still
received as specified by the GM bit in the SPICTL.

The RBSY bit is cleared (=0) only when SPIEN is disabled.

For revisions 1.2 and later, this error bit is updated during all SPI data
transfers. This bit is set in the SPISTAT register when SPI is enabled and
there is no space in the SPIRX and in RXSR. This is true in both master and
slave SPI devices.

When the device is an SPI master, the working of the bit depends on upon
the type of data transfer. For DMA or interrupt driven data transfer, the
SPICLK is stalled as soon as the SPIRX becomes full. There is NO reception
error in this case. For core driven data transfers, this error bit is set as soon
as both the SPIRX and the RXSR become completely full. The next data is
still received as specified by the GM bit in the SPICTL.
ADSP-21161 SHARC Processor Hardware Reference 11-31

SPI/Link Port DMA
SPI/Link Port DMA
The SPI shares DMA channels 8 and 9 with the link port. The receive
DMA is shared with link port 0 DMA, and the transmit DMA is shared
with link port 1 DMA.

Do not enable SPI and link port DMA simultaneously. SPI and
link port are mutually exclusive when one of the peripherals is
enabled.

SPI DMAs have higher priority than link port DMAs. If SPI DMAs must
be enabled, disable link port DMAs and pending link port DMA requests.
For more information, see “SPI Port DMA” on page 6-108.

DMA Operation in SPI Master Mode
For transmit DMA operations, if the DMA controller is unable to keep up
with the transmit stream, due perhaps to heavy DMA channel activity, the
data in the transmit shift register (TXSR) is transmitted out. Then the SPI-
CLK is stalled automatically until a new data is written into the SPITX data
buffer.

For receive DMA operations, if the DMA controller is unable to keep up
with the receive data stream, the receive buffer operates according to the
state of the GM bit. If GM is set (=1) and the receive buffer is full, one more
data is fully received in the receive shift register (RXSR). Then, the SPICLK
is stalled automatically until data has been read out of the SPIRX data
buffer.
11-32 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Do not perform a normal core write of SPITX during DMA opera-
tion. A normal core read of SPITX can be done at any time and does
not interfere with, or initiate, SPI transfers.

Do not perform a normal core read of SPIRX during DMA opera-
tion. A normal core write of SPIRX can be done at any time and
does not interfere with, or initiate, SPI transfers.

Interrupts are generated based on DMA events that are configured in the
SPICTL register.

DMA Operation in Slave Mode
When the DMA controller transmits or receives data in slave mode, the
start of a transfer is triggered by a transition of the SPIDS signal to the
active-low state or by the first active edge of SPICLK.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SENDLW bit. Once the transmit buffer is empty and the last word has
been transmitted completely out of the TXSR, if SENDLW is cleared (=0), the
device repeatedly transmits 0s on the MISO pin. If SENDLW is set (=1), it
repeatedly transmits the last word transmitted before the transmit buffer
became empty.

For receive DMA operations, if the DMA controller is unable to keep up
with the receive data stream, the receive buffer operates according to the
state of the GM bit. If GM is set (=1) and the receive buffer is full, one more
data is fully received in the receive shift register (RXSR). The SPICLK is
stalled automatically until a data has been read out of the SPIRX data
buffer.
ADSP-21161 SHARC Processor Hardware Reference 11-33

SPI Booting
Do not perform a normal core write of SPITX during DMA opera-
tion. A normal core read of SPITX can be done at any time and does
not interfere with, or initiate, SPI transfers.

Do not perform a normal core read of SPIRX during DMA opera-
tion. A normal core write of SPIRX can be done at any time and
does not interfere with, or initiate, SPI transfers.

SPI Booting
The ADSP-21161 processor allows a host SPI device to boot the processor
on power-up RESET de-assertion. To enable the SPI booting mode, the
EBOOT and BMS pins must be tied low, and the LBOOT pin must be tied high.
When the processor comes out of reset, it starts the SPI boot process. The
SPI is configured as a slave upon power-up. Therefore, after reset, the SPI
waits for SPIDS and SPICLK from the SPI host to download the boot
program.

The default value of the SPICTL register when the processor is configured
for SPI boot is 0x0A00 1F81. The SPI port is enabled as a slave to receive
32-bit words in LSB-first format. DMA is enabled to facilitate loading the
boot kernel. The DMISO bit is also enabled to avoid contention in the MISO
pin in systems where multiple slave devices are to be booted
simultaneously.

DMA channel 8 is used when downloading the boot kernel information to
the processor. At reset, the DMA parameter registers for DMA channel 8
are initialized to their required values. Table 11-5 lists the initial values
for these registers.

The ADSP-21161 SPI booting mode supports boots from 8-, 16-, or
32-bit host SPI devices. In SPI boot mode, the data word size in the shift
register defaults to 32 bits. Therefore, for 8- or 16-bit hosts, data words
are packed into the shift register to generate 32-bit words, which can be
shifted into internal program memory.
11-34 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
The host initiates the booting operation by activating SPICLK and asserting
the SPIDS signal to the active low state. The 256-word, boot-strapped
instruction loader kernel is loaded 32 bits at a time, via the 32-bit SPI
receive shift register (RXSR). To properly upload 256 instructions (48-bit
words), the SPI DMA initially loads a DMA count of 0x180 (384) 32-bit
words which is equivalent to 0x100 (256) 48-bit words. The relationship
between the 32-bit words received into the SPIRX register and the instruc-
tions that need to be placed in internal memory is described in the
Figure 11-9.

After the first 256 words are loaded the interrupt associated with the SPI
receive is activated. The processor jumps to the location for SPIRI_svc
(0x40040) and executes the code located there. Typically, the first instruc-
tion at the SPI receive interrupt vector (SPIRI) is an RTI instruction in
which case the processor jumps to location 0x40005 where normal pro-
gram execution continues. Because most applications require more than
256 words of instructions and initialization data, a loader and a 256 word
loader kernel are supplied with the tools. Use these tools to create code
that automatically loads the rest of the application code and then over-
writes itself with application code and data. For more information on the
loader, see the development tools documentation.

The boot loader kernel supplied with the tools loads a combination of
instructions with DMA into scratch locations and then writes the instruc-
tions to internal memory using the core via the PX register. The 256-word,
boot-strapped instruction loader kernel is loaded 32-bits at a time, via the

Table 11-5. Parameter Initialization Value

Parameter Register Initialization Value

IISRX 0x0004 0000

IMSRX 0x0000 0001

CSRX 0x0000 0180

GPSRX uninitialized
ADSP-21161 SHARC Processor Hardware Reference 11-35

SPI Booting

bit
s

32-bit SPI receive shift register, using a normal-word addressing scheme
with two-column memory addresses. Figure 11-9 shows how SPI data is
packed in internal memory.

The SPI Control Register (SPICTL) is configured to 0x0A00 1F81 upon
reset during SPI boot. SPI transfers occur with the following default bit
settings:

• SPIEN = 1, SPI enabled

• MS = 0, slave device

• DF = 0, LSB first

• WL = 11, 32-bit SPI receive shift register word length

• DMISO = 1, MISO disabled

• RDMAEN = 1, Receive DMA enabled

Figure 11-9. SPI Data Packing

32-Bit receive
SHIFT

REGISTER

S

DMA #1: DM[40000]
MSW LSW

1 2 3 4

PM48 [0x400FF]

16

DMA #2: DM[40001]
MSW LSW

DMA #3: DM[40002]
MSW LSW

PM48 [0x40003]

DMA #6: DM[40005]
MSW LSW

MOSI

256 48-
word

0x400FF

0x40000

DMA #4: DM[40003]
MSW LSW

PM48 [0x40002]

DMA
(channel 8)

P
I
R
X PM48 [0x40001]

DMA #5: DM[40004]
MSW LSW

PM48 [0x40000]

#384:DM[0x4017F]
MSW LSW

#384:DM[0x4017E]
MSW LSW

[x40001]

[x400FE]

[x40002]

LWUW
11-36 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)

ory
The SPIRX DMA channel 8 parameter registers are configured to DMA in
0x180 32-bit words into internal memory normal-word address space
starting at 0x40000. Once the 32-bit DMA completes, the data is then
accessed as 3-column 48-bit instruction accesses, for example, the proces-
sor executes a 256 (0x100) word loader kernel upon completion of the
32-bit, 0x180 word DMA.

For 16-bit SPI hosts, two words are shifted into the 32-bit receive
shift register (RXSR) before a DMA transfer to internal memory
occurs. For 8-bit SPI hosts, four words are shifted into the 32-bit
receive shift register before a DMA transfer to internal memory
occurs.

By default, the booting SPI expects to receive words into SPIRX seemlessly.
This means that bits are received continuously without breaks. For differ-
ent SPI host sizes, the processor expects to receive instructions and data
packed in an LSW format.

Figure 11-10 shows a pair of instructions packed for SPI booting using a
32-, 16-, and an 8-bit host.

The following sections examine how data is packed into internal memory
during SPI booting for SPI host word widths of 32-, 16-, or 8-bits.

Figure 11-10. Instruction Packing for 32-, 16-, or 8-Bit SPI Host Booting

16-bit host

CCDD1122

1122

33445566 7788AABB

CCDD AABB 778833445566

66 55 44 33 22 11 DD CC BB AA 88 77

32-bit host

8-bit host

[0x40000] 1122 33445566

[0x40001] 7788 AABBCCDD

Words Instructions In Internal Mem
ADSP-21161 SHARC Processor Hardware Reference 11-37

SPI Booting
32-Bit SPI Host Boot
Figure 11-11 shows 32-bit SPI host packing of 48-bit instructions. The
32-bit word is shifted to internal program memory during loading of the
256-word kernel.

Figure 11-11. 32-Bit SPI Host Packing

32
-b

it
SP

IW
O

R
D

N

S
P
I
R
X

DMA
Internal
Memory

0x40000

0x400FF

MOSI

32 32 32

Channel 8
(Loader
Kernel)
11-38 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
The following is an example of 48-bit instructions to be executed at PM
addresses 0x40000 and 0x40001:

[0x40000] 1122 33445566
[0x40001] 7788 AABBCCDD

The 32-bit SPI host would need to pack (prearrange data) as follows:

SPI word 1 = 0x33445566
SPI word 2 = 0xCCDD1122
SPI word 3 = 0x7788AABB

16-Bit SPI Host Boot
Figure 11-12 shows 16-bit SPI host packing of 48-bit instructions. For
16-bit hosts, two 16-bit words are packed into the shift register to gener-
ate a 32-bit word. The 32-bit word is shifted to internal program memory
during loading of the kernel.

Figure 11-12. 16-Bit SPI Host Packing

DMA
Channel 8

Internal
Memory

0x40000

0x400FF

16
-

b
it

W
O

R
D

N

MOSI

W
O

R
D

N
+

1

16
-

b
it

32 3232

(Loader
Kernel)

S
P
I
R
X

ADSP-21161 SHARC Processor Hardware Reference 11-39

SPI Booting
The following is an example of 48-bit instructions to be executed at PM
addresses 0x40000 and 0x40001:

[0x40000] 1122 33445566
[0x40001] 7788 AABBCCDD

The 16-bit SPI host would need to pack (prearrange data) as follows:

SPI word 1 = 0x5566
SPI word 2 = 0x3344
SPI word 3 = 0x1122
SPI word 4 = 0xCCDD
SPI word 5 = 0xAABB
SPI word 6 = 0x7788

The initial boot of the 256-word loader kernel requires a 16-bit host to
transmit 768 16-bit words. One 32-bit word is created from two packed
16-bit words. The SPI DMA count value of 0x180 is equivalent to 384
words. Therefore, the total number of 16-bit words loaded is 768.
11-40 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
8-Bit SPI Host Boot
Figure 11-13 shows 8-bit SPI host packing. For 8-bit hosts, four 8-bit
words are packed into the shift register to generate a 32-bit word. The
32-bit word is then shifted to internal program memory during loading of
the 256-instruction word kernel.

The following is an example of 48-bit instructions to be executed at PM
addresses 0x40000 and 0x40001:

[0x40000] 1122 33445566
[0x40001] 7788 AABBCCDD

Figure 11-13. 8-Bit SPI Host Packing

DMA
Channel 8

Internal
Memory

MOSI

8-
b

it
W

O
R

D
N

0x40000

0x400FF

32 3232

(Loader
Kernel)

S
P
I
R
X

8-
b

it
W

O
R

D
N

+1

8-
b

it
W

O
R

D
N

+2

8-
b

it
W

O
R

D
N

+3
ADSP-21161 SHARC Processor Hardware Reference 11-41

SPI Booting
The 8-bit SPI host would need to pack (prearrange data) as follows:

SPI word 1 = 0x66
SPI word 2 = 0x55
SPI word 3 = 0x44
SPI word 4 = 0x33
SPI word 5 = 0x22
SPI word 6 = 0x11
SPI word 7= 0xDD
SPI word 8 = 0xCC
SPI word 9 = 0xBB
SPI word 10 = 0xAA
SPI word 11 = 0x88
SPI word 12 = 0x77

The initial boot of the 256-word loader kernel requires an 8-bit host to
transmit 1536 8-bit words. The SPI DMA count value of 0x180 is equal
to 384 words. Since one 32-bit word is created from four packed 8-bit
words, the total number of 8-bit words transmitted is 1536.

Multiprocessor SPI Port Booting

In systems where multiple ADSP-21161 processors are connected and
configured for SPI booting, the master ADSP-21161 (or any SPI master
device) can boot up to four processors configured as SPI slaves. The pro-
cessor uses four programmable flags, FLAG0-3, as dedicated SPI
device-select signals for the SPI slave devices. The FLS bits in the SPICTL
register correspond to these flags.

• Figure 11-14 shows a single ADSP-21161 processor master with
four slaves. The master processor selects each slave device using a
dedicated FLAG pin. The master device communicates with one
slave device at any given time, or it broadcasts data to multiple
slaves by setting more than one FLS bit in SPICTL.
11-42 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
The master ADSP-21161 processor can boot multiple slaves in the follow-
ing ways:

• The ADSP-21161 processor transmits to all four SPI devices at the
same time in a broadcast mode. Broadcast the 256-word loader
kernel and identical application code simultaneously to all slaves. If
the master is a ADSP-21161 processor, enable the FLSx bit in the
SPICTL register, and disable the MISO pins. Otherwise, the master
asserts the SPIDS pins of all the slaves to transmit the data.

This feature can be enabled by setting the DMISO bit in the four
slave processors. This DMISO feature may be available in some
microcontrollers. Therefore, it is possible to use the DMISO feature
with any SPI devices that include this functionality.

Figure 11-14. Single Master, Multiple Slaves Configuration – All
ADSP-21161 Processors

MISO MOSISPICLK SPIDS

Slave
Device

MISO MOSISPICLK SPIDS MISO MOSISPICLK

MISO MOSISPICLK SPIDS

Slave
Device

Slave
Device

ASP-21161
SINGLE MASTER

DEVICE

FLAG1

FLAG2

FLAG3

VDD

FLAG0

SPIDSMISO MOSISPICLK SPIDS

Slave
Device
ADSP-21161 SHARC Processor Hardware Reference 11-43

SPI Programming Example
• Load the bootstrap kernel and processor instructions and data
one-at-a time for each processor. In this case, enable only one FLSx
bit at a time in the SPICTL register to drive the flag pin connected
to a slave’s device select. The master device will assert the SPIDS pin
of the slave to load the data. This ensures that each processor boots
one after the other.

• It is also possible to use a combination of broadcast and individual
processor booting to boot a multiprocessor system. SPI hosts can
broadcast boot application code that will reside on several slaves
and then complete the booting process by booting the individual
slaves with slave specific application code. In this situation, the
host SPI device asserts the SPIDS pins of all slaves during the broad-
cast portion of the boot. The host then asserts the SPIDS pins of
specific slaves. If the ADSP-21161 processor is the master as is
shown in Figure 11-14, the master enables the FLSx bit in the
SPICTL register for the slave currently booting.

Figure 11-14 shows one ADSP-21161 processor as a master and four
ADSP-21161 processor (or other SPI-compatible devices) as slaves:

SPI Programming Example
This section provides two programming examples written for the
ADSP-21161 processor. The core-driven interrupt SPI loopback example
in Listing 11-1 demonstrates how the core reads from the SPI receive
buffer and writes to the SPI transmit buffer after receiving an interrupt.
The core-driven interrupt SPI loopback without interrupts example in
Listing 11-2 demonstrates how the core reads from the SPI receive buffer
and writes to the SPI transmit buffer after polling the buffer status. For an
SPI DMA programming example, see Listing 6-7 on page 6-116.
11-44 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
Listing 11-1. Core-Driven Interrupt SPI Loopback

/*__

ADSP-21161 Core-Driven Interrupt SPI Loopback Example

This example shows looped-back SPI 32-bit transfer. On this

peripheral loop-back is preformed by externally connecting the

hardware MOSI and MISO pins on the processor. After receiving an

interrupt, the core directly writes to the transfer buffer

(SPITX) and reads from the receive buffer (SPIRX). Hardware

loop-back does not require the use of flags as device selects so

the FLS bits do not need to be used as they would in an SPI trans-

fer between two different SPI devices (non-loop-back.)

___*/

#include <def21161.h>

#define size 10

// reserved vector location

.section/pm seg_rsvd1;

Reserved_1: rti; nop; nop; nop;

// vector code for reset vector from ldf file

.section/pm seg_rth;

Chip_Reset: idle; jump start; nop; nop;

// vector code for receive interrupt vector from ldf file

.section/pm spiri_svc;

nop; nop; jump receive; rti;

.section/dmseg_dmda;

.var spi_tx_buf[size] =0x11111111,0x22222222, 0x33333333,

0x44444444, 0x55555555,0x66666666, 0x77777777, 0x88888888,

0x99999999, 0xaaaaaaaa;

.var spi_rx_buf[size];

.section/pm seg_pmco;
ADSP-21161 SHARC Processor Hardware Reference 11-45

SPI Programming Example
start:

//Set pointers for source and dest, I0=B0 automatically

b0=spi_tx_buf; // 32-bit SPI datawords

l0=@spi_tx_buf;

m0=1;

b1=spi_rx_buf; // 32-bit SPI datawords

l1=@spi_rx_buf;

m1=1;

// set circular buffer enable and allow global interrupts

bit set MODE1 CBUFEN | IRPTEN;

bit set LIRPTL SPIRMSK ; // enable SPI RX interrupts

bit set IMASK LPISUMI; // unmask spi interrupts

r0=0x00000000; // initially clear SPI control register

dm(SPICTL)=r0;

// prime SPITX register

r0=dm(i0,m0);

dm(SPITX)=r0;

ustat1=dm(SPICTL); // set up options for the SPI port

bit set ustat1 SPIEN | SPRINT | SPTINT | MS | CPHASE | DF | WL32

| BAUDR5 | SGN | GM;

/* Enable spi port, spitx and spirx interrupts, master device

spiclk toggles at beginning of first data transfer bit, MSB first

format, 32 bit word length, baud rate sign extend and get more

new data even if receive buffer is full */

dm(SPICTL) = ustat1; // start transfer by configuring SPICTL
11-46 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
wait: idle;jump wait;

receive: r0=dm(SPIRX); //read SPIRX

dm(i1,m1)=r0; //write value to internal memory buffer

r0=dm(i0,m0); //get new value to transmit from internal

 // transmit buffer

dm(SPITX)=r0;//write value to SPITX

rti;

Listing 11-2. Core-Driven Interrupt SPI Loopback Without Interrupts

/* ADSP-21161 Core-Driven Interrupt SPI Loopback without Inter-

ruptsThis examples shows a looped-back SPI 32-bit transfer. On

this peripheral loop-back is performed by externally connecting

the hardware MOSI and MISO pins on the processor. Hardware

loop-back doesnot require the use of flags as device selects so

the FLS bits do not need to be used as they would in an SPI trans-

fer between two different SPI devices (non-loop-back.) In this

example, interruptsare not used to determine buffer status,

instead polling of the buffer status is implemented to allow the

code to know when it can safely read from the SPIRX register.

Rev 1.1 1/22/02 */

#include <def21161.h>

#define size 10

// vector code for reset vector from ldf file

.section/pm seg_rth;

Chip_Reset: idle; jump start; nop; nop;

.SECTION/DM seg_dmda;

.var spi_tx_buf[size] =0x11111111,

0x22222222,
ADSP-21161 SHARC Processor Hardware Reference 11-47

SPI Programming Example
0x33333333,

0x44444444,

0x55555555,

0x66666666,

0x77777777,

0x88888888,

0x99999999,

0xaaaaaaaa;

.var spi_rx_buf[size];

.SECTION/PM seg_pmco;

start:

bit set MODE1 IRPTEN | CBUFEN;// set circular buffer enable and

allow global interrupts

b0=spi_tx_buf;// 32-bit SPI datawords

l0=@spi_tx_buf;

m0=1;

b1=spi_rx_buf;// 32-bit SPI datawords

l1=@spi_rx_buf;

m1=1;

r0=0x00000000;// initially clear SPI control register

dm(SPICTL)=r0;

ustat1=dm(SPICTL);

bit set ustat1 SPIEN | MS | DF | WL32 | BAUDR5 | SGN | GM;

/* The SPI transmit buffer must be fed with the first two data

words before enabling SPI if SPRINT/SPTINT will not be enabled

for interrupt usage */

r0=dm(i0,m0);

dm(SPITX)=r0; //write to TX buffer
11-48 ADSP-21161 SHARC Processor Hardware Reference

Serial Peripheral Interface (SPI)
r0=dm(i0,m0);

dm(SPITX)=r0; //write to TX buffer

dm(SPICTL) = ustat1; //enable port

lcntr = 0x8, do looping until lce;

r0=dm(i0,m0); //write to TX buffer

dm(SPITX)=r0;

// test receive buffer status to determine when it is ok to read

from SPIRX

test:ustat1=dm(SPISTAT);

bit tst USTAT1 RXS0;

if Not TF jump test;

r0=dm(SPIRX); //read from RX buffer

dm(i1,m1)=r0;

looping: nop;

r0=dm(SPIRX); //read from RX buffer

dm(i1,m1)=r0;

r0=dm(SPIRX); //read from RX buffer

dm(i1,m1)=r0;

wait: jump wait;

idle;
ADSP-21161 SHARC Processor Hardware Reference 11-49

SPI Programming Example
11-50 ADSP-21161 SHARC Processor Hardware Reference

12 JTAG TEST-EMULATION PORT

A boundary scan allows a system designer to test interconnections on a

printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
shift register so that data can be read from or written to them through a
serial test access port (TAP). The ADSP-21161 processor contains a test
access port compatible with the industry-standard IEEE 1149.1 (JTAG)
specification. Only the IEEE 1149.1 features specific to the ADSP-21161
processor are described here. For more information, see the IEEE 1149.1
specification and other the documents listed in “References” on
page 12-29.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-21161 processor. Each input has a
latch that monitors the value of the incoming signal and can also drive
data into the chip in place of the incoming value. Similarly, each output
has a latch that monitors the outgoing signal and can also drive the output
in place of the outgoing value. For bidirectional pins, the combination of
input and output functions is available.

Every latch associated with a pin is part of a single serial shift register path.
Each latch is a master/slave type latch with the controlling clock provided
externally. This clock (TCK) is asynchronous to the ADSP-21161 processor
system clock (CLKIN).
ADSP-21161 SHARC Processor Hardware Reference 12-1

The ADSP-21161 processor emulation features halt the processor at a
pre-defined point to examine the state of the processor, execute arbitrary
code, restore the original state, and continue execution.

The ADSP-21161 processor emulation features are a superset of
the ADSP-21160 emulation features. All emulation features sup-
ported by previous SHARCs are supported on the ADSP-21161
processor, except the ICSA output signal and function. The set of
features on which JTAG ICE designs rely are supported in an iden-
tical fashion on ADSP-21161 processor. The ADSP-21161
processor can be used with the ADSP-2106x SHARC JTAG ICE
hardware.

There are several changes/extensions to the base functionality of the
ADSP-2106x emulation capability, which require changes in the JTAG
ICE software for ADSP-21161 processor support. These extensions
include:

1. The emulation breakpoint address start/end registers have moved
from UREG space to IOP register space. This change did not effect
the TSTEMU block directly, only the address decodes to gain access to
it.

2. EMU64PX has been added to the IR decode space. This shift register
provides access to the full 64-bit wide PX register of ADSP-21161
processor.

3. A memory test shift register has been added to the IR decode space.
This feature is for Analog Devices internal use ONLY.

Several on-chip facilities are directly accessed through the JTAG interface.
These facilities are listed in Table 12-2 on page 12-4. Other emulation
facilities are only indirectly accessible. To indirectly access the facilities
that do not appear in Table 12-2 on page 12-4, scan the instruction which
moves data of interest to/from the PX register, scan the PX data (if the
instruction is a PX read), let the core execute the instruction, then scan the
PX register out (if the instruction was a PX write).
12-2 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
The breakpoint start/end registers are mapped into the IOP register space
of the ADSP-21161 processor. For specific addresses, see “Register and Bit
#Defines (def21161.h)” on page A-121. The EMUN, EMUCLK, and EMUCLK2
registers occupy the same UREG address space as on the ADSP-2106x.
These facilities are read-only by the ADSP-21161 processor core in nor-
mal operation.

JTAG Test Access Port
The emulator uses JTAG boundary scan logic for ADSP-21161 processor
communications and control. This JTAG logic consists of a state machine,
a five pin Test Access Port (TAP), and shift registers. The state machine
and pins conform to the IEEE 1149.1 specification. The TAP pins appear
in Table 12-1. A special pin (EMU) is used by Analog Devices Inc. JTAG
emulators. and is not defined in the IEEE-1149.1 specification. This sig-
nal notifies the JTAG ICE that the processor has completed an operation.

Table 12-1. JTAG Test Access Port (TAP) Pins

Pin Function

TCK (input) Test Clock: pin used to clock the TAP state machine.1

1 Asynchronous with CLKIN

TMS (input) Test Mode Select: pin used to control the TAP state machine sequence.2

2 Synchronous to CLKIN

TDI (input) Test Data In: serial shift data input pin.

TDO (output) Test Data Out: serial shift data output pin.

TRST (input) Test Logic Reset: resets the TAP state machine
ADSP-21161 SHARC Processor Hardware Reference 12-3

Instruction Register
A Boundary Scan Description language (BSDL) file for the ADSP-21161
processor is available on Analog Devices’ website. Set your browser to:

http://www.analog.com/techsupt/documents/bsdl

Refer to the IEEE 1149.1 JTAG specification for detailed information on
the JTAG interface. The many sections of this appendix assume a working
knowledge of the JTAG specification.

Instruction Register
The instruction register allows an instruction to be shifted into the proces-
sor. This instruction selects the test to be performed and/or the test data
register to be accessed. The instruction register is 5 bits long with no par-
ity bit. A value of 10000 binary is loaded (LSB nearest TDO) into the
instruction register whenever the TAP reset state is entered.

Table 12-2 lists the binary code for each instruction. Bit 0 is nearest TDO
and bit 4 is nearest TDI. No data registers are placed into test modes by
any of the public instructions. The instructions affect the ADSP-21161
processor as defined in the 1149.1 specification. The optional instructions
RUNBIST, IDCODE and USERCODE are not supported by the
ADSP-21161 processor.

Table 12-2. JTAG Instruction Register Codes

43210 Register Instruction Comment Type

11111 Bypass BYPASS Public

00000 Boundary EXTEST Public

10000 Boundary SAMPLE Public

01000 EMUPMD EMULATION 48-bit scan length Private

11000 Boundary INTEST Public

00100 EMUCTL EMULATION Private
12-4 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
The entry under “Register” is the serial scan path, either Boundary or
Bypass in this case, enabled by the instruction. Figure 12-1 shows these
register paths. The 1-bit Bypass register is fully defined in the 1149.1
specification. For more information on the Boundary register, see
“Boundary Register” on page 12-17.

No special values need be written into any register prior to selection of any
instruction. As Table 12-2 shows, certain instructions are reserved for
emulator use. For more information, see Table 12-7.

EMUPMD Shift Register
The EMUPMD serial shift register is located in the system unit. EMUPMD is 48
bits wide and is accessed by the emulator through TAP. When the TAP
enters the UPDATE state and EMUPMD is selected, a 48-bit slave register is
updated from this register. The EMUPMD register is used to force the
ADSP-21161 processor to execute emulator supplied instructions. The
register accomplishes this by driving the instruction bus while in emula-
tion space.

10100 EMUPX EMULATION 48-bit shift register Private

10110 EMU64PX EMULATION 64-bit shift register Private

01100 EMUSTAT EMULATION Private

11100 BRKSTAT EMULATION Private

00010 EMUPC EMULATION Private

10101 MEMTST TEST Memory test Private

All
others

Reserved Reserved Private

Table 12-2. JTAG Instruction Register Codes (Cont’d)

43210 Register Instruction Comment Type
ADSP-21161 SHARC Processor Hardware Reference 12-5

Instruction Register
EMUPX Shift Register
The EMUPX serial shift register is located in the system unit. The EMUPX reg-
ister is 48 bits wide and is accessed by the emulator through the TAP.
When the TAP goes into the UPDATE state and EMUPX is selected, the
most significant 48-bits of PX is updated from EMUPX. When the TAP goes

Figure 12-1. Serial Scan Paths

0

1

2478

TDO

3 1

04

2

TDI 1

BOUNDARY REGISTER

BYPASS REGISTER

INSTRUCTION REGISTER

479

480
12-6 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
into the CAPTURE state and EMUPX is selected, EMUPX is updated with the
most significant 48-bits of PX. The EMUPX register is used to transfer data
between the emulator and the target system.

The EMUPX register is provided for backwards compatibility with the
SHARC ICE hardware and is 64 bits wide. To provide compatibility, only
the most significant 48 bits of PX are mapped to EMUPX. 48-bit instruc-
tions, and 40-bit extended precision data, are always aligned to the most
significant bit. When transferring 32-bit data to/from PX register, PX2
must be specified as the source/destination to ensure that the 32-bits is
aligned to the most significant bit.

EMU64PX Shift Register
The EMU64PX serial shift register is located in the system unit. The EMU64PX
register is 64 bits wide and is accessed by the emulator through the TAP.
When the TAP goes into the UPDATE state and EMU64PX is selected, PX is
updated from EMU64PX. When the TAP goes into the CAPTURE state and
EMU64PX is selected, EMU64PX is updated from PX. The EMU64PX register
transfers data between the emulator and the target system. The most sig-
nificant 48-bits of EMU64PX are redundantly available in EMUPX.

EMUPC Shift Register
The EMUPC serial shift register is located in the system unit. The EMUPC reg-
ister is 24 bits wide and is accessed by the emulator through the TAP. It
captures addresses from the PC register. This data can be used to statisti-
cally profile the user’s code. Addresses cannot be forced into the PC
register from the EMUPC register.
ADSP-21161 SHARC Processor Hardware Reference 12-7

Instruction Register
EMUCTL Shift Register
The EMUCTL serial shift register is located in the system unit. The EMUCTL
register is 40 bits wide and is accessed by the emulator through the TAP.
It controls all of the ADSP-21161 processor emulation functionality.
Table 12-3 lists this registers bits and describes their function.

Table 12-3. Emulation Control Register (EMUCTL) Definition

Bit # Name Function

0 EMUENA Emulator Function Enable. The EMUENA bit enables
ADSP-21161 processor emulation functions. (0=ignore break-
points and emulator interrupts, 1=respond to breakpoints and
emulator interrupts)

1 EIRQENA Emulator Interrupt Enable. The EIRQENA bit enables the
emulation logic to recognize external emulator interrupts.
(0=disable, 1=enable)

2 BKSTOP Enable Autostop on Breakpoint. The BKSTOP bit enables the
ADSP-21161 processor to generate an external emulator inter-
rupt when any breakpoint event occurs. (0=disable, 1=enable)

3 SS Enable Single Step Mode. The SS bit enables single-step opera-
tion. (0=disable, 1=enable)

4 SYSRST Software Reset of the ADSP-21161 processor. The SYSRST bit
resets the ADSP-21161 processor in the same manner as the
external RESET pin. The SYSRST bit must be cleared by the
emulator. (0=normal operation, 1=reset)

5 ENBRKOUT Enable the BRKOUT pin. The ENBRKOUT bit enables the
BRKOUT pin operation.
(0=BRKOUT pin at high-impedance state, 1=BRKOUT pin
enabled)
12-8 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
6 IOSTOP Stop IOP DMAs in EMU space. The IOSTOP bit disables all
DMA requests when the DSP is in emulation space. Data that is
currently in the EP, LINK, or SPORT DMA buffers is held there
unless the internal DMA request was already granted. IOSTOP
causes incoming data to be held off and outgoing data to cease.
Because SPORT receive data cannot be held off, it is lost and the
overrun bit is set. The direct write buffer (internal memory
write) and the EP pad buffer are allowed to flush any remaining
data to internal memory. (0=IO continues, 1=IO Stops)

7 EPSTOP Stop I/O Processor EP operation in emulation space. The
EPSTOP bit disables all EP requests when the DSP is in emula-
tion space. After an emulation interrupt is acknowledged,
EPSTOP deasserts ACK (deasserts REDY if host access) to pre-
vent further data from being accepted if the EP is accessed. The
emulator may clear this bit—allowing I/O to continue and the
bus to clear—so that the emulator may use the EP (through BR
and bus lock). Note that the EP bus clears only if accesses are
direct writes or IOP register writes, because all other IOP func-
tions are halted. The EP bus does not clear if accesses to any of
the DMA buffers are extended due to a buffer full or empty con-
dition.
(0=EP IO continues, 1=EP IO Stops)

8 NEGPA1 Negate program memory data address breakpoint. The NEG*
bits enable breakpoint events if the address is greater than the
end register value OR less than the start register value. This
function is useful to detect index range violations in user code.
(0=disable breakpoint, 1=enable breakpoint)

9 NEGDA1 Negate data memory address breakpoint #1. For more informa-
tion, see NEGPA1 bit description.

10 NEGDA2 Negate data memory address breakpoint #2. For more informa-
tion, see NEGPA1 bit description.

11 NEGIA1 Negate instruction address breakpoint #1. For more informa-
tion, see NEGPA1 bit description.

12 NEGIA2 Negate instruction address breakpoint #2. For more informa-
tion, see NEGPA1 bit description.

Table 12-3. Emulation Control Register (EMUCTL) Definition (Cont’d)

Bit # Name Function
ADSP-21161 SHARC Processor Hardware Reference 12-9

Instruction Register
13 NEGIA3 Negate instruction address breakpoint #3. For more informa-
tion, see NEGPA1 bit description.

14 NEGIA4 Negate instruction address breakpoint #4. For more informa-
tion, see NEGPA1 bit description.

15 NEGIO1 Negate I/O address breakpoint. For more information, see
NEGPA1 bit description.

16 NEGEP1 Negate EP address breakpoint. For more information, see
NEGPA1 bit description.

17 ENBPA Enable program memory data address breakpoints. The ENB*
bits enable each breakpoint group. Note that when the AND-
BKP bit is set, breakpoint types not involved in the generation of
the effective breakpoint must be disabled. (0=disable break-
points, 1=enable breakpoints)

18 ENBDA Enable data memory address breakpoints. For more informa-
tion, see ENBPA bit description.

19 ENBIA Enable instruction address breakpoints. For more information,
see ENBPA bit description.

20 ENBIO Enable I/O address breakpoint. For more information, see
ENBPA bit description.

21 ENBEP Enable external port address breakpoint. For more information,
see ENBPA bit description.

22-23 PA1MODE PA1 breakpoint triggering mode. The breakpoint triggering
mode bits trigger on the following conditions:
Mode Triggering condition
00 Breakpoint is disabled
01 WRITE accesses only
10 READ accesses only
11 any access

24-25 DA1MODE DA1 breakpoint triggering mode. For more information, see
PA1MODE bit description.

26-27 DA2MODE DA2 breakpoint triggering mode. For more information, see
PA1MODE bit description.

Table 12-3. Emulation Control Register (EMUCTL) Definition (Cont’d)

Bit # Name Function
12-10 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
EMUSTAT Shift Register
The EMUSTAT serial shift register is located in the system unit. It is 8 bits
wide and is accessed by the emulator through the TAP. This register is
updated by the ADSP-21161 processor when the TAP is in the CAP-

28-29 IO1MODE IO1 breakpoint triggering mode. For more information, see
PA1MODE bit description.

30-31 EP1MODE EP1 breakpoint triggering mode. For more information, see
PA1MODE bit description.

32 ANDBKP AND composite breakpoints. The ANDBKP bit enables AND-
ing of each breakpoint type to generate an effective breakpoint
from the composite breakpoint signals. (0=OR breakpoint types,
1=AND breakpoint types)

33 Reserved. The ICSA function and DMDSEL bit used by that
function not supported on ADSP-21161 processor.

34 NOBOOT No power-up boot on reset. The NOBOOT bit forces the
ADSP-21161 processor into the No boot mode. In this mode,
the processor does not boot load, but begins fetching instruc-
tions from 0x0080 0004 in external memory. (0=disable, 1=force
No boot mode)

35 TMODE Test mode enable. The TMODE bit is for Analog Devices’ usage
only. Do NOT set this bit. (0=normal operation)

36 BHO Buffer Hang Override bit. The BHO control bit overrides the
BHD bit in SYSCON, disabling BHD’s control over core access
of data buffer behavior. Note that the default (reset) state of
BHD is now set for ADSP-21161 processor, a change from
ADSP-2106x. (0=normal BHD operation, 1=override BHD
operation)

37 MTST Memory Test Enable Bit. The MTST bit enables scanning of
data for to the latches used for memory test. (0=normal opera-
tion, 1=enable memory test)

38, 39 Reserved

Table 12-3. Emulation Control Register (EMUCTL) Definition (Cont’d)

Bit # Name Function
ADSP-21161 SHARC Processor Hardware Reference 12-11

Instruction Register
TURE state. The emulator reads EMUSTAT to determine the state of the
ADSP-21161 processor. None of the bits in this register can be written by
the emulator. All bits are active high. Table 12-4 lists the EMUSTAT regis-
ter’s bits.

BRKSTAT Shift Register
The BRKSTAT serial shift register is located in the system unit. It is 16 bits
wide and is accessed by the emulator through the TAP. This register mon-
itors the status of the emulation breakpoints and is updated on every clock
cycle. None of the bits of this register can be written by the emulator.

Table 12-5 lists the BRKSTAT register’s bits. A high bit indicates a break-
point hit. When a breakpoint hit occurs, the register ceases updating.
Stopping allows the emulator to see which breakpoint was triggered.
When the ADSP-21161 processor leaves emulation space the BRKSTAT
register is cleared and resumes updating. All status bits are synchronized to
TCLK before being scanned out.

Table 12-4. Emulation Status (EMUSTAT) Register Definition

Bit # Name Function (If bit=1...)

0 EMUSPACE Indicates that the next instruction is to be fetched from the
emulator.

1 EMUREADY Indicates that the ADSP-21161 processor has finished executing
the previous emulator instruction.

2 INIDLE Indicates that the ADSP-21161 processor was in IDLE prior to the
latest emulator interrupt.

3 COMHALT Indicates a core access to a SPORT or a LINK is hung because of
an external device.

4 EPHALT Indicates a core access to a DMA buffer is hung because of the
external port.

5-7 Reserved
12-12 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
MEMTST Shift Register
The MEMTST serial shift register is for Analog Devices’ usage only.

Do not attempt to use this register—incorrect usage of this feature
can result in permanent damage to the ADSP-21161 processor
being tested.

PSx, DMx, IOx, and EPx (Breakpoint) Registers
The PSx, DMx, IOx, and EPx (Breakpoint) registers are located in the I/O
processor register set. The emulation breakpoint registers are not user
accessible and can be written only when the ADSP-21161 processor is in
emulation space or test mode. The breakpoint registers vary in size accord-
ing to the address type: instruction (24-bit address), data (32-bit address),
or I/O data (19-bit address)—Table 12-6 shows the sizes.

Table 12-5. BRKSTAT (Breakpoint Status) Register Definition

Bit # Name Function (If bit=1...)

0 STATPA Program Memory Data breakpoint hit

1 STATDA0 Data Memory breakpoint hit

2 STATDA1 Data Memory breakpoint hit

3 STATIA0 Instruction Address breakpoint hit

4 STATIA1 Instruction Address breakpoint hit

5 STATIA2 Instruction Address breakpoint hit

6 STATIA2 Instruction Address breakpoint hit

7 STATIO I/O Address breakpoint hit

8 STATEP EP Address breakpoint hit

9-15 Reserved
ADSP-21161 SHARC Processor Hardware Reference 12-13

Instruction Register
The ADSP-21161 processor contains nine sets of emulation breakpoint
registers. Each set consists of a start and end register which describe an
address range, with the start register setting the lower end of the address
range. Each breakpoint set monitors a particular address bus. When a
valid address is in the address range, than a breakpoint signal is generated.
The address range includes the start and end addresses.

The nine breakpoint sets are grouped into five types: instruction (IA),
DM data (DA), PM data (PA), IO data (IO), and EP data (EP). The indi-
vidual breakpoint signals in each type are ORed together to create five
composite breakpoint signals.

These composite signals can be optionally ANDed or ORed together to
create the effective breakpoint event signal used to generate an emulator
interrupt. The ANDBKP bit in the EMUCTL register selects the function used.

Each breakpoint type has an enable bit in the EMUCTL register. When set,
these bits add the specified breakpoint type into the generation of the
effective breakpoint signal. If cleared, the specified breakpoint type is not
used in the generation of the effective breakpoint signal. This allows the
user to trigger the effective breakpoint from a subset of the breakpoint
types.

To provide further flexibility, each individual breakpoint can be pro-
grammed to trigger if the address is in range AND one of these conditions
is met: READ access, WRITE access, ANY access, or NO access. The con-
trol bits for this feature are also located in EMUCTL. For more information,
see PA1MODES bit description in Table 12-3 on page 12-8.

The address ranges of the emulation breakpoint registers are negated by
setting the appropriate renege negation bits in the EMUCTL register. For
more information, see NEGPA1 bit description Table 12-3 on page 12-8.
Each breakpoint can be disabled by setting the start address larger than the
end address.
12-14 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
Four of the breakpoints monitor the instruction address. Two monitor the
data memory address. One monitors the program memory data address,
one monitors the I/O address bus and one monitors the EP address bus.

The instruction address breakpoints monitor the address of the instruc-
tion being executed, not the address of the instruction being fetched. If
the current execution is aborted, the breakpoint signal does not occur even
if the address is in range. Data address breakpoints (DA and PA only) are
also ignored during aborted instructions. The nine breakpoint sets appear
in Table 12-6.

Table 12-6. PSx, DMx, IOx, and EPx (Breakpoint) Registers

Register Function Group1

PSA1S Instruction Address Start #1 IA

PSA1E Instruction Address End #1 IA

PSA2S Instruction Address Start #2 IA

PSA2E Instruction Address End #2 IA

PSA3S Instruction Address Start #3 IA

PSA3E Instruction Address End #3 IA

PSA4S Instruction Address Start #4 IA

PSA4E Instruction Address End #4 IA

DMA1S Data Address Start #1 DA

DMA1E Data Address End #1 DA

DMA2S Data Address Start #2 DA

DMA2E Data Address End #2 DA

PMDAS Program Data Address Start PA

PMDAE Program Data Address End PA

IOAS I/O Address Start IO

IOAE I/O Address End IO
ADSP-21161 SHARC Processor Hardware Reference 12-15

Instruction Register
EMUN Register
The EMUN (Nth event counter) register is located in the I/O Processor reg-
ister set. It is not user accessible and can be written only when the
ADSP-21161 processor is in emulation space. The EMUN register is
read-only from normal-space and can be written only when the
ADSP-21161 processor is in emulation space. The Nth event counter
allows an emulation breakpoint to occur on the Nth occurrence of the
breakpoint event. This is accomplished by writing the desired Nth value
to the EMUN register in UREG space. This register can be read from normal
space, but it can be written only in emulation space. The counter decre-
ments on each occurrence of the breakpoint event, asserting the interrupt
when the counter is equal to zero and the hardware breakpoint event
occurs.

EMUCLK and EMUCLK2 Registers
The EMUCLK (clock counter) and EMUCLK2 (clock counter scaling) registers
are located in the universal (UREG) register set. EMUCLK and EMUCLK2 are
not user accessible and can be written only when the ADSP-21161 proces-
sor is in emulation space. These registers are read-only from normal-space
and can be written only when the ADSP-21161 processor is in emulation
space. The Emulation Clock Counter consists of a 32-bit count register
(EMUCLK) and a 32-bit scaling register (EMUCLK2). The EMUCLK counts clock
cycles while the user has control of the ADSP-21161 processor and stops
counting when the emulator gains control. These registers let you gauge

EPAS External Port Address Start EP

EPAE External Port Address End EP

1 Group IA=24-bit addresses, Groups DA, PA, and EP=32-bit addresses,
Group IO=19-bit addresses.

Table 12-6. PSx, DMx, IOx, and EPx (Breakpoint) Registers (Cont’d)

Register Function Group1
12-16 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
the amount of time spent executing a particular section of code. The
EMUCLK2 register extends the time EMUCLK can count by incrementing each
time the EMUCLK value rolls over to zero. The combined emulation clock
counter can count accurately for thousands of hours.

EMUIDLE Instruction
The EMUIDLE instruction places the ADSP-21161 processor in the idle
state and triggers an emulator interrupt. This operation lets you use the
EMUIDLE instruction to be used as a software breakpoint. When EMUIDLE is
executed, the emulation clock counter immediately halts.

In Circuit Signal Analyzer (ICSA) Function
This function is NOT supported in the ADSP-21161 processor.

Boundary Register
The Boundary register is 481 bits long. This section defines the latch type
and function of each position in the scan path. The positions are num-
bered with 0 being the first bit output (closest to TDO) and 480 being the
last (closest to TDI). The following are some notes about boundary
registers:

• Scan position 0 (NC_0) is the end is closest to TDO (scan in first)

• Scan position 480 (SPARE); this end is closest to TDI (scan in last)

• Output Enables:

1 = Drive the associated signals during the EXTEST and INTEST
instructions

0 = Three-state the associated signals during the EXTEST and INTEST
instructions
ADSP-21161 SHARC Processor Hardware Reference 12-17

Boundary Register
Table 12-7. JTAG Boundary Register

Scan # Signal Name Latch Type Scan # Signal Name Latch Type

 0 NC(I) OUTP Closest to
TDO scan in first

23 FLAG[8](I/O) IN

1 NC(I) OE 24 FLAG[7](I/O) OUTP

2 NC(I) IN 25 FLAG[7](I/O) OE

3 BMSTR(O) OUTP 26 FLAG[7](I/O) IN

4 BMSTR(O) OE 27 FLAG[6](I/O) OUTP

5 BMSTR(O) IN 28 FLAG[6](I/O) OE

6 EMU(O) OUTP 29 FLAG[6](I/O) IN

7 EMU(O) OE 30 FLAG[5](I/O) OUTP

8 EMU(O) IN 31 FLAG[5](I/O) OE

9 RESET(I) OUTP 32 FLAG[5](I/O) IN

10 RESET(I) OE 33 FLAG[4](I/O) OUTP

11 RESET(I) IN 34 FLAG[4](I/O) OE

12 FLAG[11](I/O) OUTP 35 FLAG[4](I/O) IN

13 FLAG[11](I/O) OE 36 FLAG[3](I/O) OUTP

14 FLAG[11](I/O) IN 37 FLAG[3](I/O) OE

15 FLAG[10](I/O) OUTP 38 FLAG[3](I/O) IN

16 FLAG[10](I/O) OE 39 FLAG[2](I/O) OUTP

17 FLAG[10](I/O) IN 40 FLAG[2](I/O) OE

18 FLAG[9](I/O) OUTP 41 FLAG[2](I/O) IN

19 FLAG[9](I/O) OE 42 FLAG[1](I/O) OUTP

20 FLAG[9](I/O) IN 43 FLAG[1](I/O) OE

21 FLAG[8](I/O) OUTP 44 FLAG[1](I/O) IN

22 FLAG[8](I/O) OE 45 FLAG[0](I/O) OUTP

46 FLAG[0](I/O) OE 70 ADDR[23](I/O) OE
12-18 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
47 FLAG[0](I/O) IN 71 ADDR[23](I/O) IN

48 IRQ0(I) OUTP 72 ADDR[22](I/O) OUTP

49 IRQ0(I) OE 73 ADDR[22](I/O) OE

50 IRQ0(I) IN 74 ADDR[22](I/O) IN

51 IRQ1(I) OUTP 75 ADDR[21](I/O) OUTP

52 IRQ1(I) OE 76 ADDR[21](I/O) OE

53 IRQ1(I) IN 77 ADDR[21](I/O) IN

54 IRQ2(I) OUTP 78 ADDR[20](I/O) OUTP

55 IRQ2(I) OE 79 ADDR[20](I/O) OE

56 IRQ2(I) IN 80 ADDR[20](I/O) IN

57 ID0(I) OUTP 81 ADDR[19](I/O) OUTP

58 ID0(I) OE 82 ADDR[19](I/O) OE

59 ID0(I) IN 83 ADDR[19](I/O) IN

60 ID1(I) OUTP 84 ADDR[18](I/O) OUTP

61 ID1(I) OE 85 ADDR[18](I/O) OE

62 ID1(I) IN 86 ADDR[18](I/O) IN

63 ID2(I) OUTP 87 ADDR[17](I/O) OUTP

64 ID2(I) OE 88 ADDR[17](I/O) OE

65 ID2(I) IN 89 ADDR[17](I/O) IN

66 TIMEXP(O) OUTP 90 ADDR[16](I/O) OUTP

67 TIMEXP(O) OE 91 ADDR[16](I/O) OE

68 TIMEXP(O) IN 92 ADDR[16](I/O) IN

69 ADDR[23](I/O) OUTP 93 ADDR[15](I/O) OUTP

94 ADDR[15](I/O) OE 118 ADDR[7](I/O) OE

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
ADSP-21161 SHARC Processor Hardware Reference 12-19

Boundary Register
95 ADDR[15](I/O) IN 119 ADDR[7](I/O) IN

96 ADDR[14](I/O) OUTP 120 ADDR[6](I/O) OUTP

97 ADDR[14](I/O) OE 121 ADDR[6](I/O) OE

98 ADDR[14](I/O) IN 122 ADDR[6](I/O) IN

99 ADDR[13](I/O) OUTP 123 ADDR[5](I/O) OUTP

100 ADDR[13](I/O) OE 124 ADDR[5](I/O) OE

101 ADDR[13](I/O) IN 125 ADDR[5](I/O) IN

102 ADDR[12](I/O) OUTP 126 ADDR[4](I/O) OUTP

103 ADDR[12](I/O) OE 127 ADDR[4](I/O) OE

104 ADDR[12](I/O) IN 128 ADDR[4](I/O) IN

105 ADDR[11](I/O) OUTP 129 ADDR[3](I/O) OUTP

106 ADDR[11](I/O) OE 130 ADDR[3](I/O) OE

107 ADDR[11](I/O) IN 131 ADDR[3](I/O) IN

108 ADDR[10](I/O) OUTP 132 ADDR[2](I/O) OUTP

109 ADDR[10](I/O) OE 133 ADDR[2](I/O) OE

110 ADDR[10](I/O) IN 134 ADDR[2](I/O) IN

111 ADDR[9](I/O) OUTP 135 ADDR[1](I/O) OUTP

112 ADDR[9](I/O) OE 136 ADDR[1](I/O) OE

113 ADDR[9](I/O) IN 137 ADDR[1](I/O) IN

114 ADDR[8](I/O) OUTP 138 ADDR[0](I/O) OUTP

115 ADDR[8](I/O) OE 139 ADDR[0](I/O) OE

116 ADDR[8](I/O) IN 140 ADDR[0](I/O) IN

117 ADDR[7](I/O) OUTP 141 MS3(I/O) OUTP

142 MS3(I/O) OE 165 BR4(I/O) OUTP

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
12-20 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
143 MS3(I/O) IN 166 BR4(I/O) OE

144 MS2(I/O) OUTP 167 BR4(I/O) IN

145 MS2(I/O) OE 168 BR3(I/O) OUTP

146 MS2(I/O) IN 169 BR3(I/O) OE

147 MS1(I/O) OUTP 170 BR3(I/O) IN

148 MS1(I/O) OE 171 BR2(I/O) OUTP

149 MS1(I/O) IN 172 BR2(I/O) OE

150 MS0(I/O) OUTP 173 BR2(I/O) IN

151 MS0(I/O) OE 174 BR1(I/O) OUTP

152 MS0(I/O) IN 175 BR1(I/O) OE

153 SBTS(I) OUTP 176 BR1(I/O) IN

154 SBTS(I) OE 177 WR(I/O) OUTP

155 SBTS(I) IN 178 WR(I/O) OE

156 PA(I/O) OUTP (Formerly
CPA)

179 WR(I/O) IN

157 PA(I/O) OE (Formerly
CPA)

180 RD(I/O) OUTP

158 PA(I/O) IN (Formerly
CPA)

181 RD(I/O) OE

159 BR6(I/O) OUTP 182 RD(I/O) IN

160 BR6(I/O) OE 183 BRST(I/O) OUTP

161 BR6(I/O) IN 184 BRST(I/O) OE

162 BR5(I/O) OUTP 185 BRST(I/O) IN

163 BR5(I/O) OE 186 SDCLK1(O) OUTP

164 BR5(I/O) IN 187 SDCLK1(O) OE

188 SDCLK1(O) IN 212 HBG(I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
ADSP-21161 SHARC Processor Hardware Reference 12-21

Boundary Register
189 SDA10(O) OUTP 213 REDY(O) OUTP

190 SDA10(O) OE 214 REDY(O) OE

191 SDA10(O) IN 215 REDY(O) IN

192 SDCKE(I/O) OUTP 216 ACK(I/O) OUTP

193 SDCKE(I/O) OE 217 ACK(I/O) OE

194 SDCKE(I/O) IN 218 ACK(I/O) IN

195 CLKOUT(O) OUTP 219 CS(I) OUTP

196 CLKOUT(O) OE 220 CS(I) OE

197 CLKOUT(O) IN 221 CS(I) IN

198 SDCLK0(I/O) OUTP 222 CLKDBL(I) OUTP

199 SDCLK0(I/O) OE 223 CLKDBL(I) OE

200 SDCLK0 (I/O) IN 224 CLKDBL(I) IN

201 CAS(I/O) OUTP 225 DQM(O) OUTP

202 CAS(I/O) OE 226 DQM(O) OE

203 CAS(I/O) IN 227 DQM(O) IN

204 RAS(I/O) OUTP 228 SDWE(I/O) OUTP

205 RAS(I/O) OE 229 SDWE(I/O) OE

206 RAS(I/O) IN 230 SDWE(I/O) IN

207 HBR(I) OUTP 231 CLK_CFG1(I) OUTP

208 HBR(I) OE 232 CLK_CFG1(I) OE

209 HBR(I) IN 233 CLK_CFG1(I) IN

210 HBG(I/O) OUTP 234 CLK_CFG0(I) OUTP

211 HBG(I/O) OE 235 CLK_CFG0(I) OE

236 CLK_CFG0(I) IN 260 DATA[19](I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
12-22 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
237 DMAR2(I) OUTP 261 DATA[20](I/O) OUTP

238 DMAR2(I) OE 262 DATA[20](I/O) OE

239 DMAR2(I) IN 263 DATA[20](I/O) IN

240 DMAG2(O) OUTP 264 DATA[21](I/O) OUTP

241 DMAG2(O) OE 265 DATA[21](I/O) OE

242 DMAG2(O) IN 266 DATA[21](I/O) IN

243 DMAR1(I) OUTP 267 DATA[22](I/O) OUTP

244 DMAR1(I) OE 268 DATA[22](I/O) OE

245 DMAR1(I) IN 269 DATA[22](I/O) IN

246 DMAG1(O) OUTP 270 DATA[23](I/O) OUTP

247 DMAG1(O) OE 271 DATA[23](I/O) OE

248 DMAG1(O) IN 272 DATA[23](I/O) IN

249 DATA[16](I/O) OUTP 273 DATA[24](I/O) OUTP

250 DATA[16](I/O) OE 274 DATA[24](I/O) OE

251 DATA[16](I/O) IN 275 DATA[24](I/O) IN

252 DATA[17](I/O) OUTP 276 DATA[25](I/O) OUTP

253 DATA[17](I/O) OE 277 DATA[25](I/O) OE

254 DATA[17](I/O) IN 278 DATA[25](I/O) IN

255 DATA[18](I/O) OUTP 279 DATA[26](I/O) OUTP

256 DATA[18](I/O) OE 280 DATA[26](I/O) OE

257 DATA[18](I/O) IN 281 DATA[26](I/O) IN

258 DATA[19](I/O) OUTP 282 DATA[27](I/O) OUTP

259 DATA[19](I/O) OE 283 DATA[27](I/O) OE

284 DATA[27](I/O) IN 308 DATA[35](I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
ADSP-21161 SHARC Processor Hardware Reference 12-23

Boundary Register
285 DATA[28](I/O) OUTP 309 DATA[36](I/O) OUTP

286 DATA[28](I/O) OE 310 DATA[36](I/O) OE

287 DATA[28](I/O) IN 311 DATA[36](I/O) IN

288 DATA[29](I/O) OUTP 312 DATA[37](I/O) OUTP

289 DATA[29](I/O) OE 313 DATA[37](I/O) OE

290 DATA[29](I/O) IN 314 DATA[37](I/O) IN

291 DATA[30](I/O) OUTP 315 DATA[38](I/O) OUTP

292 DATA[30](I/O) OE 316 DATA[38](I/O) OE

293 DATA[30](I/O) IN 317 DATA[38](I/O) IN

294 DATA[31](I/O) OUTP 318 DATA[39](I/O) OUTP

295 DATA[31](I/O) OE 319 DATA[39](I/O) OE

296 DATA[31](I/O) IN 320 DATA[39](I/O) IN

297 DATA[32](I/O) OUTP 321 DATA[40](I/O) OUTP

298 DATA[32](I/O) OE 322 DATA[40](I/O) OE

299 DATA[32](I/O) IN 323 DATA[40](I/O) IN

300 DATA[33](I/O) OUTP 324 DATA[41](I/O) OUTP

301 DATA[33](I/O) OE 325 DATA[41](I/O) OE

302 DATA[33](I/O) IN 326 DATA[41](I/O) IN

303 DATA[34](I/O) OUTP 327 DATA[42](I/O) OUTP

304 DATA[34](I/O) OE 328 DATA[42](I/O) OE

305 DATA[34](I/O) IN 329 DATA[42](I/O) IN

306 DATA[35](I/O) OUTP 330 DATA[43](I/O) OUTP

307 DATA[35](I/O) OE 331 DATA[43](I/O) OE

332 DATA[43](I/O) IN 356 L1DAT[2](I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
12-24 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
333 DATA[44](I/O) OUTP 357 L1DAT[3](I/O) OUTP

334 DATA[44](I/O) OE 358 L1DAT[3](I/O) OE

335 DATA[44](I/O) IN 359 L1DAT[3](I/O) IN

336 DATA[45](I/O) OUTP 360 L1ACK(I/O) OUTP

337 DATA[45](I/O) OE 361 L1ACK(I/O) OE

338 DATA[45](I/O) IN 362 L1ACK(I/O) IN

339 DATA[46](I/O) OUTP 363 L1CLK(I/O) OUTP

340 DATA[46](I/O) OE 364 L1CLK(I/O) OE

341 DATA[46](I/O) IN 365 L1CLK(I/O) IN

342 DATA[47](I/O) OUTP 366 L1DAT[4](I/O) OUTP

343 DATA[47](I/O) OE 367 L1DAT[4](I/O) OE

344 DATA[47](I/O) IN 368 L1DAT[4](I/O) IN

345 RSTOUT(O)1 OUTP 369 L1DAT[5](I/O) OUTP

346 RSTOUT(O) OE 370 L1DAT[5](I/O) OE

347 RSTOUT(O) IN 371 L1DAT[5](I/O) IN

348 L1DAT[0](I/O) OUTP 372 L1DAT[6](I/O) OUTP

349 L1DAT[0](I/O) OE 373 L1DAT[6](I/O) OE

350 L1DAT[0](I/O) IN 374 L1DAT[6](I/O) IN

351 L1DAT[1](I/O) OUTP 375 L1DAT[7](I/O) OUTP

352 L1DAT[1](I/O) OE 376 L1DAT[7](I/O) OE

353 L1DAT[1](I/O) IN 377 L1DAT[7](I/O) IN

354 L1DAT[2](I/O) OUTP 378 L0DAT[0](I/O) OUTP

355 L1DAT[2](I/O) OE 379 L0DAT[0](I/O) OE

380 L0DAT[0](I/O) IN 404 L0DAT[6](I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
ADSP-21161 SHARC Processor Hardware Reference 12-25

Boundary Register
381 L0DAT[1](I/O) OUTP 405 L0DAT[7](I/O) OUTP

382 L0DAT[1](I/O) OE 406 L0DAT[7](I/O) OE

383 L0DAT[1](I/O) IN 407 L0DAT[7](I/O) IN

384 L0DAT[2](I/O) OUTP 408 FS3(I/O) OUTP

385 L0DAT[2](I/O) OE 409 FS3(I/O) OE

386 L0DAT[2](I/O) IN 410 FS3(I/O) IN

387 L0DAT[3](I/O) OUTP 411 SCLK3(I/O) OUTP

388 L0DAT[3](I/O) OE 412 SCLK3(I/O) OE

389 L0DAT[3](I/O) IN 413 SCLK3(I/O) IN

390 L0ACK(I/O) OUTP 414 D3B(I/O) OUTP

391 L0ACK(I/O) OE 415 D3B(I/O) OE

392 L0ACK(I/O) IN 416 D3B(I/O) IN

393 L0CLK(I/O) OUTP 417 D3A(I/O) OUTP

394 L0CLK(I/O) OE 418 D3A(I/O) OE

395 L0CLK(I/O) IN 419 D3A(I/O) IN

396 L0DAT[4](I/O) OUTP 420 FS2(I/O) OUTP

397 L0DAT[4](I/O) OE 421 FS2(I/O) OE

398 L0DAT[4](I/O) IN 422 FS2(I/O) IN

399 L0DAT[5](I/O) OUTP 423 SCLK2(I/O) OUTP

400 L0DAT[5](I/O) OE 424 SCLK2(I/O) OE

401 L0DAT[5](I/O) IN 425 SCLK2(I/O) IN

402 L0DAT[6](I/O) OUTP 426 D2B(I/O) OUTP

403 L0DAT[6](I/O) OE 427 D2B(I/O) OE

428 D2B(I/O) IN 452 EBOOT(I) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
12-26 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
429 D2A(I/O) OUTP 453 SCLK0(I/O) OUTP

430 D2A(I/O) OE 454 SCLK0(I/O) OE

431 D2A(I/O) IN 455 SCLK0(I/O) IN

432 FS1(I/O) OUTP 456 D0B(I/O) OUTP

433 FS1(I/O) OE 457 D0B(I/O) OE

434 FS1(I/O) IN 458 D0B(I/O) IN

435 LBOOT(I) OUTP 459 D0A(I/O) OUTP

436 LBOOT(I) OE 460 D0A(I/O) OE

437 LBOOT(I) IN 461 D0A(I/O) IN

438 SCLK1(I/O) OUTP 462 SPIDS(I) OUTP

439 SCLK1(I/O) OE 463 SPIDS(I) OE

440 SCLK1(I/O) IN 464 SPIDS(I) IN

441 D1B(I/O) OUTP 465 SPICLK(I/O) OUTP

442 D1B(I/O) OE 466 SPICLK(I/O) OE

443 D1B(I/O) IN 467 SPICLK(I/O) IN

444 D1A(I/O) OUTP 468 MOSI(I/O) OUTP

445 D1A(I/O) OE 469 MOSI(I/O) OE

446 D1A(I/O) IN 470 MOSI(I/O) IN

447 FS0(I/O) OUTP 471 MISO(I/O) OUTP

448 FS0(I/O) OE 472 MISO(I/O) OE

449 FS0(I/O) IN 473 MISO(I/O) IN

450 EBOOT(I) OUTP 474 BMS(I/O) OUTP

451 EBOOT(I) OE 475 BMS(I/O) OE

452 EBOOT(I) IN 476 BMS(I/O) IN

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
ADSP-21161 SHARC Processor Hardware Reference 12-27

Device Identification Register
Device Identification Register
No device identification register is included in the ADSP-21161
processor.

Built-In Self-Test Operation (BIST)
No self-test functions are supported by the ADSP-21161 processor.

Private Instructions
Table 12-2 on page 12-4 lists the private instructions that are reserved for
emulation and memory test. The ADSP-21161 processor JTAG ICE emu-
lator uses the TAP and boundary scan as a way to access the processor in
the target system. The JTAG ICE emulator requires a target board con-
nector for access to the TAP. For more information, see “Designing For
JTAG Emulation” on page 13-49.

477 RPBA(I) OUTP 479 RPBA(I) IN

478 RPBA(I) OE 480 SPARE Closest to
TDI scan in
last

1 RSTOUT only exists for silicon revisions 1.2 and greater.

Table 12-7. JTAG Boundary Register (Cont’d)

Scan # Signal Name Latch Type Scan # Signal Name Latch Type
12-28 ADSP-21161 SHARC Processor Hardware Reference

JTAG Test-Emulation Port
References
• IEEE Standard 1149.1-1990. Standard Test Access Port and

Boundary-Scan Architecture.

To order a copy, contact IEEE at 1-800-678-IEEE.

• Maunder, C.M. and R. Tulloss. Test Access Ports and Boundary
Scan Architectures.

IEEE Computer Society Press, 1991.

• Parker, Kenneth. The Boundary Scan Handbook.

Kluwer Academic Press, 1992.

• Bleeker, Harry, P. van den Eijnden, and F. de Jong. Bound-
ary-Scan Test—A Practical Approach.

Kluwer Academic Press, 1993.

• Hewlett-Packard Co. HP Boundary-Scan Tutorial and BSDL Ref-
erence Guide.

(HP part# E1017-90001.) 1992.
ADSP-21161 SHARC Processor Hardware Reference 12-29

References
12-30 ADSP-21161 SHARC Processor Hardware Reference

13 SYSTEM DESIGN

The ADSP-21161 processor supports many system design options. The

options implemented in a system are influenced by cost, performance, and
system requirements. This chapter provides the following system design
information:

• “Pin Descriptions” on page 13-2

• “Dual-Voltage Power-up Sequencing” on page 13-41

• “Designing For JTAG Emulation” on page 13-49

• “Conditioning Input Signals” on page 13-60

• “Designing For High Frequency Operation” on page 13-62

• “Booting Single and Multiple Processors” on page 13-71

Other chapters also discuss system design issues. Some other locations for
system design information include:

• “Setting External Port Modes” on page 7-3

• “Setting Link Port Modes” on page 9-5

• “SPORT Operation Modes” on page 10-47

• “SPI Operation Modes” on page 11-24

By following the guidelines described in this chapter, you can design the
JTAG emulation interface for an Analog Devices target board. Develop-
ment and testing of your application code and hardware can begin
without debugging the debug port.
ADSP-21161 SHARC Processor Hardware Reference 13-1

Pin Descriptions
Pin Descriptions
This section describes the pins of the ADSP-21161 processor and shows
how these signals can be used in a ADSP-21161 processor system. All I/O
pins except CLKIN and XTAL have an internal 50kΩ resister that is enabled
during reset. Figure 13-1 illustrates how the pins are used in a single-pro-
cessor system. Figure 7-29 on page 7-91 shows a system diagram
illustrating pin connections in an multiprocessor cluster.
13-2 ADSP-21161 SHARC Processor Hardware Reference

System Design
Figure 13-1. Single Processor System

DMA DEVICE
(OPTIONAL)

DATA

CLKOUT
DMAR1-2

DMAG1-2

REDY
ADDR

DATA

HOST
PROCESSOR
INTERFACE
(OPTIONAL)

3

12

CLOCK CLKIN
XTAL

IRQ2-0

2 CLK_CFG1-0

EBOOT
LBOOT

FLAG11-0
TIMEXP

CLKDBL

RESET JTAG

7

SBTS

ADSP-21161

BMS

LINK
DEVICES
(2 MAX)

(OPTIONAL)

LXCLK

LXACK

LXDAT7-0

SCLK0

D0B
D0A
FS0SERIAL

DEVICE
(OPTIONAL)

CS
BOOT

EPROM
(OPTIONAL)

ADDR
MEMORY

AND
PERIPHERALS

(OPTIONAL)

OE
DATA

CS

RD

RAS

ACK

BR1-6

RPBA
ID2-0

PA

HBG

HBR

SDWE

MS3-0

WR

DATA47-16

DATA

ADDR

CS
ACK

WE

ADDR23-0

D
A

T
A

C
O

N
T

R
O

L

A
D

D
R

E
S

S

BRST

SDRAM
(OPTIONAL)

SCLK1

D1B
D1A
FS1SERIAL

DEVICE
(OPTIONAL)

SCLK2

D2B
D2A
FS2SERIAL

DEVICE
(OPTIONAL)

SCLK3

D3B
D3A
FS3SERIAL

DEVICE
(OPTIONAL)

SPICLK

MISO
MOSI
SPDS

SPI
COMPATIBLE

DEVICE
(HOST OR

SLAVE)
(OPTIONAL)

DATA

CAS

RAS

DQM

WE

ADDR

CS
A10
CKE
CLK

DQM

CAS

RSTOUT

SDCLK1-0
SDCKE
SDA10
ADSP-21161 SHARC Processor Hardware Reference 13-3

Pin Descriptions
ADSP-21161 processor pin definitions are listed in Table 13-1. The fol-
lowing symbols appear in the Type column of Table 13-1:

A Asynchronous
G Ground
I Input
O Output
P Power Supply
S Synchronous
(a/d) Active Drive
(o/d) Open Drain
T Three-State (when SBTS is asserted or the processor is bus slave)

Table 13-1. Pin Descriptions

Pin Type Function

ACK I/O/S Memory Acknowledge. External devices can deassert ACK (low)
to add wait states to an external memory access. ACK is used by
I/O devices, memory controllers, or other peripherals to hold off
completion of an external memory access. The ADSP-21161
processor deasserts ACK as an output to add wait states to a syn-
chronous access of its IOP registers. ACK has a 20kΩ internal
pull-up resistor that is enabled during reset or on processors with
ID2-0=00x.

ADDR23-0 I/O/T External Bus Address. The ADSP-21161 processor outputs
addresses for external memory and peripherals on these pins. In a
multiprocessor system the bus master outputs addresses for
read/writes of the IOP registers of other ADSP-21161 processors
while all other internal memory resources can be accessed indi-
rectly via DMA control (that is, accessing IOP DMA parameter
registers). The ADSP-21161 processor inputs addresses when a
host processor or multiprocessing bus master is reading or writ-
ing its IOP registers. A keeper latch on the processor’s
ADDR23-0 pins maintains the input at the level it was last
driven. This latch is only enabled on processors with ID2-0=00x.
13-4 ADSP-21161 SHARC Processor Hardware Reference

System Design
AVDD P Analog Power Supply. Nominally +1.8V dc and supplies the
processor’s internal PLL (clock generator). This pin has the same
specifications as VDDINT, except that added filtering circuitry is
required. For more information, see “Power Supplies” in the
ADSP-21161 Data Sheet.

AGND G Analog Power Supply Return.

BR6-1 I/O/S Multiprocessing Bus Requests. Used by multiprocessing
ADSP-21161 processor’s to arbitrate for bus mastership. An
ADSP-21161 processor only drives its own BRx line (corre-
sponding to the value of its ID2-0 inputs) and monitors all oth-
ers. In a multiprocessor system with less than six ADSP-21161
processors, the unused BRx pins should be pulled high; the pro-
cessor's own BRx line must not be pulled high or low because it
is an output.

BMS I/O/T Boot Memory Select. Serves as an output or input as selected
with the EBOOT and LBOOT pins; see Table 13-11 on
page 13-72. This input is a system configuration selection that
should be hardwired. For Host and PROM boot, DMA channel
10 (EPB0) is used. For Link Boot and SPI boot, DMA channel 8
is used.

*Three-state only in EPROM boot mode (when BMS is an
 output).

BMSTR O Bus Master Output. In a multiprocessor system, indicates
whether the ADSP-21161 processor is current bus master of the
shared external bus. The ADSP-21161 processor drives BMSTR
high only while it is the bus master. In a single-processor system
(ID2-0 = 000), the processor drives this pin high.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-5

Pin Descriptions
BRST I/O/T Sequential Burst Access. BRST is asserted by ADSP-21161 pro-
cessor to indicate that data associated with consecutive addresses
is being read or written. A slave device samples the initial address
and increments an internal address counter after each transfer.
The incremented address is not pipelined on the bus. A master
ADSP-21161 processor in a multiprocessor environment can
read slave external port buffers (EPBx) using the burst protocol.
BRST is asserted after the initial access of a burst transfer. It is
asserted for every cycle after that, except for the last data request
cycle (denoted by RD or WR asserted and BRST negated). A
keeper latch on the processor’s BRST pin maintains the input at
the level it was last driven. This latch is only enabled on proces-
sors with ID2-0=00x.

CAS I/O/T SDRAM Column Access Strobe. In conjunction with RAS,
MSx, SDWE, SDCLKx, and sometimes SDA10, defines the
operation for the SDRAM to perform.

CLKIN I Local Clock In. Used in conjunction with XTAL. CLKIN is the
ADSP-21161 processor clock input. It configures the
ADSP-21161 processor to use either its internal clock generator
or an external clock source. Connecting the necessary compo-
nents to CLKIN and XTAL enables the internal clock generator.
Connecting the external clock to CLKIN while leaving XTAL
unconnected configures the ADSP-21161 processor to use the
external clock source such as an external clock oscillator.The
ADSP-21161 processor external port cycles at the frequency of
CLKIN. The instruction cycle rate is a multiple of the CLKIN
frequency; it is programmable at power-up via the
CLK_CFG1-0 pins. CLKIN may not be halted, changed, or
operated below the specified frequency.

CLK_CFG1-0 I Core/CLKIN Ratio Control. ADSP-21161 processor core clock
(instruction cycle) rate is equal to n x PLLICLK where n is user
selectable to 2, 3, or 4, using the CLK_CFG1-0 inputs. These
pins can also be used in combination with the CLKDBL pin to
generate additional core clock rates of 6 x CLKIN and
8 x CLKIN (see Table 13-8 on page 13-29).

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-6 ADSP-21161 SHARC Processor Hardware Reference

System Design
CLKDBL I Crystal Double Mode Enable. This pin is used to enable the 2x
clock double circuitry, where CLKOUT can be configured as
either 1x or 2x the rate of CLKIN. This CLKIN double circuit is
primarily intended to be used for an external crystal in conjunc-
tion with the internal clock generator and the XTAL pin. The
internal clock generator when used in conjunction with the
XTAL pin and an external crystal is designed to support up to a
maximum of 25 MHz external crystal frequency. CLKDBL can
be used in XTAL mode to generate a 50 MHz input into the
PLL. The 2x clock mode is enabled (during RESET low) by
tying CLKDBL to GND, otherwise it is connected to VDDEXT
for 1x clock mode. For example, this allows the use of a 25 MHz
crystal to enable 100MHz core clock rates and a 50 MHz CLK-
OUT operation when CLK_CFG1=0 and CLKDBL=0. This pin
can also be used to generate different clock rate ratios for exter-
nal clock oscillators as well. The possible clock rate ratio options
(up to 100 MHz) for either CLKIN (external clock oscillator) or
XTAL (crystal input) are shown in Table 13-8 on page 13-29:

Clock Rate Ratios.
An 8:1 ratio allows the use of a 12.5 MHz crystal to generate a
100 MHz core (instruction clock) rate and a 25 MHz CLKIN
(external port) clock rate.

Note: When using an external crystal, the maximum crystal fre-
quency cannot exceed 25 MHz. For all other external clock
sources, the maximum CLKIN frequency is 50 MHz. For more
information, see “Clock Rate Ratios” on page 13-29.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-7

Pin Descriptions
CLKOUT O/T Local Clock Out. CLKOUT is 1x or 2x and is driven at either
1x or 2x the frequency of CLKIN frequency by the current bus
master. The frequency is determined by the CLKDBL pin.

The three programmable modes supported for CLKOUT by set-
ting bit 22 (COD) and 23 (COPT) of the SYSCON register are:

COPT COD CLKOUT Description
0 0 Free running
0 1 Disabled
1 x Driven by MMS master

When the COPT bit is set, CLKOUT is driven by the master
device. CLKOUT is three-stated during the bus transition cycle
by the device giving up its bus master status. The new bus master
then drives CLKOUT.

During host accesses, the bus master that granted the bus to the
host drives CLKOUT.

A keeper latch on the processor’s CLKOUT pin maintains the
output at the level it was last driven. This latch is only enabled
on processors with ID2-0=00x.

If CLKDBL enabled, CLKOUT = 2xCLKIN period

If CLKDBL disabled, CLKOUT = 1xCLKIN period

Note: CLKOUT is only controlled by the CLKDBL pin and
operates at either 1xCLKIN or 2xCLKIN. For more informa-
tion, see “ADSP-21161 CLKOUT and CCLK Clock Generation
Operation” on page 13-27.

CS I/A Chip Select. Asserted by host processor to select the
ADSP-21161 processor.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-8 ADSP-21161 SHARC Processor Hardware Reference

System Design
DATA47-16 I/O/T External Bus Data. The ADSP-21161 processor inputs and out-
puts data and instructions on these pins. Pull-up resistors on
unused data pins are not necessary. A keeper latch on the proces-
sor’s DATA47-16 pins maintains the input at the level it was last
driven. This latch is only enabled on the processors with
ID2-0=00x.

Note: DATA[15:8] pins (multiplexed with L1DATA[7:0]) can
also be used to extend the data bus if the link ports are disabled
and not used. In addition, DATA[7:0] pins (multiplexed with
L0DATA[7:0]) can also be used to extend the data bus if the link
ports are not used. This allows execution of 48-bit instructions
from external SBSRAM (system clock speed-external port),
SRAM (system clock speed-external port) and SDRAM (core
clock or one-half the core clock speed). The IPACKx Instruction
Packing Mode Bits in SYSCON should be set correctly
(IPACK1-0 = 0x1) to enable this full instruction
Width/No-packing Mode of operation.

DMAR1 I/A DMA Request 1 (DMA Channel 11). Asserted by external port
devices to request DMA services. DMAR1 has a 20kΩ internal
pull-up resistor.

DMAR2 I/A DMA Request 2 (DMA Channel 12). Asserted by external port
devices to request DMA services. DMAR2 has a 20kΩ internal
pull-up resistor.

DMAG1 O/T DMA Grant 1 (DMA Channel 11). Asserted by ADSP-21161
processor to indicate that the requested DMA starts on the next
cycle. Driven by bus master only. DMAG1 has a 20kΩ internal
pull-up resistor that is enabled for processors with ID2-0=00x.

DMAG2 O/T DMA Grant 2 (DMA Channel 12). Asserted by ADSP-21161
processor to indicate that the requested DMA starts on the next
cycle. Driven by bus master only. DMAG2 has a 20kΩ internal
pull-up resistor that is enabled for processors with ID2-0=00x.

DQM O/T SDRAM Data Mask. In write mode, DQM has a latency of zero
and is used during a precharge command and during SDRAM
power-up initialization.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-9

Pin Descriptions
DxA I/O Data Transmit or Receive Channel A (Serial Ports 0, 1, 2, 3).
Each DxA pin has a 50kΩ internal pull-up resistor. Bidirectional
data pin. This signal can be configured as an output to transmit
serial data, or as an input to receive serial data.

DxB I/O Data Transmit or Receive Channel B (Serial Ports 0, 1, 2, 3).
Each DxB pin has a 50kΩ internal pull-up resistor. Bidirectional
data pin. This signal can be configured as an output to transmit
serial data, or as an input to receive serial data.

EBOOT I EPROM Boot Select. For a description of how this pin operates,
see the table in the BMS pin description. This signal is a system
configuration selection that should be hardwired.

EMU O (O/D) Emulation Status. Must be connected to the ADSP-21161 pro-
cessor Analog Devices Tools product line of JTAG emulators tar-
get board connector only. EMU has a 50kΩ internal pullup
resistor.

FLAG11-0 I/O/A Flag Pins. Each is configured via control bits as either an input
or output. As an input, it can be tested as a condition. As an out-
put, it can be used to signal external peripherals.

FSx I/O Transmit or Receive Frame Sync (Serial Ports 0, 1, 2, 3). The
frame sync pulse initiates shifting of serial data. This signal is
either generated internally or externally. It can be active high or
low or an early or a late frame sync, in reference to the shifting of
serial data.

GND G Power Supply Return (26 pins).

HBR I/A Host Bus Request. Must be asserted by a host processor to
request control of the ADSP-21161 processor’s external bus.
When HBR is asserted in a multiprocessing system, the
ADSP-21161 processor that is bus master relinquishes the bus
and asserts HBG. To relinquish the bus, the ADSP-21161 pro-
cessor places the address, data, select, and strobe lines in a high
impedance state. HBR has priority over all ADSP-21161 proces-
sor bus requests (BR6-1) in a multiprocessing system.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-10 ADSP-21161 SHARC Processor Hardware Reference

System Design
HBG I/O Host Bus Grant. Acknowledges an HBR bus request, indicating
that the host processor may take control of the external bus.
HBG is asserted (held low) by the ADSP-21161 processor until
HBR is released. In a multiprocessing system, HBG is output by
the ADSP-21161 processor bus master and is monitored by all
others.

After HBR is asserted, and before HBG is given, HBG floats for
1 tCK (1 CLKIN cycle). To avoid erroneous grants, HBG should
be pulled up with a 20kΩ to 50kΩ ohm external resistor.

IRQ2-0 I/A Interrupt Request Lines. These are sampled on the rising edge
of CLKIN and may be either edge-triggered or level-sensitive.

ID2-0 I Multiprocessing ID. Determines which multiprocessing bus
request (BR1 - BR6) is used by ADSP-21161 processor.
ID2-0 = 001 corresponds to BR1, ID2-0 = 010 corresponds to
BR2, and so on. Use ID2-0 = 000 or ID2-0 = 001 in single-pro-
cessor systems. These lines are a system configuration selection
that should be hardwired or only changed at reset.

LxDAT7-0
[DAT15-0]

I/O
[I/O/T]

Link Port Data (Link Ports 0-1). Each LxDAT pin has a
20kΩ internal pull-down resistor that is enabled or disabled by
the LxPDRDE bit of the LCTL register or a keeper latch when
used as DATA pins.

Note: L1DATA[7:0] are multiplexed with the DATA[15:8] pins
L0DATA[7:0] are multiplexed with the DATA[7:0] pins. If link
ports are disabled and are not be used, then these pins can be
used as additional data lines for executing instructions at up to
the full clock rate from external memory.

For revisions 0.3, 1.0 and 1.1, LxDAT7-0 has a 50kΩ internal
pull-down resistor that is enabled or disabled by the LxPDRDE
bit of the LCTL register

LxCLK I/O Link Port Clock (Link Ports 0-1). Each LxCLK pin has a 50kΩ
internal pull-down resistor that is enabled or disabled by the
LxPDRDE bit of the LCTL register.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-11

Pin Descriptions
LxACK I/O Link Port Acknowledge (Link Ports 0-1). Each LxACK pin has a
50kΩ internal pull-down resistor that is enabled or disabled by
the LxPDRDE bit of the LCTL register.

LBOOT I Link Boot. For a description of how this pin operates, see the
table in the BMS pin description. This signal is a system config-
uration selection that should be hardwired.

MOSI I/O SPI Master Out Slave In. If the ADSP-21161 processor is con-
figured as a master, the MOSI pin becomes a data transmit (out-
put) pin, transmitting output data. If the ADSP-21161
processor is configured as a slave, the MOSI pin becomes a data
receive (input) pin, receiving input data. In an ADSP-21161
processor SPI interconnection, the data is shifted out from the
MOSI output pin of the master and shifted into the MOSI
input(s) of the slave(s). MOSI has a 50kΩ internal pull-up resis-
tor.

MISO I/O SPI Master In Slave Out. If the ADSP-21161 processor is con-
figured as a master, the MISO pin becomes a data receive (input)
pin, receiving input data. If the ADSP-21161 processor is con-
figured as a slave, the MISO pin becomes a data transmit (out-
put) pin, transmitting output data. In an ADSP-21161 processor
SPI interconnection, the data is shifted out from the MISO out-
put pin of the slave and shifted into the MISO input pin of the
master. MISO has a 50kΩ internal pull-up resistor.

Note: Only one master is allowed to transmit data at any given
time.

MS3-0 I/O/T Memory Select Lines. These outputs are asserted (low) as chip
selects for the corresponding banks of external memory. Memory
bank sizes are fixed to 16 Mwords for non-SDRAM and 64
Mwords for SDRAM. The MS3-0 outputs are decoded memory
address lines. In asynchronous access mode, the MS3-0 outputs
transition with the other address outputs. In synchronous access
modes, the MS3-0 outputs assert with the other address lines;
however, they de-assert after the first CLKIN cycle in which
ACK is sampled asserted. In a multiprocessor systems, the MSx
signals are tracked by slave SHARCs. MS3-0 has a keeper latched
enabled for processor’s with ID2-0=00x.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-12 ADSP-21161 SHARC Processor Hardware Reference

System Design
NC Do Not Connect. Reserved pins that must be left open and
unconnected. (5 pins).

PA I/O/T Priority Access. Asserting its PA pin allows an ADSP-21161 pro-
cessor bus slave to interrupt background DMA transfers and gain
access to the external bus. PA is connected to all ADSP-21161
processors in the system. If access priority is not required in a
system, the PA pin should be left unconnected. PA has a 20kΩ
internal pull-up resistor that is enabled for processors with
ID2-0=00x.

RAS I/O/T SDRAM Row Access Strobe. In conjunction with CAS, MSx,
SDWE, SDCLKx, and sometimes SDA10, defines the operation
for the SDRAM to perform.

RD I/O/T Memory Read Strobe. RD is asserted whenever ADSP-21161
processor reads a word from external memory or from the IOP
registers of other ADSP-21161 processors. External devices,
including other ADSP-21161 processors, must assert RD for
reading from a word of the ADSP-21161 processor IOP register
memory. In a multiprocessing system, RD is driven by the bus
master. RD has a 20kΩ internal pull-up resistor that is enabled
for processors with ID2-0=00x.

REDY O (O/D) Host Bus Acknowledge. The ADSP-21161 processor de-asserts
REDY (low) to add waitstates to a host access of its IOP registers
when CS and HBR inputs are asserted.

RESET I/A Processor Reset. Resets the ADSP-21161 processor to a known
state and begins execution at the program memory location spec-
ified by the hardware reset vector address. The RESET input
must be asserted (low) at power-up.

RPBA I/S Rotating Priority Bus Arbitration Select. When RPBA is high,
rotating priority for multiprocessor bus arbitration is selected.
When RPBA is low, fixed priority is selected. This signal is a sys-
tem configuration selection that must be set to the same value on
every ADSP-21161 processor. If the value of RPBA is changed
during system operation, it must be changed in the same CLKIN
cycle on every ADSP-21161 processor.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-13

Pin Descriptions
RSTOUT1 O Reset Out. When RSTOUT is asserted, this pin is used to indi-
cate to the external logic that the core blocks are in reset. It is
deasserted 4096 cycles after RESET is deasserted allowing the
PLL to stabilize and lock.

For systems requiring a secondary reset for other devices needing
to be simultaneously brought out of reset with the processor core
reset, system designers can connect this pin to the reset pin of
the other devices. This prevents other devices from driving data
before the processor begins the booting process.

SDWE I/O/T SDRAM Write Enable. In conjunction with CAS, RAS, MSx,
SDWE, SDCLKx, and sometimes SDA10, defines the operation
for the SDRAM to perform.

SDCLK0 I/O/S/T SDRAM Clock Output 0. Clock for SDRAM devices.

SDCLK1 O/S/T SDRAM Clock Output 1. Additional clock for SDRAM
devices. For systems with multiple SDRAM devices, handles the
increased clock load requirements, eliminating need of off-chip
clock buffers. Either SDCLK1 or both SDCLKx pins can be
three-stated.

SDCKE I/O/T SDRAM Clock Enable. Enables and disables the CLK signal.
For details, see the data sheet supplied with your SDRAM
device.

SDA10 O/T SDRAM A10 Pin. Enables applications to refresh an SDRAM in
parallel with a non-SDRAM accesses or host accesses.

SBTS I/S Suspend Bus Three-State. External devices can assert SBTS
(low) to place the external bus address, data, selects, and strobes
in a high impedance state for the following cycle. If the
ADSP-21161processor attempts to access external memory while
SBTS is asserted, the processor halts and the memory access is
not completed until SBTS is de-asserted. SBTS should only be
used to recover from host processor/ADSP-21161 processor
deadlock.

SCLKx I/O Transmit/Receive Serial Clock (Serial Ports 0, 1, 2, 3). Each
SCLK pin has a 50kΩ internal pull-up resistor. This signal can
be either internally or externally generated.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-14 ADSP-21161 SHARC Processor Hardware Reference

System Design
SPICLK I/O Serial Peripheral Interface Clock Signal. Driven by the master,
controls the rate at which data is transferred. The master may
transmit data at a variety of baud rates. SPICLK cycles once for
each bit transmitted. SPICLK is a gated clock that is active dur-
ing data transfers, only for the length of the transferred word.
Slave devices ignore the serial clock if the slave select input is
driven inactive (HIGH). SPICLK is used to shift out and shift in
the data driven on the MISO and MOSI lines. The data is
always shifted out on one clock edge of the clock and sampled on
the opposite edge of the clock. Clock polarity and clock phase
relative to data are programmable into the SPICTL control regis-
ter and define the transfer format. SPICLK has a 50kΩ internal
pull-up resistor.

SPIDS I Serial Peripheral Interface Slave Device Select. An active low
signal used to enable slave devices. This input signal behaves like
a chip select, and is provided by the master device for the slave
devices. In multi-master mode SPIDS signal can be asserted to a
master device to signal that an error has occurred, as some other
device is also trying to be the master device. If asserted low when
the device is in master mode, it is considered a multi-master
error. For a Single-Master, Multiple-Slave configuration where
FLAG3-0 are used, this pin must be tied high to VDDINT. For
ADSP-21161 processor to ADSP-21161 processor SPI interac-
tion, any of the master ADSP-21161 processor’s FLAG3-0 pins
can be used to drive the SPIDS signal on the ADSP-21161 pro-
cessor SPI slave device.

TIMEXP O Timer Expired. Asserted for four core clock cycles when the
timer is enabled and TCOUNT decrements to zero.

TCK I Test Clock (JTAG). Provides a clock for JTAG boundary scan.

TMS I/S Test Mode Select (JTAG). Used to control the test state
machine. TMS has a 20kΩ internal pull-up resistor.

TDI I/S Test Data Input (JTAG). Provides serial data for the boundary
scan logic. TDI has a 20kΩ internal pull-up resistor.

TDO O Test Data Output (JTAG). Serial scan output of the boundary
scan path.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
ADSP-21161 SHARC Processor Hardware Reference 13-15

Pin Descriptions
Inputs identified as synchronous (S) must meet timing requirements with
respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as
asynchronous (A) can be asserted asynchronously to CLKIN (or to TCK for
TRST).

Unused inputs should be tied or pulled to VDDEXT or GND, except for
ADDR23-0, DATA47-16, FLAG11-0, and inputs that have internal pull-up or
pull-down resistors (PA, ACK, BRST, CLKOUT, RD, WR, DMARx, DMAGx, DxA, DxB,
SCLKx, LxDAT7-0, MISO, MOSI, SPICLK, LxCLK, LxACK, TMS, TRST and TDI)—
these pins can be left floating. Some of these pins have a logic-level hold
circuit (only enabled on the ADSP-21161 processor with ID2-0=00x) that
prevents input from floating internally. See the pin list in Table 13-1.

TRST I/A Test Reset (JTAG). Resets the test state machine. TRST must be
asserted (pulsed low) after power-up or held low for proper oper-
ation of the ADSP-21161 processor. TRST has a 20kΩ internal
pull-up resistor.

VDDINT P Core Power Supply. Nominally +1.8 V DC and supplies the pro-
cessor’s core processor (14 pins).

VDDEXT P I/O Power Supply. Nominally +3.3 V DC. (13 pins).

WR I/O/T Memory Write Low Strobe. WR is asserted when ADSP-21161
processor writes a word to external memory or IOP registers of
other ADSP-21161 processors. External devices must assert WR
for writing to ADSP-21161 processor’s IOP registers. In a multi-
processing system, WR is driven by the bus master. WR has a
20kΩ internal pull-up resistor that is enabled for processors with
ID2-0=00x.

XTAL O Crystal Oscillator Terminal 2. Used in conjunction with
CLKIN to enable the ADSP-21161 processor’s internal clock
generator or to disable it to use an external clock source. See
CLKIN.

1 RSTOUT exists only for silicon revisions 1.2 and greater.

Table 13-1. Pin Descriptions (Cont’d)

Pin Type Function
13-16 ADSP-21161 SHARC Processor Hardware Reference

System Design
The TRST input of the JTAG interface must be asserted (pulsed
low) or held low after power-up for proper operation of the
ADSP-21161 processor. Do not leave this pin unconnected.

Additional Notes:

• In single-processor systems, the processor owns the external bus
during reset and does not perform bus arbitration to gain control
of the bus.

• Operation of the RD and WR signals changes when CS is asserted by a
host processor. For more information, see “Asynchronous Trans-
fers” on page 7-48.

• Except during a Host Transition Cycle (HTC), the RD and WR
strobes should not be deasserted (low-to-high transition) while ACK
or REDY are deasserted (low)—the processor hangs if this happens.

• In multiprocessor systems, the ACK signal is an input to the
ADSP-21161 processor bus master and does not float when it is
not being driven. It is not necessary to use an external pullup resis-
tor on the ACK line during booting or at any other time. The ACK
pin is pulled high internally with a 20kΩ equivalent resistor and is
activated under the following three conditions:

1. When the processor is in reset (regardless of the hardwired
ID pin configuration)

2. After reset, in a single processor system (ID2-0 =000)

3. After reset, in a multiprocessor system, the processor having
ID2-0 =001

Figure 13-2 shows how different data word sizes are transferred over the
external port.
ADSP-21161 SHARC Processor Hardware Reference 13-17

Pin Descriptions
Input Synchronization Delay
The ADSP-21161 processor has several asynchronous inputs: RESET, TRST,
HBR, CS, DMAR1, DMAR2, IRQ2-0, and FLAG11-0 (when configured as inputs).
These inputs can be asserted in arbitrary phase to the processor clock,
CLKIN. The processor synchronizes the inputs prior to recognizing them.
The delay associated with recognition is called the synchronization delay.

Any asynchronous input must be valid prior to the recognition point in a
particular cycle. If an input does not meet the setup time on a given cycle,
it may be recognized in the current cycle or during the next cycle.

Figure 13-2. External Port Data Alignment

47

48-bit Instruction Fetch
(No Packing) Extra Data Lines

DATA[15-0] Are Only
Accessible If Link Ports
Are Disabled. Enable
These Additional Data

Lines By setting
IPACK[1:0] = 01 In

SYSCON.

0781516232431323940

Float or Fixed, D31-D0, 32-bit Packed

 16-bit Packed DMA Data
16-bit Packed Instruction Execution

PROM
BOOT

DATA 47-16

L1DATA[7:0] L0DATA[7:0]
DATA 15-8 DATA 7-0

8-bit Packed DMA Data
8-bit Packed Instruction Execution

32-bit Packed Instruction

DATA 15-0
13-18 ADSP-21161 SHARC Processor Hardware Reference

System Design
To ensure recognition of an asynchronous input, it must be asserted for at
least one full processor cycle plus setup and hold time, except for RESET,
which must be asserted for at least four processor cycles. The minimum
time prior to recognition (the setup and hold time) is specified in the
ADSP-21161N SHARC DSP Microcomputer Data Sheet.

Pin States At Reset
Table 13-2 shows the processor pin states during and after reset.

Table 13-2. Pin States at Reset

Pin Type State During and After Reset

ACK I/O/S/T Pulled high by bus master (w/ 20kΩ internal
pullup resistor)1

ADDR23-0 I/O/T Driven1

BMS I/O/T Input2

BMSTR O Driven high for ID1, driven low for ID2-6

BR6-1 I/O BR1 driven low if bus master, otherwise driven
high1

BRST I/O/T Driven low1

CAS I/O/T Driven high

CLK_CFG1-0 I Input

CLKDBL I Input

CLKIN I Input

CLKOUT O/T Driven

CS I Input2

DATA47-16 I/O/T Three-state1

DMAG1 O/T Driven high1

DMAG2 O/T Driven high1
ADSP-21161 SHARC Processor Hardware Reference 13-19

Pin Descriptions
DMAR1 I Input2

DMAR2 I Input2

DQM I/O/T Driven high until SDRAM power-up sequence
starts

DxA O Three-state (for multichannel)

DxB I Input4

EBOOT I Input2

EMU O (o/d) Three-state3

FLAG11-0 I/O/A Input2

FSx I/O Three-state4

HBG I/O/S/T Driven high1

HBR I/A Input2

ID2-0 I Input2

IRQ2-0 I/A Input2

LBOOT I Input2

LxACK I/O Three-state4

LxCLK I/O Three-state4

LxDAT7-0 I/O Three-state4

MISO I/O Input4

MOSI I/O Input4

MS3-0 I/O/T Driven high1

PA (o/d) I/O Three-state2

RAS I/O/T Driven high

RD I/O/T Driven high1

REDY (o/d) O Three-state2

Table 13-2. Pin States at Reset (Cont’d)

Pin Type State During and After Reset
13-20 ADSP-21161 SHARC Processor Hardware Reference

System Design
RESET I/A Input2

RPBA I/S Input2

RSTOUT O Driven low2

SBTS I/S Input

SCLK I/O Three-state4

SDA10 O/T Driven

SDCKE I/O/T Driven high

SDCLK0 I/O/S/T Driven

SDCLK1 O/S/T Driven

SDWE I/O/T Driven high

SPICLK I/O Three-state4

SPIDS I Input4

TCK I Input3

TDI I/S Input3

TDO O Three-state3

TIMEXP O Driven low2

TMS I/S Input3

TRST I/A Input3

WR I/O/T Driven high1

XTAL O/T Driven

1 For ID =0 or 1, driven only by processor bus master, otherwise three-stated
2 Bus master independent
3 JTAG interface
4 Serial ports, SPI and link port

Table 13-2. Pin States at Reset (Cont’d)

Pin Type State During and After Reset
ADSP-21161 SHARC Processor Hardware Reference 13-21

Pin Descriptions
Pull-Up and Pull-Down Resistors
Table 13-3 shows the keeper latches, pull-up and pull-down resistor values
associated with each pin.

Table 13-3. Keeper Latches and Resistor Values

Pin Resistor va1ue

ACK 20kΩ pull-up enabled during reset or when ID2-0 = 00X

ADDR23-0 Keeper latch (only for ID2-0 = 00X)

BMS N/A

BMSTR N/A

BR6-1 N/A

BRST Keeper latch (only for ID2-0 = 00X)

CAS N/A

CLK_CFG1-0 N/A

CLKDBL N/A

CLKIN N/A

CLKOUT Keeper latch (only for ID2-0 = 00X)

CLKx N/A

CS N/A

DATA47-16 Keeper latch (only for ID2-0 = 00X)

DMAG1 20kΩ Pull-up (only for ID2-0 = 00X)

DMAG2 20kΩ Pull-up (only for ID2-0 = 00X)

DMAR1 20kΩ Pull-up (only for ID2-0 = 00X)

DMAR2 20kΩ Pull-up (only for ID2-0 = 00X)

DQM N/A

DxA 50kΩ Pull-up

DxB 50kΩ Pull-up
13-22 ADSP-21161 SHARC Processor Hardware Reference

System Design
EBOOT N/A

EMU 50kΩ Pull-up

FLAG11-0 N/A

FSx N/A

HBG N/A

HBR N/A

ID2-0 N/A

IRQ2-0 N/A

LBOOT N/A

LxACK 50kΩ Pull-down that is enabled or disabled by the LxPDRDE bit of the
LCTL register.

LxCLK 50kΩ Pull-down that is enabled or disabled by the LxPDRDE bit of the
LCTL register.

LxDAT7-0 For Revisions 0.3. 1.0, 1.1, 50kΩ Pull-down

For Revisions 1.2 and higher, a keeper latch is enabled when these pins
are used as DATA lines or a 20kΩ Pull-down resistor is enabled or dis-
abled based on the LxPDRDE bit setting.

MISO 50kΩ Pull-up

MOSI 50kΩ Pull-up

MS3-0 Keeper latch (Only for ID2-0 = 00X)

PA (o/d) 20kΩ Pull-up (only for ID2-0 = 00X)

RAS N/A

RD 20kΩ Pull-up (only for ID2-0 = 00X)

REDY (o/d) N/A

RESET N/A

RPBA N/A

Table 13-3. Keeper Latches and Resistor Values (Cont’d)

Pin Resistor va1ue
ADSP-21161 SHARC Processor Hardware Reference 13-23

Pin Descriptions
Clock Derivation
The ADSP-21161 processor employs a phase-locked loop on-chip, to pro-
vide clocks that switch at higher frequencies than the system clock
(CLKIN). The PLL-based clocking methodology employed on the processor
influences the clock frequencies and behavior for the serial, link, SDRAM,
SPI, and external ports; in addition to the processor core and internal
memory. In each case, the processor PLL provides a de-skewed clock to
the port logic and I/O pins.

SBTS N/A

SCLK 50kΩ Pull-up

SDA10 N/A

SDCKE N/A

SDCLK0 N/A

SDCLK1 N/A

SDWE N/A

SPICLK 50kΩ Pull-up

SPIDS N/A

TCK N/A

TDI 20kΩ Pull-up

TDO N/A

TIMEXP N/A

TMS 20kΩ Pull-up

TRST 20kΩ Pull-up

WR 20kΩ Pull-up (only for ID2-0 = 00X)

XTAL N/A

Table 13-3. Keeper Latches and Resistor Values (Cont’d)

Pin Resistor va1ue
13-24 ADSP-21161 SHARC Processor Hardware Reference

System Design
For the external port, this clock is fedback to the PLL, such that the exter-
nal port clock always switches at the 1x or 2x frequency CLKIN frequency
depending on if CLKDBL is enabled. The PLL provides internal clocks that
switch at multiples of the CLKIN frequency for the internal memory, pro-
cessor core, link and serial ports, and to modify the external port timing as
required (for example, read/write strobes in asynchronous modes). The
ratio of processor core clock frequency and CLKIN/external port clock fre-
quency is determined by the CLK_CFG1-0 pins and CLKDBL pin (as shown in
Table 13-8 on page 13-29), during reset.

The core clock ratio cannot be altered dynamically. The
ADSP-21161 processor must be reset to alter the clock ratio.

The PLL provides a clock that switches at the processor core frequency to
the serial and link ports. Each of the serial and link ports can be pro-
grammed to operate at clock frequencies derived from this clock. The four
serial ports’ transmit and receive clocks are divided down from the proces-
sor core clock frequency by setting the DIVx registers appropriately.

In addition to the PLL ratios generated by the CLK_CFG1-0 pins, an addi-
tional CLKDBL pin can be used for additional clock ratio options. The
(1x/2x CLKIN) rate set by the CLKDBL pin determines the rate of the PLL
input clock and the rate at which the synchronous external port operates.
With the combination of CLK_CFG[1:0] and CLKDBL, ratios of 2:1, 3:1, 4:1,
6:1, and 8:1 between the core and CLKIN are supported.

Timing Specifications

The ADSP-21161 processor’s internal clock (a multiple of CLKIN) provides
the clock signal for timing internal memory, processor core, link ports,
serial ports, SPI, SDRAM, and external port (as required for read/write
strobes in asynchronous access mode). During reset, program the ratio
between the ADSP-21161 processor’s internal clock frequency and exter-
nal (CLKIN) clock frequency with the CLK_CFG1-0 and CLKDBL pins. Even
ADSP-21161 SHARC Processor Hardware Reference 13-25

Pin Descriptions
though the internal clock is the clock source for the external port, it
behaves as described in the Clock Rate Ratio chart (CLKDBL pin
description).

To determine switching frequencies for the serial and link ports, divide
down the internal clock, using the programmable divider control of each
port (DIVx for the serial ports and LxCLKD1-0 for the link ports). For the
SPI port, the BAUDR bit in the SPICTL register controls the SPICLK baud rate
based on the core clock frequency. Each of the two link port clock fre-
quencies are determined by programming the LxCLKDx parameters in the
LCTL registers. For more information, see “Link Port Buffer Control Regis-
ter (LCTL)” on page A-92.

Note the following definitions of various clock periods that are a function
of CLKIN and the appropriate ratio control.

Figure 13-3 allows Core-to-CLKIN ratios of 2:1, 3:1, 4:1, 6:1, and 8:1
with external oscillator or crystal.

Figure 13-3. Core Clock and System Clock Relationship to CLKIN

CLKIN

CLKDBL CLKOUT

Input Clock
Doubler

1:1, 2:1 2:1, 3:1, 4:1

CCLK

Core
Clock

Tie to GND
to enable 2x

operation

PLLICLK

Crystal or
Clock

Oscillator

CLK_CFG[1:0]

XTAL

PLL
SDRAM

x1, x1/2

If
Bus Master

SDCLK[1:0]

External Port
Host, MMS,

SRAM
SBSRAM

External Port
13-26 ADSP-21161 SHARC Processor Hardware Reference

System Design
Table 13-4 and Table 13-5 provide various definitions of clock inputs,
outputs and uses in an ADSP-21161 processor system.

If CLKDBL is enabled (tied low at reset), then CLKOUT = PLLICLK
= 2xCLKIN. Otherwise, CLKOUT = PLLICLK = CLKIN.

CCLK = Core Clock = PLLICLK x PLL Multiply Ratio (deter-
mined by CLK_CFG pins).

Table 13-4. ADSP-21161 CLKOUT and CCLK Clock Generation
Operation

Timing Requirements Calculation Description

CLKIN = 1/tCKIN = Input Clock

CLKOUT = 1/tTCK = Local Clock Out

PLLICLK = 1/tPLLIN = PLL Input Clock

CCLK = 1/tCCLK = Core Clock

Table 13-5. Clock Relationships

Timing Requirements Description1

 tCK = CLKOUT Clock Period

tPLLICK = PLL Input Clock

tCCLK = (Processor) Core Clock Period

tLCLK = Link Port Clock Period = (tCCLK) * LR

tSCLK = Serial Port Clock Period = (tCCLK) * SR

tSDK = SDRAM Clock Period = (tCCLK) * SDCKR

tSPICLK = SPI Clock Period = (tCCLK) * SPIR
ADSP-21161 SHARC Processor Hardware Reference 13-27

Pin Descriptions
Table 13-6 describes clock ratio requirements. Table 13-7 shows an exam-
ple clock derivation.

RESET and CLKIN
The ADSP-21161 processor receives its clock input on the CLKIN pin. The
processor uses an on-chip phase-locked loop to generate its internal clock,
which is a multiple of the CLKIN frequency. Because the phase-locked loop
requires some time to achieve phase lock, CLKIN must be valid for a mini-

1 where:
 LR = link port-to-core clock ratio (1, 2, 3, or 1:4, determined by LxCLKD)
 SR = serial port-to-core clock ratio (wide range, determined by CLKDIV)
SDCKR = SDRAM-to-Core Clock Ratio (1:1 or 1:2, determined by SDCTL register)
SPIR = SPI-to-Core Clock Ratio (wide range, determined by SPICTL register)
LCLK = Link Port Clock
SCLK = Serial Port Clock
SDK = SDRAM Clock
SPICLK = SPI Clock

Table 13-6. Clock Ratios

Timing Requirements Description

cRTO = Core:CLKOUT ratio, (2, 3, or 4:1, determined by CLK_CFG)

lRTO = lport:core clock ratio (1:1, 1:2, 1:3, or 1:4, determined by
LxCLKD)

sRTO = Sport:core clock ratio (wide range determined by xCLKDIV)

Table 13-7. Determining Clock Period

Timing Requirements Description

tCCLK = (tCK): cRTO

tLCLK = (tCCLK) * lRTO

tSCLK = (tCCLK) * sRTO
13-28 ADSP-21161 SHARC Processor Hardware Reference

System Design
mum time period during reset before the RESET signal can be deasserted.
For information on minimum clock setup, see the ADSP-21161N DSP
Microcomputer Data Sheet.

Table 13-8 describes the internal clock to CLKIN frequency ratios sup-
ported by the ADSP-21161 processor.

When using an external crystal, the maximum crystal frequency
cannot exceed 25 MHz. The internal clock generator when used in
conjunction with the XTAL pin and an external crystal is designed to
support up to a maximum of 25 MHz external crystal frequency.
For all other external clock sources, the maximum CLKIN frequency
is 50 MHz.

Table 13-9 demonstrates the internal core clock switching frequency,
across a range of CLKIN frequencies. The minimum operational range for
any given frequency is constrained by the operating range of the phase

Table 13-8. Clock Rate Ratios

CLKDBL CLK_CFG1 CLK_CFG0 Core Clock
Ratio

CLKOUT
Ratio

1 0 0 2:1 1x

1 0 1 3:1 1x

1 1 0 4:1 1x

0 0 0 4:1 2x

0 0 1 6:1 2x

0 1 0 8:1 2x
ADSP-21161 SHARC Processor Hardware Reference 13-29

Pin Descriptions
lock loop. Note that the goal in selecting a particular clock ratio for the
application is to provide the highest internal frequency, given a CLKIN
frequency.

If an external master clock is used, it should not be driving the
CLKIN pin when the processor is not powered. The clock must be
driven immediately after powerup; otherwise, internal gates stay in
an undefined (hot) state and can draw excess current. After pow-
erup, there should be sufficient time for the oscillator to start up,
reach full amplitude and deliver a stable CLKIN signal to the proces-
sor before the reset is released. This may take 100 ms depending on
the choice of crystal, operating frequency, loop gain and capacitor
ratios. For details on timing, refer to the ADSP-21161N DSP
Microcomputer Data Sheet.

After the external RESET signal is deasserted, the PLL starts operating. The
rest of the chip is held in reset for 4096 CLKIN cycles after RESET is deas-
serted by an internal (or core) reset (RSTOUT1) signal. This sequence allows
the PLL to lock and stabilize.

1 RSTOUT exists only for silicon revisions 1.2 and greater.

Table 13-9. Selecting Core to CLKIN Ratio

 Typical Crystal and Clock Oscillators Inputs

12.5 16.67 25 33.3 40 50

Clock Ratios Core CLK (MHz)

2:1 25 33.3 50 66.6 80 100

3:1 37.5 50 75 100 N/A N/A

4:1 50 66.6 100 N/A N/A N/A

6:1 75 100 N/A N/A N/A N/A
13-30 ADSP-21161 SHARC Processor Hardware Reference

System Design
Reset Generators
It is important that an ADSP-21161 processor (or programmable device)
have a reliable active RESET that is released once the power supplies and
internal clock circuits have stabilized. The RESET signal should not only
offer a suitable delay, but it should also have a clean monotonic edge. Ana-
log Devices has a range of microprocessor supervisory ICs with different
features. Features include one or more of the following:

• Powerup reset

• Optional manual reset input

• Power low monitor

• Back-up battery switching

Part number series for Analog Devices’ supervisory circuits are as follows:

• ADM69x

• ADM70x

• ADM80x

• ADM1232

• ADM181x

• ADM869x

8:1 100 N/A N/A N/A N/A N/A

Table 13-9. Selecting Core to CLKIN Ratio

 Typical Crystal and Clock Oscillators Inputs
ADSP-21161 SHARC Processor Hardware Reference 13-31

Pin Descriptions
A simple powerup reset circuit is shown in Figure 13-4, using the
ADM809-RART reset generator. The ADM809 provides an active low
RESET signal whenever the supply voltage is below 2.63V. At powerup, a
240ms active reset delay is generated to give the power supplies and oscil-
lators time to stabilize.

Another part, the ADM706TAR, provides power on RESET and optional
manual RESET. It allows designers to create a more complete supervisory
circuit that monitors the supply voltage. Monitoring the supply voltage
allows the system to initiate an orderly shutdown in the event of power
failure. The ADM706TAR also allows designers to create a watchdog
timer that monitors for software failure. This part is available in an eight
lead SOIC package. Figure 13-5 shows a typical application circuit using
the ADM706TAR.

Figure 13-4. Simple Reset Generator

V

RESET

GND

ADM809-RART

VDDEXT

RESET

GND

+3.3VDDEXT

10µF

CC VDDINT

+1.8VDDINT

a
ADSP-21161

S

13-32 ADSP-21161 SHARC Processor Hardware Reference

System Design
Interrupt and Timer Pins
The ADSP-21161 processor’s external interrupt pins, flag pins, and timer
pin can be used to send and receive control signals to and from other
devices in the system. Hardware interrupt signals are received on the
IRQ2-0 pins. Interrupts can come from devices that require the processor
to perform some task on demand. A memory-mapped peripheral, for
example, can use an interrupt to alert the processor that it has data avail-
able. For more information, see “Interrupts and Sequencing” on
page 3-34.

The TIMEXP output is generated by the on-chip timer. It indicates to other
devices that the programmed time period has expired. For more informa-
tion, see “Timer and Sequencing” on page 3-50.

Figure 13-5. Reset Generator and Power Supply Monitor

RESET

IRQ0

IRQ1

FLAG0

GND
RESET

Vt=+1.25V

VSENSE

VDDEXT

PFI

MR

WDI

PFO

WDO

GND

4

1

6

5

8

3

ADM706TAR
VCC

2
RST

7

100nF

10µF

100nF

VDDEXT +3.3V

a
ADSP-21161

S

ADSP-21161 SHARC Processor Hardware Reference 13-33

Pin Descriptions
Core-Based Flag Pins
The FLAG3-0 pins allow single-bit signalling between the processor and
other devices. For example, the ADSP-21161 processor can raise an out-
put flag to interrupt a host processor. Each flag pin can be programmed to
be either an input or output. In addition, many instructions can be condi-
tioned on a flag’s input value, enabling efficient communication and
synchronization between multiple processors or other interfaces.

The flags are bidirectional pins, each with the same functionality. The
FLGxO bits in the MODE2 register program the direction of each flag pin. For
more information, see “Mode Control 2 Register (MODE2)” on
page A-10.

Flag Inputs

When a flag pin is programmed as an input, its value is stored in a bit in
the FLAGS register. The bit is updated in each cycle with the input value
from the pin. Flag inputs can be asynchronous to the processor clock, so
there is a one-cycle delay before a change on the pin appears in FLAGS (if
the rising edge of the input misses the setup requirement for that cycle).
For more information, see “Flag Value Register (FLAGS)” on page A-37.

An flag bit is read-only if the flag is configured as an input. Otherwise, the
bit is readable and writable. The flag bit states are conditions that code
can specify in conditional instructions.

Flag Outputs

When a flag is configured as an output, the value on the pin follows the
value of the corresponding bit in the FLAGS register. A program can set or
clear the flag bit to provide a signal to another processor or peripheral.

The FLAG outputs transition on rising edge of CLKIN. Because the processor
core operates at least twice the frequency of CLKIN, the programmer must
hold the FLAG state stable for at least one full CLKIN period, to insure that
13-34 ADSP-21161 SHARC Processor Hardware Reference

System Design
the output changes state. Figure 13-6 describes the relationship between
instruction execution and a Flag pin, when the processor core to bus clock
ratio is set to 2:1. Figure 13-6 also describes the flag in/out process. Note
that at least two instructions execute each CLKIN cycle.

Programmable I/O Flags
The IOFLAG register is an IOP register created specifically for controlling
the input/output flag pins. When a flag is configured as an output, the
value on the pin follows the value of the corresponding bit in the FLAGS
register. A program can set or clear the flag bit to provide a signal to
another processor or peripheral. Some examples of assembly language
instructions that demonstrate the use of macros to configure flag pins have
been included at the end of this section.

Figure 13-6. Flag Timing (At 2:1 Clock Ratio)

1ST CLKOUT
CYCLE:

2ND CLKOUT
CYCLE:

3RD CLKOUT
CYCLE:

4TH CLKOUT
CYCLE:

5TH CLKOUT
CYCLE:

OUTPUT ENABLED

OUTPUT
VALID

OUTPUT DISABLED, INPUT SAMPLEDFLAG HIGH FLAG LOW

CLKOUT

FLAGX

BIT SET MODE2 FLG0; /* 1st cycle: set FLAG0 to output in Mode2 */
BIT CLR FLAGS FLG0; /* clear FLAG0 */
BIT SET FLAGS FLG0; /* 1st cycle: set FLAG0 output high */
NOP; /* 2nd cycle: FLAG register updated here */

/* A NOP indicates a NOP or another instruction not related to FLAG. */
BIT CLR FLAGS FLG0; /* 2nd cycle: clear FLAG0 output */

/* earliest assertion of FLAG0 output, depends on CLKOUT phase */
BIT CLR MODE2 FLG0; /* 3rd cycle: set FLAG0 back to input */
NOP; /* 3rd cycle: */
NOP; /*4th cycle: earliest deassertion of FLAG0 output */
ADSP-21161 SHARC Processor Hardware Reference 13-35

Pin Descriptions
The ADSP-21161 processor has an additional eight IOP based gen-
eral-purpose programmable input/output flag pins - FLAG[11:4]. As
outputs, these pins can signal peripheral devices; as inputs, these pins can
provide the test for conditional branching. These pins correspond to the
FLAG11-4 pins listed in the datasheet of the device.

All FLAG pins are configured as inputs on reset. When configuring
IOFLAG register flag pins as outputs, do not set FLGx bits 0 to 7 in
the same instruction cycle that the flag is configured as an output
(setting the FLGxO bits 8 to 15 in the IOFLAG register). If your appli-
cation requires that the flags be set after they are configured as
outputs, two writes to the IOFLAG register are needed: one to con-
figure the flag pin as an output, and another to set the flag pin
high.

The functionality of the FLAG11-4 pins is similar to that of the FLAG3-0
except for both the status and control information are included in one reg-
ister, IOFLAG. The control and status bits for the FLAG3-0 are in the MODE2
register and FLAGS register, respectively. Bits 0-7 of IOFLAG reflect the sta-
tus of the FLAG pins while bits 15-8 control the direction (input or output)
of these flags. A value of 0 programs the flag as an input and a value of 1
programs it as an output. Although you cannot execute bit wise operations
such as BIT TST, BIT CLR, on these flags directly in memory, you can exe-
cute these operations by first writing to a system register such as the
USTAT1 - USTAT4.

Figure 13-7 shows the IOFLAG register.
13-36 ADSP-21161 SHARC Processor Hardware Reference

System Design
Example #1: Configuring FLGx as Output Flags

The following example shows how to configure the flags as output flags,
set the flag pins high and write the bits to the IOFLAG register:

ustat2 = 0x00000000;

bit set ustat2 FLG9O|FLG8O|FLG7O|FLG6O|FLG5O|FLG4O;

dm(IOFLAG) = ustat2;

Figure 13-7. IOFLAG Register

IOFLAG
0x1B

FLG4

FLG5

FLG6

FLG7

FLG8

FLG9

FLG10

FLG11

FLAG4 Value (Low=‘0’, High=‘1’)

FLAG5 Value

FLAG6 Value

FLAG7 Value

FLAG8 Value

FLAG9 Value

FLAG10 Value

FLAG11 Value

FLG11O
0=FLAG11 Input

1=FLAG11 Output
FLG10O

0=FLAG10 Input
1=FLAG10 Output

FLG9O
0=FLAG9 Input

1=FLAG9 Output

FLG8O

FLG7O

FLG6O

FLG50

FLG40
0=FLAG4 Input

1=FLAG4 Output

0=FLAG5 Input
1=FLAG5 Output

0=FLAG6 Input
1=FLAG6 Output

0=FLAG7 Input
1=FLAG7 Output

0=FLAG8 Input
1=FLAG8 Output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference 13-37

Pin Descriptions
After writing to the register, the flags can be toggled with the bit tgl
command:

bit tgl ustat2 FLG9|FLG8|FLG7|FLG6|FLG5|FLG4;

dm(IOFLAG) = ustat2;

Example #2: Configuring FLGx as Input Flags

The following example shows how to configure the flags as input flags,
clear the flag pins, and write the modified flag settings to the IOFLAG
register:

ustat2 = 0x00000000;

bit clr ustat2 FLG9O|FLG8O|FLG7O|FLG6O|FLG5O|FLG4O;

dm(IOFLAG) = ustat2;

System Design Considerations for Flags
Normally, if a flag is sampled or driven periodically, latency issues with
respect to when flag pin change occurs are not a concern to the program-
mer. However, since the flag pins are sampled or driven with respect to
the rising edge of CLKOUT (or CLKIN if CLKDBL is disabled), it is important
that the application program allows enough time in certain programming
situations for the flag state to be driven or sampled in the CLKOUT cycle
boundary. This is especially true if the flags states are driven at a
(core-clock) rate faster than the completion of the CLKOUT cycle boundary.
The same also applies for the external device driving the flag pin as an
input. The external device must drive the flag pin for at least 1 CLKOUT
cycle to guarantee that it is latched properly by the processor.

When setting (or toggling flag pins) in a loop, you must insert extra NOPs
instructions to prevent an overrun of setting and clearing a flag pin every
cycle (or every other cycle for the IOFLAG register flag pins). For example,
if you are using 2:1 mode, the CCLK runs twice as fast as CLKOUT. Depend-
ing on where the CLKOUT cycle boundary is with respect to the instruction
writing to I/O flag register, the processor can take up to two CCLK cycles
13-38 ADSP-21161 SHARC Processor Hardware Reference

System Design
before that change is received external to the processor based on the rising
edge of CLKOUT. The same cycle effect applies to the 3:1 and 4:1 clock
ratios. For the 3:1 clock ratio, the processor requires up to three CCLK
cycles before the change is received external to the processor based on the
rising edge of CLKOUT. For the 4:1 clock ratio, the processor requires up to
four CCLK cycles.

Since a core stall does not occur when writing to or reading from FLAG
pins synchronized to the slower ADSP-21161 processor system clock, NOP
instructions are required. In this case, write extra NOPs to ensure overruns
do not occur in the higher clock rates.

The ADSP-21161 processor samples FLAG inputs at the CLKIN fre-
quency except when CLKDBL is enabled. When CLKDBL is enabled,
the processor samples FLAG inputs at the CLKOUT frequency. FLAG
outputs must be held stable for at least one full CLKIN cycle.

Figure 13-9 shows the delay in setting (or toggling the flag pins) for clock
modes 2:1, 3:1, and 4:1.

Figure 13-8. Delay in Setting Flag Pins for Clock Modes 2:1, 3:1 and 4:1

CCLK

CLKOUT
2:1

CLKOUT
3:1

CLKOUT
4:1

BIT SET
USTAT

DM (IOFLAG)
=USTAT

BIT CLEAR
USTAT

DM (IOFLAG)
=USTAT
ADSP-21161 SHARC Processor Hardware Reference 13-39

Pin Descriptions
Example #3: Programming 2:1 Clock Ratio

The following example shows how to program an IOFLAG output with a
2:1 CCLK to CLKOUT ratio:

LCNTR = 100, DO flag_toggle UNTIL LCE;

bit tgl ustat1 FLG4O;

flag_toggle: dm(IOFLAG) = ustat1;

Since a CLKOUT transition occurs every two CCLK instruction cycles, no
additional NOP instructions are required.

Example #4: Programming 3:1 Clock Ratio

The following example shows how to set an IOFLAG output with 3:1 CCLK
to CLKOUT ratio:

LCNTR = 100, DO flag_toggle UNTIL LCE;

bit tgl ustat1 FLG4O;

dm(IOFLAG) = ustat1;

flag_toggle:nop;

Since a CLKOUT transition occurs every three CCLK instruction cycles, one
NOP instruction is required to prevent the flag output overrun.

Example #5: Programming 4:1 Clock Ratio

The following example shows how to set an IOFLAG output with 4:1 CCLK
to CLKOUT ratio:

LCNTR = 100, DO flag_toggle UNTIL LCE;

bit tgl ustat1 FLG4O;

dm(IOFLAG) = ustat1;

nop;

flag_toggle:nop;
13-40 ADSP-21161 SHARC Processor Hardware Reference

System Design
JTAG Interface Pins
The JTAG test access port consists of the TCK, TMS, TDI, TDO, and TRST
pins. The JTAG port can be connected to a controller that performs a
boundary scan for testing purposes. This port is also used by the Analog
Devices Tools product line of JTAG emulator and development software
to access on-chip emulation features. To allow the use of the emulator, a
connector for its in-circuit probe must be included in the target system.
For more information, see “Designing For JTAG Emulation” on page
13-49.

If TRST is not asserted (or held low) at power-up, the JTAG port is in an
undefined state that may cause the processor to drive out on I/O pins that
would normally be three-stated at reset. TRST can be held low with a
jumper to ground on the target board connector.

Dual-Voltage Power-up Sequencing
The ADSP-21161 dual-voltage processor has special considerations
related to power-up. Note that these are general recommendations, and
specifics details on dual voltage power supply systems is beyond the scope
of this book. When the system power is activated through the processor’s
dual power supply system, both supplies should be brought up as quickly
as possible. Ideally, the two supplies, VDDEXT and VDDINT should be powered
up simultaneously. Many commercially available dual supply regulators
address simultaneous powerup requirements of the core and I/O. When
designing a dual supply system, the designer should consider the relative
voltage and ramp-up timing between the core and I/O voltages in order to
avoid potential issues with long-term reliability.
ADSP-21161 SHARC Processor Hardware Reference 13-41

Dual-Voltage Power-up Sequencing
The ADSP-21161 I/O pads have a network of internal diodes to protect
the processor from damage by electrostatic discharge. These protection
diodes connect the 1.8 V core and 3.3 V I/O supplies internally.
Figure 13-9 shows how a network of protection diodes isolates the inter-
nal supplies and provides ESD protection for the I/O pins.

During the power-up sequence of the processor, differences in the ramp
up rates and activation time between the two supplies can cause current to
flow in the I/O ESD protection circuitry. When applying power separately
to the VDDEXT or VDDINT pins, take precautions to prevent or limit the maxi-
mum current and duration conducted through the isolation diodes if the
un powered pins are at ground potential. Since the ESD protection diodes
connect the 1.8 V core and 3.3 V I/O supplies internally, these diodes can
be damaged at any time the 1.8 V core supply voltage is present without
the presence of the 3.3 V I/O supply.

Figure 13-9. Protection Diodes and IO Pin ESD Protection

ADSP-21161

INTERNAL
LOGIC

VDDEXT VDDINT
(1.8V)(-3.3V)

I/O PIN

OUTPUT

INPUT
13-42 ADSP-21161 SHARC Processor Hardware Reference

System Design
The ESD protection diodes connect the 1.8 V core and 3.3 V I/O
supplies internally. Improper supply sequencing can cause damage
to the ESD protection circuitry. If the 1.8 V supply is active for
prolonged periods of time before the 3.3 V I/O supply is activated,
there is a significant amount of loading on the I/O pins. Damage
occurs because the I/O is powered from the 1.8 V supply through
the ESD diodes.

To prevent this damage to the ESD diode protection circuitry, Analog
Devices recommends including a bootstrap Schottky diode. The bootstrap
Schottky diode connected between the 1.8 V and 3.3 V power supplies
protects the ADSP-21161 from partially powering the 3.3 V supply.
Including a Schottky diode shortens the delay between the supply ramps
and thus prevent damage to the ESD diode protection circuitry. With this
technique, of the 1.8 V rail rises ahead of the 3.3 V rail, the Schottky
diode pulls the 3.3 V rail along with the 1.8 V rail.

For many power supply system designers, it may be easier to design the
PLL clock gate workaround instead of shortening the VDDINT ramp time.
Moving between revisions does not require any hardware modifications to
gate the clock. As long as the tCLKVDD startup requirement is met then a
reliable start-up reset of the PLL for revision 1.0/1.1 is assured. This
requirement guarantees that the CLKIN source is present within 200 ms
after the supplies are ramped. See the ADSP-21161N DSP Microcomputer
Data Sheet for timing specifications. Holding off CLKIN up to a maximum
of 200 ms is allowed.

Figure 13-10 shows a basic block diagram of the Schottky diode con-
nected between the core and I/O voltage regulators and the processor. The
anode of the diode must be connected to the 1.8 V supply. The diode
must have a forward biased voltage of 0.6 V or less and must have a cur-
rent rating sufficient to supply the 3.3 V rail of the system. The use of a
Schottky diode is the recommended method suggested by Analog Devices.
ADSP-21161 SHARC Processor Hardware Reference 13-43

Dual-Voltage Power-up Sequencing
For recommendations on managing power-up sequencing for the core I/O
dual voltage supply, refer to the “Powerup Sequencing” specifications in
the ADSP-21161N SHARC DSP Microcomputer Data Sheet.

PLL Start-Up (Revisions 1.0/1.1)
Two circuit blocks are included in the PLL start-up circuit to enable the
PLL to lock effectively on start-up: a Power On Reset (POR) circuit and a
9-bit CLKIN counter. Figure 13-11 shows silicon revision 1.0/1.1 startup
block diagram.

Power On Reset (POR) Circuit

The POR circuit monitors the voltage level on VDDINT power supply and
then generates a PLL pulse. This drives the PLL reset input circuit to reset
the PLL to a default state. Figure 13-12 shows an example power-up and
power-down waveform of VDDINT. The POR circuit tracks this voltage
internally to generate a PLL reset pulse. The actual POR output pulse,

Figure 13-10. Dual 1.8 V/3.3 V Supplies With a Schottky Diode

1.8V Core
Voltage
Regulator

3.3V I/O
Voltage
Regulator

ADSP -21161

VDDEXT

VDDINT

DC input
source
13-44 ADSP-21161 SHARC Processor Hardware Reference

System Design
PLL_RESET, is generated as an active high pulse from the point at which
VDDINT begins to ramp up from 0 V. It is deactivated when VDDINT reaches
1.2 V.

For revisions 1.0 and 1.1, VDDINT must ramp from 0 V to 1.8 V
within 2 ms for the POR circuit to properly generate a PLL reset
pulse

Figure 13-12 shows three PLL reset-related input signals: the top one is
VDDINT, the bottom two are derived from VDDINT and are related to the POR
circuit. The POR input tracks VDDINT up to 1.2 V before it drops down.
This is used to generate the PLL reset pulse. As the input is rising to 1.2
V, the output of the POR generates the reset pulse for the PLL. After the
POR input voltage reaches 1.2 V, the POR voltage drops off, which then
deactivates the reset pulse connected to the PLL.

The duration of the POR circuit being driven active low is from 0 V to
1.2 V. If the system is powering down VDDINT and coming back up again,
there are a few requirements that must be met to properly generate a PLL
reset pulse on the subsequent powerup. First, the POR circuit requires

Figure 13-11. Power On Reset Circuit – Revisions 1.0 and 1.1

VDDINT

CLKIN

RESET
Internal Core

Processor Reset

POR
Output POR pulse is generated

when VDDINT is between 0 and 1.2V

PLL

9-BIT COUNTER
CLKIN

CLKIN_ENA

CLKIN

ENA_CLK

PLL_RESET
ADSP-21161 SHARC Processor Hardware Reference 13-45

Dual-Voltage Power-up Sequencing
that VDDINT voltage level is below 0.5 V. Secondly, re-ramp from 0.5 V to
1.2 V must occur within 1ms to guarantee another generated PLL_RESET
pulse.

PLL CLKIN Enable Circuit

The 9-bit counter counts a certain number of CLKIN cycles before it allows
the PLL to begin to lock to the incoming CLKIN frequency. This counter
was added to allow the CLKIN source to amplify and oscillate to a stable
fundamental frequency before the PLL begins to try to lock to the incom-
ing frequency.

Because oscillator or crystal startup times can range from 5 to 10 ms, the
internal 512 cycle counter in some startup cases does not allow the CLKIN
oscillator source to run at its locked oscillator fundamental frequency
before the PLL clock input is enabled. Some oscillators might have a slow
frequency ramp up time for 10 ms.

Figure 13-12. PLL Reset

VDDINT

PLL_RESET
(POR Output)

POR Input

1.2 Volts

0.5 Volts

3 ms

1 ms
13-46 ADSP-21161 SHARC Processor Hardware Reference

System Design
The revision 1.0 and 1.1 PLL can fail to lock or fail to continue to
run if the CLKIN frequency goes below 15 MHz for more than 20 µs
or when using CLKDBL, the minimum CLKIN frequency cannot be
less than 7.5 MHz.

There are two ways in which the PLL can be reset for revisions 1.0 and
1.1:

• Ensure that the VDDINT ramp rate time is met (< 2 ms) with a stable
CLKIN frequency applied when the POR circuit is enabled. When
using an external clock oscillator powered by the VDDEXT supply,
bring up VDDEXT for a recommended 25 ms before enabling VDDINT.
This allows the external CLKIN source to come up and stabilize
before the VDDINT power supply is brought up. The VDDINT POR cir-
cuit then activates and generates a PLL pulse.

• Hold off or gate the CLKIN source until the VDDINT/VDDEXT supplies
are known to be stable. This negates the VDDINT ramp rate require-
ment if VDDINT is exceeding 2 ms. Holding off CLKIN low or high
until the supplies are stable also resets the internal PLL circuitry
and allows the PLL to start reliably.

Once, the processor is up and running, if you stop the CLKIN
source, the PLL can lock up and not restart when CLKIN is reap-
plied. If there is a brown-out situation in your system, the
watchdog circuit power-downs to at least 0.5 V and power-up of
the VDDINT supply within 1.0ms (to restart the POR circuit).
ADSP-21161 SHARC Processor Hardware Reference 13-47

Dual-Voltage Power-up Sequencing
PLL Start-Up (Revision 1.2)
The PLL reset input and PLL CLKIN enable input directly to the RESET pin
(Figure 13-13). This allows a PLL reset on the RESET rising edge. The
RESET pin can be held low long enough to guarantee a stable CLKIN source
and stable VDDINT/VDDEXT power supplies before the PLL is reset.

The PLL must lock to the CLKIN frequency (around 100 µs). Because the
PLL resets on the rising edge of RESET, the PLL needs time to lock to
CLKIN before the core can execute or begin the boot process. A delayed
core reset has been added via the delay circuit. There is a 12-bit counter
that counts up to 4096 CLKIN cycles after RESET is transitioned from low to
high. The delay circuit is activated at the same time the PLL is reset. A
secondary RSTOUT pin (B15 which previously was a NC) has been added to
allow system designers the option to have the ADSP-21161 processor reset
another device after the core is reset. Note that as in previous silicon revi-
sions, the CLKOUT is active during a reset. During reset the processor is in
PLL BYPASS mode. CLKOUT frequency during reset depends upon CLKDBL
pin. During reset if CLKDBL is HIGH then CLKOUT frequency = 1/4 of CLKIN
frequency and if CLKDBL = LOW then CLKOUT frequency = 1/2 of CLKIN
frequency.

Figure 13-13. Power On Reset Circuit – Revisions 1.2

CLKIN

RESET

Delayed Internal

Core Processor Reset

PLLCore Reset Delay Circuit

CLKIN CORE_RST

CLKIN

ENA_CLK

PLL_RESET

12-bit Counter
Count 4096 CLKIN Cycles

ENA_CNT

RSTOUT

PLL reset and PLL clock input
enable occur on the rising edge
of RESET
13-48 ADSP-21161 SHARC Processor Hardware Reference

System Design
The advantage of the delayed core reset is that the PLL can be reset any
number of times without having to power-down the system. If there is a
brown-out situation, the watchdog circuit only has to control the RESET
pin to restart the PLL.

Designing For JTAG Emulation
The Analog Devices Tools product line of JTAG emulator is a develop-
ment tool for debugging programs running in real time on target system
hardware. The Analog Devices Tools product line of JTAG emulators pro-
vides a controlled environment for observing, debugging, and testing
activities in a target system by connecting directly to the target processor
through its JTAG interface.

Because the Analog Devices Tools product line of JTAG emulator con-
trols the target system’s processor through the processor’s IEEE 1149.1
JTAG Test Access Port (TAP), non-intrusive in-circuit emulation is
assured. The emulator uses the TAP to access the internal space of the pro-
cessor, allowing the developer to load code, set breakpoints, observe
variables, observe memory, examine registers, and so on. The processor
must be halted to send data and commands, but once an operation is com-
pleted by the emulator, the system is set running at full speed with no
impact on system timing.The emulator does not impact target loading or
timing. The emulator’s in-circuit probe connects to a variety of host com-
puters (PCI bus, or USB) with plug-in boards.

Target systems must have a 14-pin connector in order to accept the Ana-
log Devices Tools product line of JTAG emulator in-circuit probe, a
14-pin plug.

Designs must add this connector to the target board if the board is
intended for use with the ADSP-21161 processor JTAG Emulator. The
total trace length between the JTAG connector and the furthest device
sharing the emulator’s JTAG pins should be limited to 15 inches maxi-
mum for guaranteed operation. This length restriction must include the
ADSP-21161 SHARC Processor Hardware Reference 13-49

Designing For JTAG Emulation
emulator’s JTAG signals, which are routed to one or more ADSP-21161
processor devices, or a combination of ADSP-21161 processor devices and
other JTAG devices on the chain.

Target Board Connector
The emulator interface to an Analog Devices JTAG processor is a 14-pin
header, as shown in Figure 13-14. The customer must supply this header
on their target board in order to communicate with the emulator. The
interface consists of a standard dual row 0.025" square post header, set on
0.1" x 0.1" spacing, with a minimum post length of 0.235". Pin 3 is the
key position used to prevent the pod from being inserted backwards. This
pin must be clipped on the target board.

The clearance (length, width, and height) around the header must be as
shown in Figure 13-19 on page 13-57. Maintain a minimum length of
0.15" and width of 0.10" for the target board header. The pod connector
attaches the target board header in this area. Therefore, there must be
clearance to attach and detach this connector. See the “JTAG Pod Con-
nector” on page 13-57 for detailed drawings of the pod connector.

As can be seen in Figure 13-14, there are two sets of signals on the header,
including the standard JTAG signals TMS, TCK, TDI, TDO, TRST, EMU used for
emulation purposes (via an emulator). Secondary JTAG signals BTMS,
BTCK, BTDI, and BTRST are provided for optional use for board-level
(boundary scan) testing. While they are rarely used, the “B” signals should
be connected to a separate on-board JTAG boundary scan controller, if
they are used. If the “B” signals are not used, tie them to ground as shown
in Figure 13-15.

BTCK can alternately be activated (for some older silicon) to VCC
(+5 V, +3.3 V, or +2.5 V) using a 4.7 KΩ resistor, as described in
previous documents. Tying the signal to ground is universal and
works for all silicon.
13-50 ADSP-21161 SHARC Processor Hardware Reference

System Design
When the emulator is not connected to this header, jumpers should be
placed across BTMS, BTCK, BTRST, and BTDI as shown in Figure 13-15. This
holds the JTAG signals in the correct state to allow the ADSP-21161 pro-
cessor to run freely. All the jumpers should be removed when connecting
the emulator to the JTAG header.

For a list of the state of each standard JTAG signal refer to Table 13-11.
Use the following legend: O=Output, I=Input, and NU=Not Used.

The ADSP-21161 processor CLKIN signal is the clock signal line (typically
30 MHz or greater) that connects an oscillator to all processors in multiple
processor systems requiring synchronization. In order for synchronous
operations to work correctly the CLKIN signal on all the processors must be
the same signal and the skew between them must be minimal (use clock
drivers, or other means).

Figure 13-14. Emulator Interface for Analog Devices JTAG Processors
ADSP-21161 SHARC Processor Hardware Reference 13-51

Designing For JTAG Emulation
Note that the CLKIN signal is not used by the emulator and can cause noise
problems if connected to the JTAG header. Legacy documents show it
connected to pin 4 of the JTAG header. Pin 4 should be tied to ground on
the 14-pin JTAG header (do not connect the JTAG header pin to the pro-

Figure 13-15. JTAG Target Board Connector With No Local Boundary
Scan

Table 13-10. State of Standard JTAG Signals

Signal Description Emulator ADSP-21161

TMS Test Mode Select O I

TCK Test Clock (10 MHz) O I

TRST Test Reset O I

TDI Test Data In O I

TDO Test Data Out I O

EMU Emulation Pin I O (Open Drain)

CLKIN Processor Clock Input NU I
13-52 ADSP-21161 SHARC Processor Hardware Reference

System Design
cessor’s CLKIN signal). If you have already connected it to the JTAG header
pin, and are experiencing noise from this signal, simply clip this pin on
the 14-pin JTAG header.

The final connections between a single processor target and the emulation
header (within 6 inches) are shown in Figure 13-16. A 4.7 KΩ pull-up
resistor has been added on TCK, TDI and TMS for increased noise resistance.

If a design uses more than one processor (or other JTAG device in the scan
chain), or if the JTAG header is more than 6 inches from the processor,
use a buffered connection scheme as shown in Figure 13-17 on

Figure 13-16. Single Connection to the JTAG Header
ADSP-21161 SHARC Processor Hardware Reference 13-53

Layout Requirements
page 13-55 (no local boundary scan mode shown). To keep signal skew to
a minimum, be sure the buffers are all in the same physical package (typi-
cal chips have 6, 8, or 16 drivers). Using a buffer that includes a series of
resistors such as the 74ABT2244 family can reduce ringing on the JTAG
signal lines. For low voltage applications (3.3 V, 2.5 V, and 1.8 V I/O),
the 74ALVT, and 74AVC logic families is useful. Also, note the position
of the pull-up resistor on EMU. This is required since the EMU line is an open
drain signal.

If more than one processor (or JTAG device) is on the target (in the scan
chain), you must buffer the JTAG header. This keeps the signals clean and
avoids noise problems that occur with longer signal traces (ultimately
resulting in reliable emulator operation).

Although the theoretical number of devices that can be supported (by the
software) in one JTAG scan chain is large (50 devices or more) it is not
recommended that you use more than eight physical devices in one scan
chain. A physical device could however contain many JTAG devices such
as inside a multi-chip module. The recommendation of not more than
eight physical devices is mostly due to the transmission line effects that
appear in long signal traces, and based on some field-collected empirical
data. The best approach for large numbers of physical devices is to break
the chain into several smaller independent chains, each with their own
JTAG header and buffer. If this is not possible, at least add some jumpers
that can reduce the number of devices in one chain for debug purposes,
and pay special attention in the layout stage for transmission line effects.

Layout Requirements
All JTAG signals (TCK, TMS, TDI, TDO, EMU, TRST) should be treated as criti-
cal route signals. Specify a controlled impedance requirement for each
route (value depends on your circuit board, typically 50-75 Ω). Keeping
crosstalk and inductance to a minimum on these lines by using a good
ground plane and by routing away from other high noise signals such as
13-54 ADSP-21161 SHARC Processor Hardware Reference

System Design
clock lines is also important. Keep these routes as short and clean as possi-
ble, and keep the bused signals (TMS, TCK, TRST, EMU) as close to the same
length as possible.

The JTAG TAP relies on the state of the TMS line and the TCK clock
signal. If these signals have glitches (due to ground bounce,
crosstalk, etc.) unreliable emulator operation results. When experi-
encing emulator problems, look at these signals using a high-speed
digital oscilloscope. These lines must be clean, and may require
special termination schemes. If you are buffering the JTAG header
(most applications do) you must provide signal termination appro-
priate for your target board (series, parallel, R/C, etc.).

Figure 13-17. Multiple Connection to JTAG Header
ADSP-21161 SHARC Processor Hardware Reference 13-55

Power Sequence for Emulation
Power Sequence for Emulation
The power-on sequence for your target and emulation system is as follows:

1. Apply power to the emulator first, then to the target board. This
ensures that the JTAG signals are in the correct state for the
ADSP-21161 processor to run free.

2. Upon power-on, the emulator drives the TRST signal low, keeping
the processor TAP in the test-logic-reset state, until the emulation
software takes control.

Removal of power should be done in reverse: Turn off power to the
target board then to the emulator.

Additional JTAG Emulator References
The IEEE 1149.1 JTAG standard is sponsored by the Test Technology
Standards Committee of the IEEE Computer Society, and published by
the IEEE. The latest versions at the time of this publication are IEEE
Standard. 1149.1-1990 and IEEE Standard 1149.1a-1993. To order a
copy, call the IEEE at 1-800-678-4333 in the US and Canada,
1-908-981-1393 outside of the US and Canada. Visit the IEEE standards
web site at http://standards.ieee.org/.

Pod Specifications
This section contains design details on various emulator pod designs by
the Analog Devices Tools product line. The emulator pod is the device
that connects directly to the target board 14-pin JTAG header. See also
Engineer-to-Engineer Notes EE-68.
13-56 ADSP-21161 SHARC Processor Hardware Reference

System Design
JTAG Pod Connector
Figure 13-18 details the dimensions of the JTAG pod connector at the
14-pin target end. Figure 13-19 displays the keep-out area for a target
board header. The keep-out area allows the pod connector to properly seat
onto the target board header. This board area should contain no compo-
nents (chips, resistors, capacitors, and so on). The dimensions are
referenced to the center of the 0.25” square post pin.

Figure 13-18. JTAG Pod Connector at the 14-pin Target End

Figure 13-19. Keep-Out Area for a Target Board Header
ADSP-21161 SHARC Processor Hardware Reference 13-57

Pod Specifications
3.3 V Pod Logic
A portion of the Analog Devices Tools product line 3.3 V emulator pod
interface is shown in Figure 13-20. This figure describes the driver cir-
cuitry of the emulator pod. As can be seen, TMS, TCK and TDI are driven
with a 33 Ω series resistor. TRST is driven with a 100 Ω series resistor. The
TDO and CLKIN pins are terminated with an optional 91/120 Ω parallel ter-
minator. The EMU signal is pulled up with a 4.7 KΩ resistor. The
74LVT244 chip drives the signals at 3.3 V, with a maximum current rat-
ing of ±32 mA.

Parallel terminate the TMS, TCK, TRST, and TDI lines locally on your target
board, if needed, since they are driven by the pod with sufficient current
drive (±32 mA). In order to use the terminators on the TDO line (CLKIN is
not used), you MUST have a buffer on your target board JTAG header.

Figure 13-20. 3.3V JTAG Pod Driver Logic
13-58 ADSP-21161 SHARC Processor Hardware Reference

System Design
The ADSP-21161 processor is not capable of driving the parallel termina-
tor load directly with TDO. Assuming the proper buffers are included, use
the optional parallel terminators by placing a jumper on J2.

2.5 V Pod Logic
A portion of the Analog Devices Tools product line 2.5 V emulator pod
interface is shown in Figure 13-21. This figure describes the driver cir-
cuitry of the emulator pod. As can be seen, the TMS, TCK, and TDI liness are
driven with a 33 Ω series resistor. The TRST signal is driven with a 100 Ω
series resistor. The TDO line is pulled up with a 4.7 KΩ resistor and termi-
nated with an optional parallel terminator that can be configured by the
user. EMU is pulled up with a 4.7 KΩ resistor.

The CLKIN signal is not used and not connected inside the pod. The
74ALVT16244 chip drives the signals at 2.5 V, with a maximum current
rating of ±8 mA.

Figure 13-21. 2.5 V JTAG Pod Driver Logic
ADSP-21161 SHARC Processor Hardware Reference 13-59

Conditioning Input Signals
You can terminate the TMS, TCK, TRST, and TDI lines locally on your target
board, if needed, as long as the terminator’s current use does not exceed
the driver's maximum current supply (±8 mA). In order to use the termi-
nator on the TDO line, include a buffer on your target board JTAG header.
The ADSP-21161 processor is not capable of driving a parallel terminator
load (typically 50-75 Ω) directly with TDO. Assuming you have the proper
buffers, you may use the optional parallel terminator by adding the appro-
priate resistors and placing a jumper on J2.

Conditioning Input Signals
The ADSP-21161 processor is a CMOS device. It has input conditioning
circuits which simplify system design by filtering or latching input signals
to reduce susceptibility to glitches or reflections.

The following sections describe why these circuits are needed and their
effect on input signals.

A typical CMOS input consists of an inverter with specific N and P device
sizes that cause a switching point of approximately 1.4 V. This level is
selected to be the midpoint of the standard TTL interface specification of
VIL =0.8 V and VIH =2.0 V. This input inverter, unfortunately, has a fast
response to input signals and external glitches wider than about 1 ns. Fil-
ter circuits and hysteresis are added after the input inverter on some
processor inputs, as described in the following sections.

Link Port Input Filter Circuits
The ADSP-21161 processor’s link port input signals have on-chip filter
circuits rather than glitch rejection circuits. Filtering is not used on most
signals because it delays the incoming signal and the timing specifications.
13-60 ADSP-21161 SHARC Processor Hardware Reference

System Design
Filtering is implemented only on the link port data and clock inputs. This
is possible because the link ports are self-synchronized. The clock and data
are sent together. It is not the absolute delay but rather the relative delay
between clock and data that determines performance margin.

By filtering both LxCLK and LxDAT7-0 with identical circuits, response to
LxCLK glitches and reflections are reduced but relative delay is unaffected.
The filter has the effect of ignoring a full strength pulse (a glitch) narrower
than approximately 2 ns. Glitches that are not full strength can be some-
what wider. The link ports do not use glitch rejection circuits because they
can be used with longer, series-terminated transmission lines where the
reflections do not occur near the signal transitions.

RESET Input Hysteresis
Hysteresis is used only on the RESET input signal. Hysteresis causes the
switching point of the input inverter to be slightly above 1.4 V for a rising
edge and slightly below 1.4V for a falling edge. The value of the hysteresis
is approximately ± 0.1 V. The hysteresis is intended to prevent multiple
triggering of signals which are allowed to rise slowly, as might be expected
on a reset line with a delay implemented by an RC input circuit. Hystere-
sis is not used to reduce the effect of ringing on input signals with fast
edges, because the amount of hysteresis that can be used on a CMOS chip
is too small to make much difference. The small amount of hysteresis
allowable is due to the restrictions on the tolerance of the VIL and VIH
TTL input levels under worst case conditions. Refer to the data sheet for
exact specifications.
ADSP-21161 SHARC Processor Hardware Reference 13-61

Designing For High Frequency Operation
Designing For High Frequency Operation
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging ADSP-21161 processor
systems.

All synchronous behavior is specified to CLKIN. System designers are
encouraged to clock synchronous peripherals/memory (which are attached
to the external port) with this same clock source (or a different low-skew
output from the same clock driver). Alternatively, the clock output (CLK-
OUT) from the processor may be employed to clock synchronous
peripherals/memory. Note the following behavior for CLKOUT:

1. The processor whose ID2-0=000 (uniprocessor), or 001 drives CLK-
OUT during reset.

2. CLKOUT is specified relative to CLKIN in the ADSP-21161N DSP
Microcomputer Data Sheet. When using this output to clock system
components, the phase and jitter terms associated with this output
must be treated as additional derating factors in determining specs.
The use of CLKOUT as a clock source to SBSRAMs can result in neg-
ative hold times and is not recommended.

3. For systems not needing CLKOUT as a clock source, CLKOUT may be
used to identify the current bus master. This requires that the out-
puts not be tied together. If and when this debug feature is not
needed, the CLKOUT output can be disabled by setting the COD bit in
the SYSCON register. The bus master can be identified by checking
the BMSTR pin.
13-62 ADSP-21161 SHARC Processor Hardware Reference

System Design
Clock Specifications and Jitter
The clock signal must be free of ringing and jitter. Clock jitter can easily
be introduced in a system where more than one clock frequency exists.
High frequency jitter on the clock to the processor may result in abbrevi-
ated internal cycles.

As shown in Figure 13-22, keep the portions of the system that operate at
different frequencies as physically separate as possible. The clock supplied
to the ADSP-21161 processor must have a rise time of 3 ns or less and
must meet or exceed a high and low voltage of 2.3 V and 0.8 V,
respectively.

Never share a clock buffer IC with a signal of a different clock fre-
quency. This introduces excessive jitter.

Clock Distribution
There must be low clock skew between processors in a multiprocessor
cluster when communicating synchronously on the external bus. The
clock must be routed in a controlled-impedance transmission line that can
be properly terminated at either the end of the line or the source.

Figure 13-22. Reducing Clock Jitter and Ring

FREQUENCY 1

NO CONNECT

CLOCK a
ADSP-21160

S

NO CONNECT
ADSP-21161 SHARC Processor Hardware Reference 13-63

Designing For High Frequency Operation
Figure 13-23 illustrates end-of-line termination for the clock. End-of-line
termination is not usually recommended unless the distance between the
processors is extremely small, because devices that are at a different wire
distance from each other receive a skewed clock. This is due to the propa-
gation delay of a PCB transmission line, which is typically 5 to 6
inches/ns.

Figure 13-24 illustrates source termination for the clock. Source termina-
tion allows delays in each path to be identical. Each device must be at the
end of the transmission line because only there does the signal have a sin-
gle transition. The traces must be routed so that the delay through each is
matched to the others. Line impedance higher than 50 Ω may be used, but
clock signal traces should be in the PCB layer closest to the ground plane
to keep delays stable and crosstalk low. More than one device may be at
the end of the line, but the wire length between them must be short and
the impedance (capacitance) of these must be kept high. The matched

Figure 13-23. End-Of-Line Termination for the Clock Caution

a
ADSP-21160

S

a
ADSP-21160

S

CLOCK

1.4V

70�

180�

+5 V

50�TRANSMISSION LINE

a
ADSP-21160

S

13-64 ADSP-21161 SHARC Processor Hardware Reference

System Design
inverters must be in the same IC and must be specified for a low skew
(< 1 ns) with respect to each other. This skew should be as small as possi-
ble because it subtracts from the margin on most specifications.

Point-to-Point Connections
Unlike previous SHARC processors, the ADSP-21161 processor contains
internal series resistance equivalent to 50 Ω on all drivers except the CLKIN
and XTAL pins. Therefore, for traces longer than six inches, external series
resisters on control, data, clock or frame sync pins are not required to

Figure 13-24. Use Source Termination to Distribute the Clock

OCT AL INVE R T E R
ACT Q240
(NAT IONAL SE MICONDUCT OR)

OR
IDT 49FCT 805/A

OR
CY7C992

BUFFER DRIVE IMPEDANCE = 10�

A SE PAR AT E B UFFE R AND T R ANS MIS S ION
L INE IS NE E DE D FOR E ACH GROUP OF
PR OCE SS OR S T HAT AR E FUR T HE R T HAN
4 INCHES FR OM EACH OT HE R .

a
ADS P-21160

S

a
ADS P-21160

S

a
ADS P-21160

S

40�

40�

40�

50� TRANSMISSION LINE

50� TRANSMISSION LINE

50� TRANSMISSION LINE

CLOCK
ADSP-21161 SHARC Processor Hardware Reference 13-65

Designing For High Frequency Operation
dampen reflections from transmission line effects for point-to-point con-
nections. However, for more complex networks such as a star
configuration, a series termination is still recommended. Figure 13-26
shows an internal resistance in the driver of 10 Ω. The additional 40 Ω
series resister at the driver pad results in a total resistance of 50 Ω. For
more specific guidance on related issues, see the reference source in “Rec-
ommended Reading” on page 13-71 for suggestions on transmission line
termination. Also, see the ADSP-21161N DSP Microcomputer Data Sheet
for output drivers’ rise and fall time data.

For link port operation at the full internal clock rate it is important to
maintain low skew between the data (LxDAT7-0) and clock (LxCLK). For
full speed operation with a 100 MHz internal clock, a skew of less than
0.5 ns is required.

Although the ADSP-21161 processor’s serial ports may be operated at a
slow rate, the output drivers still have fast edge rates.

Figure 13-25. Source Termination for Point-to-Point Connectors

REFLECTED WAVE IS
ABSORBED AT THE SOURCE.

50� TRANSMISSION
LINE, LONGER THAN
6" (15.25 cm)

LINK PORT
TRANSMITTER

DRIVER
IMPEDANCE
= 17V

ON

33� 33�

a
ADS P-21160

S

a
ADS P-21160

S

L INK PORT
T R ANSMIT TE R

DRIVER
IMPE DANCE
= 17?

ON

LINK PORT
RECEIVER

OPEN
CIRCUIT

OFF

L INK POR T
T RANSMIT T ER

OP EN
CIRCUIT

OF F
13-66 ADSP-21161 SHARC Processor Hardware Reference

System Design
Signal Integrity
The capacitive loading on high-speed signals should be reduced as much
as possible. Loading of buses can be reduced by using a buffer for devices
that operate with wait states, for example DRAMs. This reduces the
capacitance on signals tied to the zero-wait-state devices, allowing these
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as the read and
write strobes (RD, WR) and acknowledge (ACK). In a multiprocessor cluster,
each processor can drive the read or write strobes. In this case, some
damping resistance should be put in the signal path if the line length is
greater than 6 inches (Figure 13-26). This is at the expense of additional
signal delay. The time budget for these signals should be carefully
analyzed.
ADSP-21161 SHARC Processor Hardware Reference 13-67

Designing For High Frequency Operation
Other Recommendations and Suggestions
The following are some additional suggestions for successfully designing
an ADSP-21161 hardware platform.

• Use more than one ground plane on the PCB to reduce crosstalk.
Be sure to use lots of vias between the ground planes. One VDD
plane for each supply is sufficient. These planes should be in the
center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or layout per-
pendicular to other non-critical signals to reduce crosstalk. For
example, data outputs switch at the same time that BRx inputs are
sampled; if the layout permits crosstalk between them, the system
could have problems with bus arbitration.

Figure 13-26. Star Connection Damping Resistors

a
ADS P-21160

S

a
ADS P-21160

S

10�

a
ADS P-21160

S

a
ADS P-21160

S

STAR CONNECTION DAMPING RESISTORS

10� 10�

10�
13-68 ADSP-21161 SHARC Processor Hardware Reference

System Design
• Position the processors on both sides of the board to reduce area
and distances if possible.

• Design for lower transmission line impedances to reduce crosstalk
and to allow better control of impedance and delay.

• Use of 3.3 V peripheral components and power supplies to help
reduce transmission line problems, because the receiver switching
voltage of 1.5 V is close to the middle of the voltage swing. In addi-
tion, ground bounce and noise coupling is less.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. Designs
should use a minimum of eight bypass capacitors (six 0.1 µF and two
0.01 µF ceramic) each for IO and core. The capacitors should be placed
very close to the VDDEXT and VDDINT pins of the package as shown in
Figure 13-27. Use short and fat traces for this. The ground end of the
capacitors should be tied directly to the ground plane inside the package
footprint of the processor (underneath it, on the bottom of the board),
not outside the footprint. A surface-mount capacitor is recommended
because of its lower series inductance. Connect the power plane to the
power supply pins directly with minimum trace length. The ground
planes must not be densely perforated with vias or traces as their effective-
ness is reduced. In addition, there should be several large tantalum
capacitors on the board.

Designs can use either bypass placement case shown in Figure 13-27 or
combinations of the two. Designs should try to minimize signal
feedthroughs that perforate the ground plane.
ADSP-21161 SHARC Processor Hardware Reference 13-69

Designing For High Frequency Operation
Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with 4
inches of ground lead causes ringing to be seen on the displayed trace and

Figure 13-27. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-COMPONENT
(BOTTOM) SIDE OF BOARD, BENEATH DSP PACKAGE

a
ADSP-21160

S

CASE 2:
BYPASS CAPACITORS ON COMPONENT (TOP) SIDE
OF BOARD, AROUND DSP PACKAGE
13-70 ADSP-21161 SHARC Processor Hardware Reference

System Design
makes the signal appear to have excessive overshoot and undershoot.
A 1 GHz or better sampling oscilloscope is needed to see the signals
accurately.

Recommended Reading
The text High-Speed Digital Design: A Handbook of Black Magic is recom-
mended for further reading. This book is a technical reference that covers
the problems encountered in state-of-the-art, high-frequency digital cir-
cuit design, and is an excellent source of information and practical ideas.
Topics covered in the book include:

• High-Speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes and Layer Stacking

• Terminations and Vias

• Power Systems

• Ribbon Cables and Connectors

• Clock Distribution and Clock Oscillators

• High-Speed Digital Design: A Handbook of Black Magic, Johnson
and Graham, Prentice Hall, Inc., ISBN 0-13-395724-1.

Booting Single and Multiple Processors
Programs can be automatically downloaded to the internal memory of an
ADSP-21161 processor after power-up or after a software reset. This pro-
cess is called booting. The processor supports four booting modes:
EPROM, host, SPI, and link port. For cases when the processor must exe-
ADSP-21161 SHARC Processor Hardware Reference 13-71

Booting Single and Multiple Processors
cute instructions from external memory without booting, a “No boot”
mode may also be configured. For information on the setup and DMA
processes for booting a single processor, see “Bootloading Through The
External Port” on page 6-70 and “Bootloading Through The Link Port”
on page 6-88 and “Bootloading Through the SPI Port” on page 6-113.

Multiprocessor systems can be booted from a host processor, from external
EPROM, through a link port, SPI port, or from external memory.

Table 13-11. Booting Modes

Booting Mode EBOOT LBOOT BMS

EPROM
Connect BMS to EPROM
chip select

1 0 Output

Host processor 0 0 1 (Input)

Serial boot via SPI 0 1 0 (Input)

Link port 0 1 1 (Input)

No booting
Processor executes from
external memory

0 0 0 (Input)

Reserved 1 1 x (Input)
13-72 ADSP-21161 SHARC Processor Hardware Reference

System Design
Multiprocessor Host Booting
To boot multiple ADSP-21161 processors from a host, each processor
must have its EBOOT, LBOOT, and BMS pins configured for host booting:
EBOOT=0, LBOOT=0, and BMS=1. After system powerup, each processor is in
the idle state and the BRx bus request lines are deasserted. The host must
assert the HBR input and boot each processor by:

• Asserting its CS pin (for asynchronous). The CS pin of all processors
can be asserted to select and boot them simultaneously by host
broadcast writes.

• Downloading instructions as described in “Booting Another pro-
cessor” on page 7-108

Multiprocessor EPROM Booting
There are two methods of booting a multiprocessor system from an
EPROM. Processors perform the following steps in these methods:

• Arbitrate for the bus

• DMA the 256-word boot stream, after becoming bus master

• Release the bus

• Execute the loaded instructions

Booting From a Single EPROM

The BMS signals from each processor may be wire-ORed together to drive
the chip select pin of the EPROM. Each processor can boot in turn,
according to its priority. When the last one has finished booting, it must
inform the others (which may be in the idle state) that program execution
can begin (if all processors are to begin executing instructions simulta-
neously). An example system that uses this alternating technique appears
in Figure 13-28. When multiple processors boot from one EPROM, the
ADSP-21161 SHARC Processor Hardware Reference 13-73

Booting Single and Multiple Processors
processors can boot either identical code or different code from the
EPROM. If the processors load differing code, a jump table (based on
processor ID) can be used to select the code for each processor.

Sequential Booting

The EBOOT pin of the ADSP-21161 processor with IDx=1 must be set high
for EPROM booting. All other processors should be configured for host
booting (EBOOT=0, LBOOT=0, and BMS=1), which leaves them in the idle
state at startup and allows the processor with IDx=1 to become bus master

Figure 13-28. Alternating Booting From an EPROM

EBOOT
LBOOT

BMS

ADDR23-0

DATA47-16

RD

ACK

RD

ACK

RD

ACK

ADDR

DATA

A
D

D
R

E
S

S

D
A

TA

C
O

N
T

R
O

L

RD

CS

DATA23-16

ADSP-21161
(S1)

ADSP-21161
(S2)

ADSP-21161
(S6)

EPROM

ADDR23-0

DATA47-16

ADDR23-0

DATA47-16

BMS

BMS

EBOOT
LBOOT

EBOOT
LBOOT

HERE, MULTIPLE SHARCS BOOT
FROM THE SAME EPROM.

FOR THIS CONFIGURATION, THE
LOADER ROUTINE USES A JUMP
TABLE.

THIS TABLE INDICATES THE
ADDRESS OF THE IMAGE THAT
LOADS INTO EACH PROCESSOR.

THE PROCESSORS CAN LOAD
THE SAME IMAGE OR INDIVIDU-
AL IMAGES.
13-74 ADSP-21161 SHARC Processor Hardware Reference

System Design
and boot itself. Only the BMS pin of processor #1 is connected to the chip
select of the EPROM. When processor #1 has finished booting, it can
boot the remaining processors by writing to their external port DMA
buffer 0 (EPB0) via multiprocessor memory space. An example system that
uses this sequential technique appears in Figure 13-29.

Multiprocessor Link Port Booting
In systems where multiple processors are not connected by the parallel
external bus, booting can be accomplished from a single source through
the link ports. To sequentially boot all of the processors, a parallel com-
mon connection should be made to link port buffer 0 (LBUF0) on each of
the processors. If only a daisy chain connection exists between the proces-
sors’ link ports, then each processor can boot the next one in turn. Link
buffer 0 must always be used for booting.

If you want to boot multiple processors simultaneously, you must add glue
logic to handle multiple LxACK signals.

Multiprocessor Booting From External Memory
If external memory contains a program after reset, then the processor with
IDx=1 should be set up for no boot mode. It begins executing from address
0x0020 0004 in external memory. When booting has completed, the
other processors may be booted by processor #1 if they are set up for host
booting, or they can begin executing out of external memory if they are set
up for no boot mode. Multiprocessor bus arbitration allows this booting
to occur in an orderly manner. The bus arbitration sequence after reset is
described in “Multiprocessor Bus Arbitration” on page 7-93.
ADSP-21161 SHARC Processor Hardware Reference 13-75

Data Delays, Latencies, and Throughput
Data Delays, Latencies, and Throughput
Table 13-13 specifies data delays, latencies and throughput for the
ADSP-21161 processor. Data delay and latency are defined as the number
cycles after the first cycle required to complete the operation. A zero wait-
state memory has a data delay of zero. A single waitstate memory has a

Figure 13-29. Sequential Booting from an EPROM

EBOOT
LBOOT

ADDR23-0

DATA47-16

RD

ACK
B MS

EBOOT
LBOOT

RD

ACK

EBOOT
LBOOT

RD

ACK

ADDR

DATA

A
D

D
R

E
S

S

D
A

T
A

C
O

N
T

R
O

L

RD

CS

DATA23-16

BMS

BMS

ADSP-21161
(S1, MASTER)

ADSP-21161
(S2, SLAVE)

ADSP-21161
(S6, SLAVE)

EPROM

ADDR23-0

DATA47-16

ADDR23-0

DATA47-16
13-76 ADSP-21161 SHARC Processor Hardware Reference

System Design
data delay of one. Throughput is the maximum rate at which the operation
is performed. Data delay and throughput are the same whether the access
is from a host processor or from another ADSP-21161 processor.

Execution Stalls
The following events can cause an execution stall for the ADSP-21161
processor:

• 1 cycle on a program memory data access with instruction cache
miss

• 2 cycles on non-delayed branches

• 2 cycles on normal interrupts

• 5 cycles on vector interrupts

• 1-2 cycles on short loops with small iterations

• n cycles on an IDLE instruction

DAG Stalls
1 cycle hold on register conflict

Memory Stalls
• 1 cycle on PM and DM bus access to the same block of internal

memory

• n cycles if conflicting accesses to external memory

• n cycles if access to external memory (until I/O buffers are cleared
out)
ADSP-21161 SHARC Processor Hardware Reference 13-77

Data Delays, Latencies, and Throughput
• n cycles if external access and ADSP-21161 processor does not con-
trol the external bus

• n cycles until external access is complete (for example, waitstates,
idle cycles, and so on.)

IOP Register Stalls
• n cycles if PM and DM bus access IOP registers (both must

complete)

• n cycles if conflict occurs with slave access

DMA Stalls
• 1 cycle if an access to a DMA parameter register conflicts with the

DMA address generation (for example, writing to the register while
a register update is taking place) or reading while a DMA register
conflicts with DMA chaining

• 1 cycle if an access to a DMA parameter register or the DMASTAT
register conflicts with DMA address generation. For example, one
cycle stall occurs when writing to a DMA register while a register
update is taking place. Similarly, a one cycle stall occurs when read-
ing from a DMA register while DMA chaining is taking place.

• n cycles if writing (or reading) to a DMA buffer when the buffer is
full (or empty)

Link Port and Serial Port Stalls
• 1 cycle if two link buffer reads back-to-back

• n cycles if write to a full buffer or read from an empty buffer
13-78 ADSP-21161 SHARC Processor Hardware Reference

System Design
Table 13-12. Data Delay and Throughput

Operation Minimum
Data Delay
(cycles)

Maximum
Throughput
(cycles/ transfer)

Core processor access to external memory 0 1

Synchronous access to slave’s IOP registers1

Read (Transfer out)
Write (Transfer in)

0
2

2
1

Slave mode DMA
Read (Transfer out)
Write (Transfer in)

-
-

22

1

Master mode DMA
Transfer out
Transfer in

-
-

1
1

Handshake mode DMA3

Read/Write (Transfer in/out) 3 1

External-Handshake mode DMA4

Read/Write (Transfer in/out) 3 1

1 The delay is between data in the IOP register and at the external port. For example, an IOP reg-
ister is written in the second cycle after a write completes at the external port.

2 These transfer rates are limited by the speed of the read of the DMA FIFO buffer. When bursting
is enabled, the first read requires three cycles. The maximum burst read throughput is 3-2-2-2.

3 The delay is between DMA and DMARx.
4 The delay is between DMARx and the external transfer.

Table 13-13. Latencies and Throughput

Operation Minimum
Data Delay
(cycles)

Maximum
Throughput
(cycles/ transfer)

Interrupts (IRQ2-0) 3 -

Multiprocessor bus requests (BR1-6) 1 -

Host bus request 2 -

SYSCON effect latency 1 -
ADSP-21161 SHARC Processor Hardware Reference 13-79

Data Delays, Latencies, and Throughput
The link port control register LCTL and the serial port control register
SPCTLx share the same internal bus for reads and writes. Therefore, when a
read of one of these registers followed by a write occurs, the write will
require two processor cycles to complete.

Host packing status update in SYSTAT register 0 -

DMA packing status update in DMACx register 1 -

DMA chain initialization 7-11 -

Vector interrupt 6 -

Serial ports1 35 32

Link ports1

1x CCLK speed
1/2x CCLK speed
1/3x CCLK speed
1/4x CCLK speed

7
11
15
19

4
8
12
16

1 ADSP-21161 processor to ADSP-21161 processor transfers using 32-bit words. Link port
throughput is decreased and cycle time increased when the link port clock divisor bits are set in
the LCTL register.

Table 13-13. Latencies and Throughput (Cont’d)

Operation Minimum
Data Delay
(cycles)

Maximum
Throughput
(cycles/ transfer)
13-80 ADSP-21161 SHARC Processor Hardware Reference

A REGISTERS

The ADSP-21161 processor has general-purpose and dedicated registers in

each of its functional blocks. The register reference information for each
functional block includes bit definitions, initialization values, and mem-
ory-mapped addresses (for I/O processor registers). Information on each
type of register is available at the following locations:

• “Control and Status System Registers” on page A-2

• “Processing Element Registers” on page A-23

• “Program Sequencer Registers” on page A-25

• “Data Address Generator Registers” on page A-46

• “I/O Processor Registers” on page A-47

When writing programs, it is often necessary to set, clear, or test bits in
the processor’s registers. While these bit operations can all be done by
referring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and
consistency, Analog Devices provides a header file that provides these bit
and registers definitions. For more information, see the “Register and Bit
#Defines (def21161.h)” on page A-121.

Many registers have reserved bits. When writing to a register, pro-
grams may only clear (write zero to) the register’s reserved bits.
ADSP-21161 SHARC Processor Hardware Reference A-1

Control and Status System Registers
Control and Status System Registers
The processor’s control and status system registers determine how the pro-
cessor core operates and indicate the status of many processor core
operations. In the ADSP-21160 SHARC DSP Instruction Set Reference,
these registers are referred to as System Registers (SREG), which are a sub-
set of the processor’s Universal Registers (UREG). Not all registers are
valid in all assembly language instructions. In the assembly syntax descrip-
tions, the register group name (UREG, SREG, and others) indicates
which type of register is valid within the instruction’s context. Table A-1
lists the processor core’s control and status registers with their initializa-
tion values. Descriptions of each register follow. Other system registers
(SREG) are in the I/O processor. For more information, see “I/O Proces-
sor Registers” on page A-47.

Table A-1. Control and Status System Registers (SREG and UREG)

Register Name and Page Reference Initialization After
Reset

“Mode Control 1 Register (MODE1)” on page A-3 0x0000 00001

1 MODE 1 register initialization value is 0x0000 0000 for revisions less than 1.0. For revisions
greater than or equal to 1.0, the initialization value is 0x0100 0000 because circular buffering
(CBUFEN) is enabled.

“Mode Mask Register (MMASK)” on page A-8 0x0020 0000

“Mode Control 2 Register (MODE2)” on page A-10 0xXX00 00002

2 MODE2_SHDW bits 31-25 are the processor ID and silicon revision number, so the initializa-
tion value varies with the processor’s ID2-0 pins’ input and the silicon revision.

“Arithmetic Status Registers (ASTATx and ASTATy)” on page A-13 0x0000 0000

“Sticky Status Registers (STKYx and STKYy)” on page A-18 0x0540 0000

“User-Defined Status Registers (USTATx)” on page A-22 0x0000 0000
A-2 ADSP-21161 SHARC Processor Hardware Reference

Registers
Mode Control 1 Register (MODE1)
The Mode Control 1 register is a non-memory-mapped, universal, system
register (UREG and SREG). The reset value for this register is
0x0000 00001. Table A-2 and Figure A-1 provide bit information for the
MODE1 register.

1 MODE 1 register initialization value is 0x0000 0000 for revisions less than 1.0. For revisions greater
than or equal to 1.0, the initialization value is 0x0100 0000 because circular buffering (CBUFEN) is
enabled.

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions

Bit(s) Name Definition

0 BR8 Bit Reverse Addressing For Index I8 Enable. This bit enables (bit
reversed if set, =1) or disables (normal if cleared, =0) bit reversed
addressing for accesses that are indexed with DAG2 register I8.

1 BR0 Bit Reverse Addressing For Index I0 Enable. This bit enables (bit
reversed if set, =1) or disables (normal if cleared, =0) bit reversed
addressing for accesses that are indexed with DAG1 register I0.

2 SRCU Secondary Registers For Computational Units Enable. This bit
enables (use secondary if set, =1) or disables (use primary if
cleared, =0) secondary result (MR) registers in the computational
units.

3 SRD1H Secondary Registers For DAG1 High Enable. This bit enables
(use secondary if set, =1) or disables (use primary if cleared, =0)
secondary DAG1 registers for the upper half (I, M, L, B7-4) of
the address generator.

4 SRD1L Secondary Registers For DAG1 Low Enable. This bit enables
(use secondary if set, =1) or disables (use primary if cleared, =0)
secondary DAG1 registers for the lower half (I, M, L, B3-0) of the
address generator.

5 SRD2H Secondary Registers For DAG2 High Enable. This bit enables
(use secondary if set, =1) or disables (use primary if cleared, =0)
secondary DAG2 registers for the upper half (I, M, L, B15-12) of
the address generator.
ADSP-21161 SHARC Processor Hardware Reference A-3

Control and Status System Registers
6 SRD2L Secondary Registers For DAG2 Low Enable. This bit enables
(use secondary if set, =1) or disables (use primary if cleared, =0)
secondary DAG2 registers for the lower half (I, M, L, B11-8) of
the address generator.

7 SRRFH Secondary Registers For Register File High Enable. This bit
enables (use secondary if set, =1) or disables (use primary if
cleared, =0) secondary data registers for the upper half (R15-8) of
the computational units.

9-8 Reserved

10 SRRFL Secondary Registers For Register File Low Enable. This bit
enables (use secondary if set, =1) or disables (use primary if
cleared, =0) secondary data registers for the lower half (R7-0) of
the computational units.

11 NESTM Nesting Multiple Interrupts Enable. This bit enables (nest if set,
=1) or disables (no nesting if cleared, =0) interrupt nesting in the
interrupt controller.

When interrupt nesting is disabled, a higher priority interrupt can
not interrupt a lower priority interrupt’s service routine. Other
interrupts are latched as they occur, but they are processed after
the active routine finishes.

When interrupt nesting is enabled, a higher priority interrupt can
interrupt a lower priority interrupt’s service routine. Lower inter-
rupts are latched as they occur, but they are processed after the
nested routines finish.

12 IRPTEN Global Interrupt Enable. This bit enables (if set, =1) or disables
(if cleared, =0) all maskable interrupts.

13 ALUSAT ALU Saturation Select. This bit selects whether the computa-
tional units saturate results on positive or negative fixed-point
overflows (if 1) or return unsaturated results (if 0).

14 SSE Fixed-Point Sign Extension Select. This bit selects whether the
computational units sign extend short-word, 16-bit data (if 1) or
zero-fill the upper 32 bits (if 0).

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions (Cont’d)

Bit(s) Name Definition
A-4 ADSP-21161 SHARC Processor Hardware Reference

Registers
15 TRUNC Truncation Rounding Mode Select. This bit selects whether the
computational units round results with round-to-zero (if 1) or
round-to-nearest (if 0).

16 RND32 Rounding For 32-bit Floating-Point Data Select. This bit selects
whether the computational units round floating-point data to 32
bits (if 1) or round to 40 bits (if 0).

18-17 CSEL Bus Master Code Selection. These bits indicate whether the pro-
cessor has control of the external bus as follows: 00=processor is
bus master or 01, 10, 11=processor is not bus master.

20-19 Reserved

21 PEYEN Processor Element Y Enable. This bit enables computations in
PEy—SIMD mode—(if 1) or disables PEy—SISD mode—(if 0).

When set, Processing Element Y (computation units and register
files) accepts instruction dispatches. When cleared, Processing
Element Y goes into a low power mode.

22 BDCST9 Broadcast Register Loads Indexed With I9 Enable. This bit
enables (broadcast I9 if set, =1) or disables (no I9 broadcast if
cleared, =0) broadcast register loads for loads that use the data
address generator I9 index.

When the BDCST9 bit is set, data register loads from the PM
data bus that use the I9 DAG2 index register are “broadcast” to a
register or register pair in each PE.

23 BDCST1 Broadcast Register Loads Indexed With I1 Enable. This bit
enables (broadcast I1 if set, =1) or disables (no I1 broadcast if
cleared, =0) broadcast register loads for loads that use the data
address generator I1 index.

When the BDCST1 bit is set, data register loads from the DM
data bus that use the I1 DAG1 index register are “broadcast” to a
register or register pair in each PE.

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-5

Control and Status System Registers
24 CBUFEN Circular Buffer Addressing Enable. This bit enables (circular if
set, =1) or disables (linear if cleared, =0) circular buffer addressing
for buffers with loaded I, M, B, and L data address generator reg-
ister.

31-25 Reserved

Table A-2. Mode Control 1 Register (MODE1) Bit Definitions (Cont’d)

Bit(s) Name Definition
A-6 ADSP-21161 SHARC Processor Hardware Reference

Registers
Figure A-1. MODE1 Register

MODE1

RND32
0=Round Floating-Point Data to 40 bits
1=Round Floating-Point Data to 32 bits

CSEL
Condition Code Select
00=Bus Master Condition

PEYEN
0= Disable PEy- SISD mode
1= Enable PEy- SIMD mode

CBUFEN
0=Disable Circular
1=Enables Circular

BDCST1
0= Disable I1 Broadcast
1= Enable I1 Broadcast

BDCST9
0= Disable I9 Broadcast
1= Enable I9 Broadcast

0=Disable I8 Bit-Reversing (DAG 2)
1=Enable I8 Bit-Reversing (DAG 2)

0=Disable I0 Bit-Reversing (DAG 1)
1=Enable I0 Bit-Reversing (DAG 1)

0=Enable MR Primary
1=Enable MR Alternative

0=Enable DAG1 7-4 Primary
1=Enable DAG1 7-4 Alternate

0=Enable DAG1 3-0 Primary
1=Enable DAG1 3-0 Alternate

0=Enable DAG2 15-12 Primary
1=Enable DAG2 15-12 Alternate

0=Enable DAG2 11-8 Primary
1=Enable DAG2 11-8 Alternate

0=Enable R15-R8 Primary
1=Enable R15-R8 Alternate

BR8

BR0

SRCU

SRD1H

SRD2H

SRD2L

SRRFH

SRD1L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0

TRUNC
0=Floating-Point Round-to-Nearest
1=Floating-Point Truncation

0=Disable Short Word Sign Extension
1=Enable Short Word Sign Extension

SSE

1=Enable ALU Saturation
0=Disable ALU Saturation
ALUSAT

IRPTEN
0=Disable Interrupts
1=Enable Interrupts

NESTM
0=Disable Interrupt Nesting
1=Enable Interrupt Nesting

SRRFL
0=Enable R7-R0 Primary
1=Enable R7-R0 Secondary
ADSP-21161 SHARC Processor Hardware Reference A-7

Control and Status System Registers
Mode Mask Register (MMASK)
This is a non-memory-mapped, universal, system register (UREG and
SREG). The reset value for this register is 0x0020 0000. Each bit in the
MMASK register corresponds to a bit in the MODE1 register. Bits that are set in
MMASK are used to clear bits in MODE1 when the processor’s status stack is
pushed. This effectively disables different modes upon servicing an inter-
rupt, or when executing a PUSH STS instruction.

The processor's status stack is pushed in two cases:

1. When you execute a PUSH STS instruction explicitly in your code.

2. When an IRQ2-0 timer expires or a VIRPT interrupt occurs.

Example

Before the PUSH STS instruction, MODE1 is set to 0x01202811. This MODE1
value corresponds to the following settings being enabled:

• Bit Reversing for I8

• Secondary Registers for DAG2 (high)

• Interrupt Nesting, ALU Saturation

• Processor Element Y (SIMD)

• Circular Buffering

The MMASK register (Figure A-2) is set to 0x0020 2001 indicating that you
want to disable ALU Saturation, SIMD, and bit reversing for I8 after
pushing the status stack. The value in MODE1 after PUSH STS is 0x0100
0810. The other settings that were previously in MODE1 remain the same.
The only bits that are affected are those that are set both in MMASK and in
MODE1. These bits are cleared after the status stack is pushed.
A-8 ADSP-21161 SHARC Processor Hardware Reference

Registers
Note also that the reset value of MMASK is 0x0020 0000. If you do not make
any changes to the MMASK register, the default setting automatically dis-
ables SIMD when servicing any of the hardware interrupts mentioned
above, or during any push of the status stack.

Figure A-2. MMASK Register

MMASK
RND32
0=Round Floating-Point Data to 40 bits
1=Round Floating-Point Data to 32 bits

CSEL
Condition Code Select
00=Bus Master Condition

PEYEN
0=Disable PEy-SISD mode
1=Enable PEy-SISD mode

CBUFEN
0=Disable Linear

1=Enables Circular

BDCST1
0=Disable I1 Broadcast
1=Enable I1 Broadcast

BDCST9
0=Disable I9 Broadcast
1=Enable I9 Broadcast

TRUNC
0=Floating-point Rount-to-Nearest

1=Floating-Point Truncation

0=Disable Short Word Sign Extension
1=Enable Short Word Sign Extension

SSE

0=Disable ALU Saturation
1=Enable ALU Saturation

ALUSTAT

IRPTEN
0=Disable Interrupts
1=Enable Interrupts

NESTM
0=Disable Interrupt Nesting
1=Enable Interrupt Nesting

SRRFL
0=Disable R7-R0 Primary
1=Enable R7-R0 Alternate

0=Disable I8 Bit-Reversing (DAG 2)
1=Enable I8 Bit-Reversing (DAG 2)

0=Disable I0 Bit-Reversing (DAG 1)
1=Enable I0 Bit-Reversing (DAG 1)

0=Enable MR Primary
1=Enable MR Alternative

0=Enable DAG1 7-4 Primary
1=Enable DAG1 7-4 Alternate

0=Enable DAG1 3-0Primary
1=Enable DAG1 3-0 Alternate

0=Enable DAG2 15-12 Primary
1=Enable DAG2 15-12 Alternate

0=Enable DAG2 11-8 Primary
1=Enable DAG2 11-8 Alternate

0=Enable R15-R8 Primary
1=Enable R15-R8 Alternate

BR8

BR0

SRCU

SRD1H

SRD2H

SRD2L

SRRFH

SRD1L

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference A-9

Control and Status System Registers
Mode Control 2 Register (MODE2)
This is a non-memory-mapped, universal, system register (UREG and
SREG). The reset value for this register is 0x0000 0000. Table A-3 and
Figure A-3 provide bit information for the MODE2 register.

The MODE2_SHDW register contains silicon revision information in bits
31-25. The corresponding bits in the MODE2 register are reserved. For more
information, see “MODE2 Shadow Register (MODE2_SHDW)” on
page A-78.

Table A-3. Mode Control 2 Register (MODE2) Bit Definitions

Bit Name Definition

0 IRQ0E IRQ0 Sensitivity Select. This bit selects sensitivity for IRQ0 as
edge-sensitive (if set, =1) or level-sensitive (if cleared, =0).

1 IRQ1E IRQ1 Sensitivity Select. This bit selects sensitivity for IRQ1 as
edge-sensitive (if set, =1) or level-sensitive (if cleared, =0).

2 IRQ2E IRQ2 Sensitivity Select. This bit selects sensitivity for IRQ2 as
edge-sensitive (if set, =1) or level-sensitive (if cleared, =0).

3 Reserved

4 CADIS Cache Disable. This bit disables the instruction cache (if set, =1)
or enables the cache (if cleared, =0).

5 TIMEN Timer Enable. This bit enables the timer (starts, if set, =1) or dis-
ables the timer (stops, if cleared, =0).

6 BUSLK Bus Lock Request. This bit requests bus lock (ADSP-21161 pro-
cessor retains bus master control, if set, =1) or does not request bus
lock (normal bus master control, if cleared, =0).

14-7 Reserved

15 FLG0O FLAG0 Output Select. This bit selects the I/O direction for
FLAG0 as an output (if set, =1) or an input (if cleared, =0).

16 FLG1O FLAG1 Output Select. This bit selects the I/O direction for
FLAG1 as an output (if set, =1) or an input (if cleared, =0).
A-10 ADSP-21161 SHARC Processor Hardware Reference

Registers
17 FLG2O FLAG2 Output Select. This bit selects the I/O direction for
FLAG2 as an output (if set, =1) or an input (if cleared, =0).

18 FLG3O FLAG3 Output Select. This bit selects the I/O direction for
FLAG3 as an output (if set, =1) or an input (if cleared, =0).

19 CAFRZ Cache Freeze. This bit freezes the instruction cache (retains con-
tents, if set, =1) or thaws the cache (allows new input, if cleared,
=0).

20 IIRAE Illegal I/O Processor Register Access Enable. This bit enables
detection of I/O processor register accesses (if set, =1) or disables
detection of I/O processor register accesses (if cleared, =0).

If IIRAE is set, the processor flags an illegal access by setting the
IIRA bit in the STKYx register.

21 U64MAE Unaligned 64-bit Memory Access Enable. This bit enables detec-
tion of unaligned long word accesses (if set, =1) or disables detec-
tion of unaligned long word accesses (if cleared, =0).

If U64MAE is set, the processor flags an unaligned long word
accesses by setting the U64MA bit in the STKYx register.

31-22 Reserved

Table A-3. Mode Control 2 Register (MODE2) Bit Definitions (Cont’d)

Bit Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-11

Control and Status System Registers
Figure A-3. MODE2 Register

IRQ0E
0=IRQ O Level-Sensitive
1=IRQ O Edge-Sensitive

IRQ1EBUSLK

FLG0O

0=No External Bus Lock
1=External Bus Lock

0=FLAG0 Input
1=FLAG0 Output

TIMEN
0=Disable Timer
1=Enable Timer

CADIS
0=Enable Cache
1=Disable Cache

0=IRQ 1 Level-Sensitive
1=IRQ 1 Edge-Sensitive

IRQ2E
0=IRQ 2 Level-Sensitive
1=IRQ 2 Edge-Sensitive

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MODE2

IIRAE

U64MAE

CAFRZ
0=Cache Updates
1=Cache Freeze (No Updates)

0=Disable detection of Illegal IOP access

0=Disable detection of unaligned LW accesses
1=Enable detection of unaligned LW accesses

1=Enable detection of Illegal IOP access FLG3O
0=FLAG3 Input
1=FLAG3 Output

FLG1O

FLG2O
0=FLAG2 Input
1=FLAG2 Output

0=FLAG1 Input
1=FLAG1 Output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-12 ADSP-21161 SHARC Processor Hardware Reference

Registers

-

-

Arithmetic Status Registers (ASTATx and ASTATy)
ASTATx and ASTATy are non-memory-mapped, universal, system registers
(UREG and SREG). The reset value for these registers is 0x0000 0000.
Each processing element has its own ASTAT register. ASTATx indicates status
for PEx operations while ASTATy indicates status for PEy operations.
Table A-4 and Figure A-4 provide bit information for the ASTAT register.

If a program loads the ASTATx register manually, there is a one cycle
effect latency before the new value in ASTATx can be used in a con-
ditional instruction.

Table A-4. Arithmetic Status Registers (ASTATx/y)
Bit Definitions

Bit(s) Name Definition

0 AZ ALU Zero/Floating-Point Underflow. Indicates whether the last ALU
operation’s result was zero (if set, =1) or non-zero (if cleared, =0).

The ALU updates AZ for all fixed-point and floating-point ALU opera-
tions. AZ can also indicate a floating-point underflow. During an ALU
underflow (indicated by a set (=1) AUS bit in the STKYx/y register), the
processor sets AZ if the floating-point result is smaller than can be repre
sented in the output format.

1 AV ALU Overflow. Indicates whether the last ALU operation’s result over-
flowed (if set, =1) or did not overflow (if cleared, =0).

The ALU updates AV for all fixed-point and floating-point ALU opera-
tions. For fixed-point results, the processor sets AV and the AOS bit in
the STKYx/y register when the XOR of the two most significant bits is a
1. For floating-point results, the processor sets AV and the AVS bit in the
STKYx/y register when the rounded result overflows (unbiased exponent
> 127).

2 AN ALU Negative. Indicates whether the last ALU operation’s result was neg
ative (if set, =1) or positive (if cleared, =0).

The ALU updates AN for all fixed-point and floating-point ALU opera-
tions.
ADSP-21161 SHARC Processor Hardware Reference A-13

Control and Status System Registers

3 AC ALU Fixed-Point Carry. Indicates whether the last ALU operation had a
carry out of most significant bit of the result (if set, =1) or had no carry
(if cleared, =0).

The ALU updates AC for all fixed-point operations. The processor clears
AC during fixed-point logic operations: PASS, MIN, MAX, COMP,
ABS, and CLIP. The ALU reads the AC flag for fixed-point accumulate
operations: addition with carry and fixed-point subtraction with carry.

4 AS ALU X-Input Sign (for ABS and MANT). Indicates whether the last
ALU ABS or MANT operation’s input was negative (if set, =1) or positive
(if cleared, =0).

The ALU updates AS only for fixed-point and floating-point ABS and the
MANT operations. The ALU clears AS for all operations other than ABS
and MANT.

5 AI ALU Floating-Point Invalid Operation. Indicates whether the last ALU
operation’s input was invalid (if set, =1) or valid (if cleared, =0).

The ALU updates AI for all fixed-point and floating-point ALU opera-
tions. The processor sets AI and the AIS bit in the STKYx/y register if the
ALU operation:

• Receives a NAN input operand
• Adds opposite-signed infinities
• Subtracts like-signed infinities
• Overflows during a floating-point to fixed-point conversion

when saturation mode is not set
• Operates on an infinity when the saturation mode is not set

6 MN Multiplier Negative. Indicates whether the last multiplier operation’s
result was negative (if set, =1) or positive (if cleared, =0).

The multiplier updates MN for all fixed-point and floating-point multi-
plier operations.

Table A-4. Arithmetic Status Registers (ASTATx/y)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-14 ADSP-21161 SHARC Processor Hardware Reference

Registers

-

l

s

.

7 MV Multiplier Overflow. Indicates whether the last multiplier operation’s
result overflowed (if set, =1) or did not overflow (if cleared, =0).

The multiplier updates MV for all fixed-point and floating-point multi-
plier operations. For floating-point results, the processor sets MV and the
MVS bit in the STKYx/y register if the rounded result overflows (unbi-
ased exponent > 127). For fixed-point results, the processor sets MV and
the MOS bit in the STKYx/y register if the result of the multiplier opera
tion is:

• Twos-complement, fractional with the upper 17 bits of MR not
all zeros or all ones

• Twos-complement, integer with the upper 49 bits of MR not al
zeros or all ones

• Unsigned, fractional with the upper 16 bits of MR not all zero
• Unsigned, integer with the upper 48 bits of MR not all zeros

If the multiplier operation directs a fixed-point result to an MR register,
the processor places the overflowed portion of the result in MR1 and
MR2 for an integer result or places it in MR2 only for a fractional result

Table A-4. Arithmetic Status Registers (ASTATx/y)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-15

Control and Status System Registers

-

,

8 MU Multiplier Floating-Point Underflow. Indicates whether the last multi-
plier operation’s result underflowed (if set, =1) or did not underflow (if
cleared, =0).

The multiplier updates MU for all fixed-point and floating-point multi-
plier operations. For floating-point results, the processor sets MU and the
MUS bit in the STKYx/y register if the floating-point result underflows
(unbiased exponent < –126). Denormal operands are treated as Zeros,
therefore they never cause underflows. For fixed-point results, the proces
sor sets MU and the MUS bit in the STKYx/y register if the result of the
multiplier operation is:

• Twos-complement, fractional: upper 48 bits all zeros or all ones
lower 32 bits not all zeros

• Unsigned, fractional: upper 48 bits all zeros, lower 32 bits not
all zeros

If the multiplier operation directs a fixed-point, fractional result to an
MR register, the processor places the underflowed portion of the result in
MR0.

9 MI Multiplier Floating-Point Invalid Operation. Indicates whether the last
multiplier operation’s input was invalid (if set, =1) or valid (if cleared,
=0).

The multiplier updates MI for floating-point multiplier operations. The
processor sets MI and the MIS bit in the STKYx/y register if the ALU
operation:

• Receives a NAN input operand
• Receives an Infinity and Zero as input operands

10 AF ALU Floating-Point Operation. Indicates whether the last ALU opera-
tion was floating-point (if set, =1) or fixed-point (if cleared, =0).

The ALU updates AF for all fixed-point and floating-point ALU opera-
tions.

Table A-4. Arithmetic Status Registers (ASTATx/y)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-16 ADSP-21161 SHARC Processor Hardware Reference

Registers

11 SV Shifter Overflow. Indicates whether the last shifter operation’s result
overflowed (if set, =1) or did not overflow (if cleared, =0).
The shifter updates SV for all shifter operations. The processor sets SV if
the shifter operation:

• Shifts the significant bits to the left of the 32-bit fixed-point
field

• Tests, sets, or clears a bit outside of the 32-bit fixed-point field
• Extracts a field that is past or crosses the left edge of the 32-bit

fixed-point field
• Performs a LEFTZ or LEFTO operation that returns a result of

32

12 SZ Shifter Zero. Indicates whether the last shifter operation’s result was zero
(if set, =1) or non-zero (if cleared, =0).

The shifter updates SZ for all shifter operations. The processor also sets
SZ if the shifter operation performs a bit test on a bit outside of the
32-bit fixed-point field.

13 SS Shifter Input Sign. Indicates whether the last shifter operation’s input
was negative (if set, =1) or positive (if cleared, =0).
The shifter updates SS for all shifter operations.

17-14 Reserved

18 BTF Bit Test Flag for System Registers. Indicates whether the system register
bit is true (if set, =1) or false (if cleared, =0).

The processor sets BTF when the bit(s) in a system register and value in
the Bit Tst instruction match. The processor also sets BTF when the
bit(s) in a system register and value in the Bit Xor instruction match.

23-19 Reserved

31-24 CACC Compare Accumulation Shift Register. Bit 31 of CACC indicates which
operand was greater during the last ALU compare operation: X input (if
set, =1) or Y input (if cleared, =0). The other seven bits in CACC form a
right-shift register, each storing a previous compare accumulation result.
With each new compare, the processor right shifts the values of CACC,
storing the newest value in bit 31 and the oldest value in bit 24.

Table A-4. Arithmetic Status Registers (ASTATx/y)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-17

Control and Status System Registers
Sticky Status Registers (STKYx and STKYy)
These are non-memory-mapped, universal, system registers (UREG and
SREG). The reset value for these registers is 0x0000 0000. Each process-
ing element has its own STKY register. The STKYx register indicates status
for PEx operations and some program sequencer stacks. The STKYy register

Figure A-4. ASTAT Register

ASTATx/y

BTF
CCAC
Compare Accumulation Shift Register

AZ
ALU Zero/
Floating-Point Underflow
AV
ALU Overflow

AN
ALU Negative

SS
Shifter Input Sign

SZ

SV
Shifter Overflow
AF
ALU Floating-Point Operation

Shifter Zero

MI

MU
Multiplier Floating-Point Underflow

Multiplier Floating-Point
Invalid Operation

MV
Multiplier Overflow

AC
ALU Fixed-Point Carry-

AS
ALU X Input Sign
(for ABS and MANT)

MN
Multiplier Negative

Bit Test Flag for
System Registers

AI
ALU Floating-Point
Invalid Operation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-18 ADSP-21161 SHARC Processor Hardware Reference

Registers
only indicates status for PEy operations. Table A-5, Figure A-5 and
Figure A-6 lists bits for both STKYx and STKYy, noting with an √ the bits
that apply only to STKYx.

STKY bits do not clear themselves after the condition they flag is no
longer true. They remain “sticky” until cleared by the program.

The ADSP-21161 processor sets a STKY bit in response to a condition. For
example, the processor sets the AUS bit in the STKY register when an ALU
underflow set AZ in the ASTAT register. The processor clears AZ if the next
ALU operation does not cause an underflow. The bit AUS remains set until
a program clears the STKY bit. Interrupt service routines should clear their
interrupt’s corresponding STKY bit so the processor can detect a re-occur-
rence of the condition. For example, an interrupt service routine for the
floating-point underflow exception interrupt (FLTUI) would clear the AUS
bit in the STKY register near the beginning of the routine.

Table A-5. Sticky Status Registers (STKYx/y) Bit Definitions

Bit(s) Name Definition At right: √ shows bits in both STKYx/y ↓
× shows bits in STKYx only ↓

0 AUS ALU Floating-Point Underflow. A sticky indicator for the ALU
AS bit. For more information, see “AZ” on page A-13.

√

1 AVS ALU Floating-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page A-13.

√

2 AOS ALU Fixed-Point Overflow. A sticky indicator for the ALU AV
bit. For more information, see “AV” on page A-13.

√

4-3 Reserved

5 AIS ALU Floating-Point Invalid Operation. A sticky indicator for the
ALU AI bit. For more information, see “AI” on page A-14.

√

6 MOS Multiplier Fixed-Point Overflow. A sticky indicator for the mul-
tiplier MV bit. For more information, see “MV” on page A-15.

√

7 MVS Multiplier Floating-Point Overflow. A sticky indicator for the
multiplier MV bit. For more information, see “MV” on page
A-15.

√

ADSP-21161 SHARC Processor Hardware Reference A-19

Control and Status System Registers
8 MUS Multiplier Floating-Point Underflow. A sticky indicator for the
multiplier MU bit. For more information, see “MU” on page
A-16.

√

9 MIS Multiplier Floating-Point Invalid Operation. A sticky indicator
for the multiplier MI bit. For more information, see “MI” on
page A-16.

√

16-10 Reserved

17 CB7S DAG1 Circular Buffer 7 Overflow. Indicates whether a circular
buffer being addressed with DAG1 register I7 has overflowed (if
set, =1) or has not overflowed (if cleared, =0). A circular buffer
overflow occurs when DAG circular buffering operation incre-
ments the I register past the end of buffer.

×

18 CB15S DAG2 Circular Buffer 15 Overflow. Indicates whether a circular
buffer being addressed with DAG2 register I15 has overflowed (if
set, =1) or has not overflowed (if cleared, =0). A circular buffer
overflow occurs when DAG circular buffering operation incre-
ments the I register past the end of buffer.

×

19 IIRA Illegal IOP Register Access. Indicates if set (=1) whether a core,
host, or multiprocessor access to I/O processor registers has
occurred or has not occurred (if 0).

×

20 U64MA Unaligned 64-Bit Memory Access. Indicates if set (=1) whether a
Normal word access with the LW mnemonic addressing an uneven
memory address has occurred or has not occurred (if 0).

×

21 PCFL PC Stack Full. Indicates whether the PC stack is full (if 1) or not
full (if 0)—Not a sticky bit, cleared by a Pop.

×

22 PCEM PC Stack Empty. Indicates whether the PC stack is empty (if 1) or
not empty (if 0)—Not sticky, cleared by a Push.

×

23 SSOV Status Stack Overflow. Indicates whether the status stack is over-
flowed (if 1) or not overflowed (if 0)—A sticky bit.

×

24 SSEM Status Stack Empty. Indicates whether the status stack is empty (if
1) or not empty (if 0)—Not sticky, cleared by a Push.

×

Table A-5. Sticky Status Registers (STKYx/y) Bit Definitions (Cont’d)

Bit(s) Name Definition At right: √ shows bits in both STKYx/y ↓
× shows bits in STKYx only ↓
A-20 ADSP-21161 SHARC Processor Hardware Reference

Registers
25 LSOV Loop Stack Overflow. Indicates whether the loop counter stack
and loop stack are overflowed (if 1) or not overflowed (if 0)—A
sticky bit.

×

26 LSEM Loop Stack Empty. Indicates whether the loop counter stack and
loop stack are empty (if 1) or not empty (if 0)—Not sticky,
cleared by a Push.

×

31-27 Reserved

Figure A-5. STKYx Registers

Table A-5. Sticky Status Registers (STKYx/y) Bit Definitions (Cont’d)

Bit(s) Name Definition At right: √ shows bits in both STKYx/y ↓
× shows bits in STKYx only ↓

STKYx
CB7S
DAG1 Circular Buffer 7 Overflow

CB15S
DAG2 Circular Buffer 15 Overflow

PCFL
PC Stack Full (read -only)
Not sticky, cleared by POP

PCEM
PC Stack Empty (read -only)
Not sticky, cleared by PUSH

LSOV
Loop Stack Overflow (read-only)

LSEM
Loop Stack Empty (read - only)

AUS
ALU Floating- Point Underflow

AVS
ALU Floating- Point Overflow

AOS
ALU Fixed -Point Overflow

AIS
ALU Floating -Point Invalid Operation

MIS

MUS
Mulitplier Floating -Point Underflow

Multiplier Floating -Point Invalid Operation

MVS

MOS
Multiplier Fixed -Point Overflow

Multiplier Floating-Point Overflow

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Status Stack Overflow (read-only)
SSOV

SSEM
Status Stack Empty (read -only)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

IIRA

U64MA

Illegal IOP Register Access

Unaligned 64-bit Memory Access

1= illegal access occured,
0= no illegal access

1=unaligned access has occured,
0=no access occured
ADSP-21161 SHARC Processor Hardware Reference A-21

Control and Status System Registers
User-Defined Status Registers (USTATx)
These are non-memory-mapped, universal, system registers (UREG and
SREG). The reset value for these registers is 0x0000 0000. The USTATx
registers (Figure A-7) are user-defined, general-purpose status registers.
Programs can use these 32-bit registers with bitwise instructions (SET,
CLEAR, TEST, and others). Often, programs use these registers for low-over-
head, general-purpose flags or for temporary 32-bit storage of data.

Figure A-6. STKYy Register

Figure A-7. USTAT Registers

STKYy

AUS
ALU Floating -Point Underflow

AVS
ALU Floating-Point Overflow

AOS
ALU Fixed -Point Overflow

AIS
ALU Floating- Point

MIS

MUS
Mulitplier Floating -Point Underflow

Multiplier Floating -Point Invalid Operation

MVS

MOS
Multiplier Fixed - Point Overflow

Multiplier Floating - Point Overflow

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Invalid Operation

USTAT1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USTAT2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USTAT3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USTAT4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-22 ADSP-21161 SHARC Processor Hardware Reference

Registers
Processing Element Registers
Except for the PX register, the processor’s processing element registers
store data for each element’s ALU, multiplier, and shifter. The inputs and
outputs for processing element operations go through these registers. The
PX register lets programs transfer data between the data buses, but cannot
be an input or output in a calculation.

Data File Data Registers (Rx, Fx, Sx)
The Data File Data Registers are non-memory-mapped, universal, data
registers (UREG and DREG). Each of the ADSP-21161’s processing ele-
ments has a data register file—a set of 40-bit data registers that transfer
data between the data buses and the computation units. These registers
also provide local storage for operands and results.

The R, F, and S prefixes on register names do not effect the 32-bit or
40-bit data transfer; the naming convention determines how the ALU,
multiplier, and shifter treat the data and determines which processing ele-
ment’s data registers are being used.

For more information on how to use these registers, see “Data Register
File” on page 2-30.

Table A-6. Processing Element Universal Registers (UREG)

Register Name and Page Reference Initialization After Reset

“Data File Data Registers (Rx, Fx, Sx)” on page A-23 Undefined

“Multiplier Results Registers (MRFx, MRBx)” on page A-24 Undefined

“Program Memory Bus Exchange Register (PX)” on page A-25 Undefined
ADSP-21161 SHARC Processor Hardware Reference A-23

Processing Element Registers

OS

ary Point
Multiplier Results Registers (MRFx, MRBx)
The MRFx and MRBx registers are non-memory-mapped, universal, data reg-
isters (UREG and DREG). Each of the processor’s multipliers has a
primary or foreground (MRF) register and alternate or background (MRB)
results register. Fixed-point operations place 80-bit results in the multi-
plier’s foreground MRF register or background MRB register, depending on
which is active. For more information on selecting the result register, see
“Alternate (Secondary) Data Registers” on page 2-32. For more informa-
tion on result register fields, see “Data Register File” on page 2-30.

Figure A-8. MRFx and MRBx Registers

Integer Multiplier Fixed Point Result Placement

Fractional Multiplier Fixed-Point Result Placement

0316379

INTEGER RESULTINTEGER RESULTOVERFLOW

MR2 MR1 MR0

ureg ZER

8 bits32 bits

Register File
Placement

MRF or MRB
Placement •

Bin

INTEGER RESULTOVERFLOW (is lost) •

ureg ZEROS

8

t

32 bits

0316379

FRACTIONAL RESULTOVERFLOW

MR2 MR1 MR0MRF or MRB
Placement

Register File
Placement FRACTIONAL RESULT UNDERFLOW (is lost)

•
Binary Point

FRACTIONAL RESULT

MV set

MV set

Integer M u l t ip l i e r Fixed-Point Result Placement

bits
A-24 ADSP-21161 SHARC Processor Hardware Reference

Registers
Program Memory Bus Exchange Register (PX)
The PX register (Figure A-9) is a non-memory-mapped, universal registers
(UREG only). The PM Bus Exchange (PX) register permits data to flow
between the PM and DM data buses. The PX register can work as one
64-bit register or as two 32-bit registers (PX1 and PX2). PX1 is the lower 32
bits of the PX register and PX2 is the upper 32 bits of PX. See the section
“Internal Data Bus Exchange” on page 5-10 for more information about
the PX register.

Program Sequencer Registers
The ADSP-21161 processor’s program sequencer registers direct the exe-
cution of instructions. These registers include support for the:

• Instruction pipeline

• Program and loop stacks

• Timer

• Interrupt mask and latch

Figure A-9. PX Register

PX2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PX1
ADSP-21161 SHARC Processor Hardware Reference A-25

Program Sequencer Registers
Table A-7. Program Sequencer System Registers (UREG and SREG)

Register Initialization After Reset

“Interrupt Latch Register (IRPTL)” on page A-27 0x0000 0000 (cleared)

“Interrupt Mask Register (IMASK)” on page A-31 0x0000 0003

“Interrupt Mask Pointer Register (IMASKP)” on page A-32 0x0000 0000 (cleared)

“Link Port Interrupt Register (LIRPTL)” on page A-34 0x0000 0000 (cleared)

“Flag Value Register (FLAGS)” on page A-37 0x0000 000n1

1 FLAGS bits 0-3 are equal to the values of the FLAG0-3 input pins after reset; the flag pins are
configured as inputs after reset.

Table A-8. Program Sequencer Universal Registers (UREG only)

Register Initialization After Reset

“Program Counter Register (PC)” on page A-41 Undefined

“Program Counter Stack Register (PCSTK)” on page A-44 Undefined

“Program Counter Stack Pointer Register (PCSTKP)” on
page A-44

Undefined

“Fetch Address Register (FADDR)” on page A-44 Undefined

“Decode Address Register (DADDR)” on page A-44 Undefined

“Loop Address Stack Register (LADDR)” on page A-45 Undefined

“Current Loop Counter Register (CURLCNTR)” on page A-45 Undefined

“Loop Counter Register (LCNTR)” on page A-45 Undefined

“Timer Period Register (TPERIOD)” on page A-46 Undefined

“Timer Count Register (TCOUNT)” on page A-46 Undefined
A-26 ADSP-21161 SHARC Processor Hardware Reference

Registers
Interrupt Latch Register (IRPTL)
The IRPTL register is a non-memory-mapped, universal, system register
(UREG and SREG). The reset value for this register is 0x0000 0000. The
IRPTL register indicates latch status for interrupts. Table A-9 and
Figure A-10 provide bit definitions for the IRPTL register.

Table A-9. Interrupt Latch Register (IRPTL) Bit Definitions

Bit(s) Name Definition

0 EMUI Emulator Interrupt. Indicates whether an EMUI is latched and is
pending (if set, =1) or no EMUI is pending (if cleared, =0). An EMUI
occurs on reset and when an external device asserts the EMU pin.

1 RSTI Reset Interrupt. Indicates whether an RSTI is latched and is pending
(if set, =1) or no RSTI is pending (if cleared, =0). An RSTI occurs on
reset as an external device asserts the RESET pin.

2 IICDI Illegal Input Condition Detected Interrupt. Indicates whether an
IICDI is latched and is pending (if set, =1) or no IICDI is pending (if
cleared, =0). An IICDI occurs when a TRUE results from the logical
Oring of the Illegal I/O Processor Register Access (IIRA) and
Unaligned 64-bit Memory Access bits in the STKYx registers.

3 SOVFI Stack Overflow/Full Interrupt. Indicates whether a SOVFI is latched
and is pending (if set, =1) or no SOVFI is pending (if cleared, =0). An
SOVFI occurs when a stack in the program sequencer overflows or is
full. For more information, see “PCFL” on page A-20, “SSOV” on
page A-20, and “LSOV” on page A-21.
ADSP-21161 SHARC Processor Hardware Reference A-27

Program Sequencer Registers
4 TMZHI Timer Expired High Priority. Indicates whether a TMZHI is latched
and is pending (if set, =1) or TMZHI is not pending (if cleared, =0). A
TMZHI occurs when the timer decrements to zero. Note that this
event also triggers a TMZLI. The timer operations are controlled as
follows:

• The TCOUNT register contains the timer counter. The
timer decrements the TCOUNT register each clock cycle.

• The TPERIOD value specifies the frequency of timer inter-
rupts. The number of cycles between interrupts is
TPERIOD + 1. The maximum value of TPERIOD is
232 – 1.

• The TIMEN bit in the MODE2 register starts and stops the
timer.

Since the timer expired event (TCOUNT decrements to zero) gener-
ates two interrupts, TMZHI and TMZLI, programs should unmask
the timer interrupt with the desired priority and leave the other one
masked.

5 VIRPTI Multiprocessor Vector Interrupt. Indicates whether a VIRPTI is
latched and is pending (if set, =1) or no VIRPTI is pending (if cleared,
=0). A VIRPTI occurs when one of the DSPs in a multiprocessor sys-
tem writes an address (the vector) to the processor’s VIRPT register.

6 IRQ2I IRQ2 Hardware Interrupt. Indicates whether an IRQ2I is latched and
is pending (if set, =1) or no IRQ2I is pending (if cleared, =0). An
IRQ2I occurs when an external device asserts the IRQ2 pin.

7 IRQ1I IRQ1 Hardware Interrupt. Indicates whether an IRQ1I is latched and
is pending (if set, =1) or no IRQ1I is pending (if cleared, =0). An
IRQ1I occurs when an external device asserts the IRQ1 pin.

8 IRQ0I IRQ0 Hardware Interrupt. Indicates whether an IRQ0I is latched and
is pending (if set, =1) or no IRQ0I is pending (if cleared, =0). An
IRQ0I occurs when an external device asserts the IRQ0 pin.

9 Reserved

Table A-9. Interrupt Latch Register (IRPTL) Bit Definitions (Cont’d)

Bit(s) Name Definition
A-28 ADSP-21161 SHARC Processor Hardware Reference

Registers
10 SP0I SPORT0 DMA Interrupt. Indicates whether a SP0I is latched and is
pending (if set, =1) or no SP0I is pending (if cleared, =0). A SP0I
occurs two cycles after the last bit of an input the serial word is latched
into RX0A or RX0B or two cycles after data is shifted out of TX0A or
TX0B.

11 SP1I SPORT1 DMA Interrupt. Indicates whether a SP1I is latched and is
pending (if set, =1) or no SP1I is pending (if cleared, =0). A SP1I
occurs two cycles after the last bit of an input the serial word is latched
into RX1A or RX1B or two cycles after data is shifted out of TX1A or
TX1B.

12 SP2I SPORT2 DMA Interrupt. Indicates whether a SP2I is latched and is
pending (if set, =1) or no SP2I is pending (if cleared, =0). An SP2I
occurs two cycles after the last bit of an output the serial word is
latched from RX2A or RX2B or two cycles after data is shifted out of
TX2A or TX2B.

13 SP3I SPORT3 DMA Interrupt. Indicates whether a SP3I is latched and is
pending (if set, =1) or no SP3I is pending (if cleared, =0). An SP3I
occurs two cycles after the last bit of an output the serial word is
latched from RX3A or RX3B or two cycles after data is shifted out of
TX3A or TX3B.

14 LPISUMI Link or SPI Buffer DMA Summary Interrupt. Indicates whether an
LPISUMI is latched and is pending (if set, =1) or no LPISUMI is
pending (if cleared, =0). An LPISUMI occurs when a TRUE results
from the logical Or’ing of unmasked link port and SPI interrupts,
which are configured in the LIRPTL register. Indicates whether at least
one unmasked link port (LBUF0 or LBUF1) or SPI port (SPIRX or
SPITX) interrupt is latched. To enable link or SPI interrupts this bit
must be unmasked in addition to unmasking the individual interrupts.

Table A-9. Interrupt Latch Register (IRPTL) Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-29

Program Sequencer Registers
15 EP0I External Port Buffer 0 DMA Interrupt. Indicates whether an EP0I is
latched and is pending (if set, =1) or no EP0I is pending (if cleared,
=0). An EP0I occurs when the external port buffer’s DMA is disabled
(DEN=0) and either:

• The buffer is set to receive (TRAN=0), and the buffer is not
empty

• The buffer is set to transmit (TRAN=1), and the buffer is not
full

16 EP1I External Port Buffer 1 DMA Interrupt. Indicates whether an EP1I is
latched and is pending (if set, =1) or no EP1I is pending (if cleared,
=0). For more information, see “EP0I” on page A-30.

17 EP2I External Port Buffer 2 DMA Interrupt. Indicates whether an EP2I is
latched and is pending (if set, =1) or no EP2I is pending (if cleared,
=0). For more information, see “EP0I” on page A-30.

18 EP3I External Port Buffer 3 DMA Interrupt. Indicates whether an EP3I is
latched and is pending (if set, =1) or no EP3I is pending (if cleared,
=0). For more information, see “EP0I” on page A-30.

19 LSRQI Link Port Service Request Interrupt. Indicates whether an LSRQI is
latched and is pending (if set, =1) or no LSRQI is pending (if cleared,
=0). An LSRQI occurs when an external source accesses an unassigned
link port or accesses an assigned link port that has its link buffer dis-
abled.

20 CB7I DAG1 Circular Buffer 7 Overflow Interrupt. Indicates whether a
CB7I is latched and is pending (if set, =1) or no CB7I interrupt is
pending (if cleared, =0). For more information, see “CB7S” on page
A-20.

21 CB15I DAG2 Circular Buffer 15 Overflow Interrupt. Indicates whether a
CB15I is latched and is pending (if set, =1) or no CB15I is pending (if
cleared, =0). For more information, see “CB15S” on page A-20.

22 TMZLI Timer Expired (Low Priority) Interrupt. Indicates whether a TMZLI
is latched and is pending (if set, =1) or no TMZLI is pending (if
cleared, =0). For more information, see “TMZHI” on page A-28.

Table A-9. Interrupt Latch Register (IRPTL) Bit Definitions (Cont’d)

Bit(s) Name Definition
A-30 ADSP-21161 SHARC Processor Hardware Reference

Registers
Interrupt Mask Register (IMASK)
The IMASK register is a non-memory-mapped, universal, system register
(UREG and SREG). The reset value for this register is 0x0000 0003. Each
bit in the IMASK register corresponds to a bit with the same name in the

23 FIXI Fixed-Point Overflow Interrupt. Indicates whether a FIXI is latched
and is pending (if set, =1) or no FIXI is pending (if cleared, =0). For
more information, see “AOS” on page A-19.

24 FLTOI Floating-Point Overflow Interrupt. Indicates whether a FLTOI is
latched and is pending (if set, =1) or no FLTOI is pending (if cleared,
=0).

25 FLTUI Floating-Point Underflow Interrupt. Indicates whether a FLTUI is
latched and is pending (if set, =1) or no FLTUI is pending (if cleared,
=0).

26 FLTII Floating-Point Invalid Operation Interrupt. Indicates whether a
FLTII is latched and is pending (if set, =1) or no FLTII is pending (if
cleared, =0). For more information, see “AIS” on page A-19.

27 SFT0I User Software Interrupt 0. Indicates whether a SFT0I is latched and is
pending (if set, =1) or no SFT0I is pending (if cleared, =0). An SFT0I
occurs when a program sets (=1) this bit.

28 SFT1I User Software Interrupt 1. Indicates whether a SFT1I is latched and is
pending (if set, =1) or no SFT1I is pending (if cleared, =0). For details,
see SFT0I bit description.

29 SFT2I User Software Interrupt 2. Indicates whether a SFT2I is latched and is
pending (if set, =1) or no SFT2I is pending (if cleared, =0). For details,
see SFT0I bit description.

30 SFT3I User Software Interrupt 3. Indicates whether a SFT3I is latched and is
pending (if set, =1) or no SFT3I is pending (if cleared, =0). For details,
see SFT0I bit description.

31 Reserved

Table A-9. Interrupt Latch Register (IRPTL) Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-31

Program Sequencer Registers
IRPTL registers. The bits in IMASK unmask (enable if set, =1) or mask (dis-
able if cleared, =0) the interrupts that are latched in the IRPTL register.
Except for RESET, all interrupts are maskable.

When IMASK masks an interrupt, the masking disables the processor’s
response to the interrupt. The IRPTL register still latches an interrupt even
when masked, and the processor responds to that latched interrupt if it is
later unmasked. Table A-10 and Figure A-10 provide bit definitions for
the IMASK register.

Interrupt Mask Pointer Register (IMASKP)
The IMASKP register is a non-memory-mapped, universal, system register
(UREG and SREG). The reset value for this register is 0x0000 0000. Each
bit in the IMASKP register corresponds to a bit with the same name in the
IRPTL registers. This register supports an interrupt nesting scheme that lets
higher priority events interrupt an interrupt service routine and keeps
lower priority events from interrupting. Table A-9 and Figure A-10 pro-
vide bit definitions for the IMASKP register.

When interrupt nesting is enabled, the bits in the IMASKP register mask
interrupts having lower priority than the interrupt that is currently being
serviced. Other bits in this register unmask interrupts having higher prior-
ity than the interrupt that is currently being serviced. Interrupt nesting is
enabled using NESTM in the MODE1 register. The IRPTL register latches a
lower priority interrupt even when masked, and the processor responds to
that latched interrupt if it is later unmasked.

When interrupt nesting is disabled (NESTM=0 in the MODE1 register), the
bits in IMASKP mask all interrupts while an interrupt is currently being ser-
viced. The IRPTL register still latches these interrupts even when masked,
and the processor responds to the highest priority latched interrupt after
servicing the current interrupt.

For more information, see “NESTM” on page A-4.
A-32 ADSP-21161 SHARC Processor Hardware Reference

Registers

4)

68)

x00)
Figure A-10. IMASK, IMASKP, IRPTL Registers

IRPTL
IMASK
IMASKP

EP1I
Ext.Port Buffer 1 DMA (0x54)

SFT3I
User Software Interrupt 3 (0x8C)

SFT2I
User Software Interrupt 2 (0x88)

SFT1I
User Software Interrupt 1 (0x84)

SFT0I
User Software Interrupt 0 (0x80)

FLTII
Floating -Point Invalid Operation (0x7C)

FLTUI
Floating -Point Underflow (0x78)

FLTOI
Floating - Point Overflow (0x74)

EP2I
Ext.Port Buffer 2 DMA (0x58)

EP3I
Ext.Port Buffer 3 DMA (0x5C)

LSRQI
Link Port Service Request (0x60)

CB7I
DAG1 Circular Buffer 7 Overflow (0x6

CB15I
DAG2 Circular Buffer 15 Overflow (0x

TMZLI
Timer Expired (Low Priority) (0x6C)

FIXI
Fixed-Point Overflow (0x70)

EP0I
Ext.Port Buffer 0 DMA(0x50)

LPISUMI
Link or SPI Buffer DMA Summary

SP3I
SPORT3 DMA (0x34)

SP2I
SPORT2 DMA (0x30)

SP1I
SPORT1 DMA (0x2C)

SP0I
SPORT0 DMA (0x28)

IRQ0I
IRQ0 Asserted (0x20)

EMUI
Emulator Interrupt (int vector address 0

RSTI
Reset (int vector address 0x04)

IICDI
Illegal Input Condition Detected (0x08)

SOVFI
Stack Full/Overflow (0x0C)

TMZHI
Timer Expired (High Priority) (0x10)

VIRPTI
Multiprocessor Vector Interrupt (0x14)

IRQ2I
IRQ2 Asserted (0x18)
IRQ1I
IRQ1 Asserted (0x1C)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference A-33

Program Sequencer Registers
Link Port Interrupt Register (LIRPTL)
The LIRPTL register is a non-memory-mapped, universal, system register
(UREG and SREG). The reset value for these registers is 0x0000 0000.
The LIRPTL register indicates latch status, select masking, and displays
mask pointers for link port interrupts. Table A-10 and Figure A-11 pro-
vide bit definitions for the LIRPTL register.

Note that the LPISUM bit in the IRPTL register contains a logical
Oring of the link port and SPI port latch bits in the LIRPTL regis-
ter. For more information, see “LPISUMI” on page A-29.

Table A-10. Link Port Interrupt Latch, Mask, and Mask Pointer Register
(LIRPTL) Bit Definitions

Bit Name Definition

0 LP0I Link Port Buffer 0 DMA Interrupt. Indicates whether an LP0 inter-
rupt is latched and is pending (if set, =1) or no LP0 interrupt is
pending (if cleared, =0). An LP0 interrupt occurs when the link port
buffer’s DMA is disabled (DEN=0) and either:

• The buffer is set to receive (TRAN=0), and the buffer is
not empty

• The buffer is set to transmit (TRAN=1), and the buffer is
not full

Note that LP0 is set irrespective of whether the link port is enabled
in core mode or DMA mode.

1 LP1I Link Port Buffer 1 DMA Interrupt. Indicates whether an LP1 inter-
rupt is latched and is pending (if set, =1) or no LP1 interrupt is
pending (if cleared, =0).

2 SPIRI SPI Receive DMA Interrupt Latch. Indicates whether an SPIRI is
latched and is pending (if set, =1) or no SPIRI is pending (if cleared,
=0).

3 SPITI SPI Transmit DMA Interrupt Latch. Indicates whether an SPITI is
latched and is pending (if set, =1) or no SPITI is pending (if cleared,
=0).
A-34 ADSP-21161 SHARC Processor Hardware Reference

Registers
15-4 Reserved

16 LP0MSK Link Buffer 0 DMA Interrupt Mask. This bit unmasks the LP0
interrupt (if set, =1) or masks the LP0 interrupt (if cleared, =0). For
more information on how interrupt masking works, see “Interrupt
Latch Register (IRPTL)” on page A-27.

17 LP1MSK Link Buffer 1 DMA Interrupt Mask. This bit unmasks the LP1
interrupt (if set, =1) or masks the LP1 interrupt (if cleared, =0). For
more information on how interrupt masking works, see “Interrupt
Latch Register (IRPTL)” on page A-27.

18 SPIRMSK SPI Receive DMA Interrupt Mask. This bit unmasks the SPIR
interrupt (if set, =1) or masks the SPIR interrupt (if cleared, =0). For
more information on how interrupt masking works, see “Interrupt
Latch Register (IRPTL)” on page A-27.

19 SPITMSK SPI Transmit DMA Interrupt Mask. This bit unmasks the SPIT
interrupt (if set, =1) or masks the SPIT interrupt (if cleared, =0). For
more information on how interrupt masking works, see “Interrupt
Latch Register (IRPTL)” on page A-27.

23-20 Reserved

24 LP0MSKP Link Buffer 0 DMA Interrupt Mask Pointer. When the
ADSP-21161 processor is servicing another interrupt, indicates
whether the LP0 interrupt is unmasked (if set, =1) or the LP0 inter-
rupt is masked (if cleared, =0). For more information on how inter-
rupt mask pointers works, see “Interrupt Mask Pointer Register
(IMASKP)” on page A-32.

25 LP1MSKP Link Buffer 1 DMA Interrupt Mask Pointer. When the processor is
servicing another interrupt, this bit indicates whether the LP1 inter-
rupt is unmasked (if set, =1) or the LP1 interrupt is masked (if
cleared, =0). For more information on how interrupt mask pointers
works, see “Interrupt Mask Pointer Register (IMASKP)” on
page A-32.

Table A-10. Link Port Interrupt Latch, Mask, and Mask Pointer Register
(LIRPTL) Bit Definitions (Cont’d)

Bit Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-35

Program Sequencer Registers
26 SPIRMSKP SPI Receive DMA Interrupt Mask Pointer. When the processor is
servicing another interrupt, this bit indicates whether the SPIR
interrupt is unmasked (if set, =1) or the SPIR interrupt is masked (if
cleared, =0). For more information on how interrupt mask pointers
works, see “Interrupt Mask Pointer Register (IMASKP)” on
page A-32.

27 SPITMSKP SPI Transmit DMA Interrupt Mask Pointer. When the processor is
servicing another interrupt, this bit indicates whether the SPIT
interrupt is unmasked (if set, =1) or the SPIT interrupt is masked (if
cleared, =0). For more information on how interrupt mask pointers
works, see “Interrupt Mask Pointer Register (IMASKP)” on
page A-32.

31-28 Reserved

Figure A-11. LIRPTL Register

Table A-10. Link Port Interrupt Latch, Mask, and Mask Pointer Register
(LIRPTL) Bit Definitions (Cont’d)

Bit Name Definition

LIRPTL
LP0MSK
Link Buffer 0 DMA
Interrupt Mask
LP1MSK
Link Buffer 1 DMA
Interrupt Mask

SPITMSKP

SPIRMSK

SPI Transmit DMA
Interrupt Mask Pointer

SPI Receive DMA
Interrupt Mask

SPIRMSKP

SPITMSK

SPI Receive DMA
Interrupt Mask Pointer

SPI Transmit DMA
Interrupt Mask

LP1MSKP
Link Buffer 1 DMA
Interrupt Mask Pointer
LP0MSKP
Link Buffer 0 DMA
Interrupt Mask Pointer

LP0I
Link Buffer 0 DMA Interrupt Latch

LP1I
Link Buffer 1 DMA Interrupt
Latch (0x3c)

Interrupt Vector Address Offset-0x38
SPITI

SPIRI
SPI Receive DMA
Interrupt Latch (0x40)

SPI Transmit DMA
Interrupt Latch (0x44)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-36 ADSP-21161 SHARC Processor Hardware Reference

Registers
Flag Value Register (FLAGS)
The FLAGS register is a non-memory-mapped, universal, system register
(UREG and SREG). The reset value for these registers is 0x0000 0000.
The FLAGS register indicates the state of the FLG[3:O] pins. When a
FLG[3:O] pin is an output, the processor outputs a high in response to a
program setting the pin’s bit in FLAGS. The I/O direction (input or out-
put) selection of each bit is controlled by its FLG[3:O] bit in the MODE2
register. For more information, see “FLG0O” on page A-10. The FLAG
register bit definitions are given in Table A-11 and Figure A-12.

Table A-11. FLAGS Register (FLAGS) Bit Definitions

Bit Name Definition

0 FLG0 FLAG0 Value. Indicates the state of the FLAG0 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

1 FLG1 FLAG1 Value. Indicates the state of the FLAG1 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

2 FLG2 FLAG2 Value. Indicates the state of the FLAG2 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

3 FLG3 FLAG3 Value. Indicates the state of the FLAG3 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

31-4 Reserved
ADSP-21161 SHARC Processor Hardware Reference A-37

Program Sequencer Registers
IOFLAG Value Register
The IOFLAG register (Figure A-13 and Table A-12) is a memory-mapped,
IO processor register. The reset value for this register is 0x0000 0000. The
IOFLAG register indicates status and control information for the FLG pins.
When a FLG[11:4] pin is an output, the processor outputs a high when a
program sets the pin’s bit in IOFLAG.

Bits 7-0 of the IOFLAG register reflect the status of FLG[11:4] pins and bits
15-8 control the direction (input or output) of these flags. A value of 0
programs the flag as an input while a value of 1 programs it as an output.
You cannot directly execute bit wise operations such as BIT TST or BIT CLR

Figure A-12. FLAGS Register

FLAGS

FLG0

FLG1

FLG2

FLG3
0=FLG1 pin cleared
1=FGL1 pin set

0=FLG3 pin cleared
1=FGL3 pin set

0=FLG2 pin cleared
1=FGL2 pin set

0=FLG0 pin cleared
1=FGL0 pin set

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-38 ADSP-21161 SHARC Processor Hardware Reference

Registers
on these flags. However, it is possible to execute these operations indi-
rectly by writing to system registers such as USTAT1, USTAT2, USTAT3 or
USTAT4.

Table A-12. IOFLAG Register (IOFLAG) Bit Definitions

Bit Name Definition

0 FLG4 FLAG4 Value. Indicates the state of the FLAG4 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

1 FLG5 FLAG5 Value. Indicates the state of the FLAG5 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

2 FLG6 FLAG6 Value. Indicates the state of the FLAG6 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

3 FLG7 FLAG7 Value. Indicates the state of the FLAG7 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

4 FLG8 FLAG8 Value. Indicates the state of the FLAG8 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

5 FLG9 FLAG9 Value. Indicates the state of the FLAG9 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

6 FLG10 FLAG10 Value. Indicates the state of the FLAG10 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

7 FLG11 FLAG11 Value. Indicates the state of the FLAG11 pin, whether the
pin is high (if set, =1) or low (if cleared, =0).

8 FLG4O FLAG4 Output Select. This bit selects the I/O direction for the
FLAG4 pin; the flag is programmed as an output (if set, =1) or
input (if cleared, =0).

9 FLG5O FLAG5 Output Select. This bit selects the I/O direction for the
FLAG5 pin; the flag is programmed as an output (if set, =1) or
input (if cleared, =0).

10 FLG6O FLAG6 Output Select. This bit selects the I/O direction for the
FLAG6 pin; the flag is programmed as an output (if set, =1) or
input (if cleared, =0).

11 FLG7O FLAG7 Output Select. This bit selects the I/O direction for the
FLAG7 pin; the flag is programmed as an output (if set, =1) or
input (if cleared, =0).
ADSP-21161 SHARC Processor Hardware Reference A-39

Program Sequencer Registers
12 FLG8O FLAG8 Output Select. This bit selects the I/O direction for the
FLAG8, the flag is programmed as an output (if set, =1) or input
(if cleared, =0).

13 FLG9O FLAG9 Output Select. This bit selects the I/O direction for the
FLAG9, the flag is programmed as an output (if set, =1) or input
(if cleared, =0).

14 FLG10O FLAG10 Output Select. This bit selects the I/O direction for the
FLAG10, the flag is programmed as an output (if set, =1) or input
(if cleared, =0).

15 FLG11O FLAG11 Output Select. This bit selects the I/O direction for the
FLAG11pin, the flag is programmed as an output (if set, =1) or
input (if cleared, =0).

31-16 Reserved

Table A-12. IOFLAG Register (IOFLAG) Bit Definitions (Cont’d)

Bit Name Definition
A-40 ADSP-21161 SHARC Processor Hardware Reference

Registers
Program Counter Register (PC)
The PC register is a non-memory-mapped, universal register (UREG only).
The Program Counter register is the last stage in the fetch-decode-execute
instruction pipeline and contains the 24-bit address of the instruction that
the ADSP-21161 processor executes on the next cycle. The PC couples
with the Program Counter Stack, PCSTK, which stores return addresses and
top-of-loop addresses. All addresses generated by the sequencer are 24-bit
program memory instruction addresses. The amount of addressable space
is 62.5 Mwords for Non-SDRAM and 254 Mwords for SDRAM.

Figure A-13. IOFLAG Register

IOFLAG
0x1B

FLG4

FLG5

FLG6

FLG7

FLG8

FLG9

FLG10

FLG11

FLAG4 Value (Low=‘0’, High=‘1’)

FLAG5 Value

FLAG6 Value

FLAG7 Value

FLAG8 Value

FLAG9 Value

FLAG10 Value

FLAG11 Value

FLG11O
0=FLAG11 Input

1=FLAG11 Output
FLG10O

0=FLAG10 Input
1=FLAG10 Output

FLG9O
0=FLAG9 Input

1=FLAG9 Output

FLG8O

FLG7O

FLG6O

FLG50

FLG40
0=FLAG4 Input

1=FLAG4 Output

0=FLAG5 Input
1=FLAG5 Output

0=FLAG6 Input
1=FLAG6 Output

0=FLAG7 Input
1=FLAG7 Output

0=FLAG8 Input
1=FLAG8 Output

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference A-41

Program Sequencer Registers
As shown in Figure A-14, the address buses can handle 32-bit addresses,
but the program sequencer only generates 24-bit addresses over the PM
bus. Since the sequencer generates 24-bit addresses, sequencing is limited
to the low 64 Mwords of the processor’s 254 Mword memory map.

Figure A-14. PM and DM Bus Addresses Versus Sequencing Addresses

PM and DM Address Buses and DAGs Can Handle 32-Bit Addresses

Program Sequencer Handles 24-Bit Addresses

E Field M Field S Field

Four fields in the address
identify the type of memory
being addressed.

Bits 19-17, System (Internal) Memory
Bits 20, Multiprocessor Memory

Bits 23-21, External Memory

V Field

Bits 27-24, External Banked Memory
A-42 ADSP-21161 SHARC Processor Hardware Reference

Registers
Table A-13 describes the three fields that appear in Figure A-14. The con-
tent of the External (E), Multiprocessor (M), and System (S) fields in the
address route the data or instruction access to the memory space.

Table A-13. PM and DM Address Bus E, M, and S Fields

Bit Field Description

E External Address — Values in this field have the following meaning:

all zeros The address is in the IOP registers of another ADSP-21161 pro-
cessor (M and S activated)

non-zero The address is in external memory; with the E bits active,
remaining bits [20-0] are a valid address

M Multiprocessor — Values in this field have the following meaning:

non-zero ID of another ADSP-21161 processor

1 Write to IOP register of an ADSP-21161 processor. This field is
only set for accesses between ADSP-21161 processors.

0 Address in the processor’s own internal memory

S System — Values in this field have the following meaning:

000 Address of an IOP register

001 Address in Long Word Addressing space

01x Address in Normal Word Addressing space

1xx Address in Short Word Addressing space

V Virtual — Values in this field have the following meaning:

00 Depends on E, S1-0, and M bits; address corresponds to locals
internal or external (bank 0) memory or to remote processor’s
IOP space.

01 External memory bank 1, local processor

10 External memory bank 2, local processor

11 External memory bank 3, local processor
ADSP-21161 SHARC Processor Hardware Reference A-43

Program Sequencer Registers
Program Counter Stack Register (PCSTK)
This is a non-memory-mapped, universal register (UREG only). The Pro-
gram Counter Stack register contains the address of the top of the PC
stack. This register is a readable and writable register.

Program Counter Stack Pointer Register (PCSTKP)
The PCSTKP register is a non-memory-mapped, universal register (UREG
only). The Program Counter Stack Pointer register contains the value of
PCSTKP. This value is given as follows: 0 when the PC stack is empty, 1...30
when the stack contains data, and 31 when the stack overflows. This regis-
ter is readable and writable. A write to PCSTKP takes effect after a one-cycle
delay. If the PC stack is overflowed, a write to PCSTKP has no effect.

Fetch Address Register (FADDR)
The FADDR register is a non-memory-mapped, universal register (UREG
only). The Fetch Address register is the first stage in the fetch-decode-exe-
cute instruction pipeline and contains the 24-bit address of the instruction
that the processor fetches from memory on the next cycle.

Decode Address Register (DADDR)
The DADDR register is a non-memory-mapped, universal register (UREG
only). The Decode Address register is the second stage in the
fetch-decode-execute instruction pipeline and contains the 24-bit address
of the instruction that the processor decodes on the next cycle.
A-44 ADSP-21161 SHARC Processor Hardware Reference

Registers
Loop Address Stack Register (LADDR)
The LADDR register is a non-memory-mapped, universal register (UREG
only). The Loop Address Stack is six levels deep by 32 bits wide. The
32-bit word of each level consists of a 24-bit loop termination address, a
5-bit termination code, and a 2-bit loop type code.

Current Loop Counter Register (CURLCNTR)
The CURLCNTR register is a non-memory-mapped, universal register
(UREG only). The Current Loop Counter register provides access to the
loop counter stack and tracks iterations for the DO UNTIL LCE loop being
executed. For more information on how to use CURLCNTR, see “Loop
Counter Stack” on page 3-30.

Loop Counter Register (LCNTR)
The LCNTR register is a non-memory-mapped, universal register (UREG
only). The Loop Counter register provides access to the loop counter stack
and holds the count value before the DO UNTIL LCE loop is executed. For
more information on how to use LCNTR, see “Loop Counter Stack” on
page 3-30.

Table A-14. Loop Address Stack Register (LADDR)

Bits Value

0-23 Lloop termination address

24-28 Termination code

29 Reserved (always reads 0)

30-31 Loop type code
00 = arithmetic condition-based (not LCE)
01 = counter-based, length 1
10 = counter-based, length 2
11 = counter-based, length > 2
ADSP-21161 SHARC Processor Hardware Reference A-45

Data Address Generator Registers
Timer Period Register (TPERIOD)
The TPERIOD register is a non-memory-mapped, universal register (UREG
only). The Timer Period register contains the decrementing timer count
value, counting down the cycles between timer interrupts. For more infor-
mation on how to use the timer, see “Timer and Sequencing” on
page 3-50.

Timer Count Register (TCOUNT)
The TCOUNT register is a non-memory-mapped, universal register (UREG
only). The Timer Count register contains the timer period, indicating the
number of cycles between timer interrupts. For more information on how
to use the timer, see “Timer and Sequencing” on page 3-50.

Data Address Generator Registers
The ADSP-21161 processor’s Data Address Generator (DAG) registers
hold data addresses, modify values, and circular buffer configurations.
Using these registers, the DAGs can automatically increment addressing
for ranges of data locations (a buffer).

Table A-15. Data Address Generator Universal Registers (UREG only)

Register Initialization After Reset

“Index Registers (Ix)” on page A-47 Undefined

“Modify Registers (Mx)” on page A-47 Undefined

“Length and Base Registers (Lx,Bx)” on page A-47 Undefined
A-46 ADSP-21161 SHARC Processor Hardware Reference

Registers
Index Registers (Ix)
The Ix registers are non-memory-mapped, universal registers (UREG
only). The Data Address Generators store addresses in Index registers
(I0-I7 for DAG1 and I8-I15 for DAG2). An index register holds an
address and acts as a pointer to a memory location. For more information,
see “Data Address Generator” on page 4-1.

Modify Registers (Mx)
The Mx register are non-memory-mapped, universal registers (UREG
only). The Data Address Generators update stored addresses using Modify
registers (M0-M7 for DAG1 and M8-M15 for DAG2). A modify register pro-
vides the increment or step size by which an index register is pre- or
post-modified during a register move. For more information, see “Data
Address Generator” on page 4-1.

Length and Base Registers (Lx,Bx)
The Lx and Bx registers are non-memory-mapped, universal registers
(UREG only). The Data Address Generators control circular buffering
operations with Length and Base registers (L0-L7 and B0-B7 for DAG1 and
L8-L15 and B8-B15 for DAG2). Length and base registers setup the range
of addresses and the starting address for a circular buffer. For more infor-
mation, see “Data Address Generator” on page 4-1.

I/O Processor Registers
The I/O processor’s registers are accessible as part of the processor’s mem-
ory map. Table A-17 on page A-51 lists the I/O processor’s
memory-mapped registers in address order and provides a cross reference
to a description of each register. These registers occupy addresses 0x0000
ADSP-21161 SHARC Processor Hardware Reference A-47

I/O Processor Registers
0000 through 0x0000 01FF of the memory map. The I/O registers con-
trol the following operations: External port DMA, Link port DMA, Serial
port DMA and SPI port DMA.

I/O processor registers have a one cycle effect latency (changes take
effect on the second cycle after the change).

Since the I/O processor’s registers are part of the processor’s memory map,
buses access these registers as locations in memory. While these registers
act as memory-mapped locations, they are separate from the processor’s
internal memory and have different bus access. One bus can access one
I/O processor register from one I/O processor register group at a time.
Table A-16 lists the I/O processor register groups.

When there is contention among the buses for access to registers in the
same I/O processor register group, the processor arbitrates register access
as follows:

• External Port (EP) bus accesses (highest priority)

• Data Memory (DM) bus accesses

• Program Memory (PM) bus accesses

• I/O processor (I/O) bus (lowest priority) accesses

• DMA parameter register or DMASTAT register conflicts
There is a one cycle DMA stall if an access to a DMA parameter
register or the DMASTAT register conflicts with DMA address genera-
tion. For example, one cycle stall occurs when writing to a DMA
register while a register update is taking place. Similarly, a one
cycle stall occurs when reading from a DMA register while DMA
chaining is taking place.

The bus with highest priority gets access to the I/O processor register
group, and the other buses are held off from accessing that I/O processor
register group until that access been completed.
A-48 ADSP-21161 SHARC Processor Hardware Reference

Registers
There is one exception to this access contention rule. The I/O bus and EP
bus can simultaneously access the EP (External Port) group of registers,
allowing DMA transfers to internal memory at full speed.

Table A-16. I/O Processor Register Groups

Register Group I/O Processor Registers In This Group

System Control (SC)
Registers

SYSCON, VIRPT, WAIT, SYSTAT, MSGR0, MSGR1, MSGR2,
MSGR3, MSGR4, MSGR5, MSGR6, MSGR7, BMAX, BCNT,
PC_SHDW, IOFLAG, MODE2_SHDW, DMASTAT

DMA Address (DA)
Registers

II0A, II0B, IM0A, IM0B, C0A, C0B, CP0A, CP0B, GP0A, GP0B,
II1A, II1B, IM1A, IM1B, C1A, C1B, CP1A, CP1B, GP1A, GP1B,
II2A, II2B, IM2A, IM2B, C2A, C2B, CP2A, CP2B, GP2A, GP2B,
II3A, II3B, IM3A, IM3B, C3A, C3B, CP3A, CP3B, GP3A, GP3B,
IILB0 (IISRX), IMLB0 (IMSRX), CLB0 (CSRX), GPLB0
(GPSRX), IILB1(IISTX), IMLB1 (IMSTX), CLB1, GPLB0
(GPSTX), IIEP0, IMEP0, CEP0, CPEP0, GPEP0, EIEP0, EMEP0,
ECEP0, IIEP1, IMEP1, CEP1, CPEP1, GPEP1, EIEP1, EMEP1,
ECEP1, IIEP2, IMEP2, CEP2, CPEP2, GPEP2, EIEP2, EMEP2,
ECEP2, IIEP3, IMEP3, CEP3, CPEP3, GPEP3, EIEP3, EMEP3,
ECEP3, EI13, EM13, EC13

External Port (EP)
Registers

EPB0, EPB1, EPB2, EPB3,
DMAC10,DMAC11,DMAC12,DMAC13
ADSP-21161 SHARC Processor Hardware Reference A-49

I/O Processor Registers
Since the I/O processor registers are memory-mapped, the ADSP-21161
processor’s architecture does not allow programs to directly transfer data
between these registers and other memory locations, except as part of a
DMA operation. To read or write I/O processor registers, programs must
use the processor core registers. The following example code shows a value
being transferred from memory to the USTAT1 register, then the value is
transferred to the I/O processor WAIT registers.

USTAT2= 0x108421; /* 1st instr. to be executed after reset */

DM(WAIT)=USTAT2; /* Set external memory waitstates to 0 */

SDRAM Controller (SD) SDCTL, SDRDIV

Link, SPI & Serial Port
(LSP) Registers

LBUF0, LBUF1, LCTL, LSRQ

SPIRX, SPITX, SPICTL, SPISTAT

RX0A, RX0B, TX0A, TX0B, SPCTL0, DIV0, CNT0, MR0CS0,
MR0CCS0, MR0CS1, MR0CCS1, MR0CS2, MR0CCS2,
MR0CS3, MR0CCS3

RX1A, RX1B, TX1A, TX1B, SPCTL1, DIV1, CNT1, MT1CS0,
MT1CCS0, MT1CS1, MT1CCS1, MT1CS2, MT1CCS2,
MT1CS3, MT1CCS3

RX2A, RX2B, TX2A, TX2B, SPCTL2, DIV2, CNT2, MR2CS0,
MR2CCS0, MR2CS1, MR2CCS1, MR2CS2, MR2CCS2,
MR2CS3, MR2CCS3

RX3A, RX3B, TX3A, TX3B, SPCTL3, DIV3, CNT3, MT3CS0,
MT3CCS0, MT3CS1, MT3CCS1, MT3CS2, MT3CCS2,
MT3CS3, MT3CCS3

SP02MCTL, SP13MCTL

Table A-16. I/O Processor Register Groups (Cont’d)

Register Group I/O Processor Registers In This Group
A-50 ADSP-21161 SHARC Processor Hardware Reference

Registers
The register names for I/O processor registers are not part of the proces-
sor’s assembly syntax. To ease access to these registers, programs should
use the #include command to incorporate a file containing the registers’
symbolic names and addresses. An example #include file appears in the
“Register and Bit #Defines (def21161.h)” on page A-121.

Table A-17. I/O Processor Registers Memory Map

Register Address Register Name Initialization After
Reset

Register Group Reference

0x000 SYSCON 0x0001 0020 SC page A-60

0x001 VIRPT 0x0004 0014 SC page A-63

0x002 WAIT 0x01ce 739c SC page A-65

0x003 SYSTAT 0x000n 0nn0 SC page A-69

0x004 EPB0 ni EP page A-76

0x006 EPB1 ni EP page A-76

0x008 MSGR0 ni SC page A-77

0x009 MSGR1 ni SC page A-77

0x00A MSGR2 ni SC page A-77

0x00B MSGR3 ni SC page A-77

0x00C MSGR4 ni SC page A-77

0x00D MSGR5 ni SC page A-77

0x00E MSGR6 ni SC page A-77

0x00F MSGR7 ni SC page A-77

0x010 PC_SHDW ni SC page A-77

0x011 MODE2_
SHDW

0xnn00 0000 SC page A-78

0x014 EPB2 ni EP page A-76

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
ADSP-21161 SHARC Processor Hardware Reference A-51

I/O Processor Registers
0x016 EPB3 ni EP page A-76

0x018 BMAX 0x0000 0000 SC page A-79

0x019 BCNT 0x0000 0000 SC page A-79

0x01B IOFLAG 0x0000 0000 SC page A-38

0x01C DMAC10 ni1 EP page A-80

0x01D DMAC11 0x0000 0000 EP page A-80

0x01E DMAC12 0x0000 0000 EP page A-80

0x01F DMAC13 0x0000 0000 EP page A-80

0x030 IILB0/IISRX ni DA -

0x031 IMLB0/IMSRX ni DA -

0x032 CLB0/CSRX ni DA -

0x033 CPLB0 ni DA -

0x034 GPLB0/GPSRX ni DA -

0x037 DMASTAT ni SC page A-90

0x038 IILB1/IISTX ni DA -

0x039 IMLB1/IMSTX ni DA -

0x03A CLB1/CSTX ni DA -

0x03B CPLB1 ni DA -

0x03C GPLB1/GPSTX ni DA -

0x040 IIEP0 ni1 DA -

0x041 IMEP0 ni1 DA -

0x042 CEP0 ni1 DA -

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
A-52 ADSP-21161 SHARC Processor Hardware Reference

Registers
0x043 CPEP0 ni1 DA -

0x044 GPEP0 ni1 DA -

0x045 EIEP0 ni1 DA -

0x046 EMEP0 ni1 DA -

0x047 ECEP0 ni1 DA -

0x048 IIEP1 ni DA -

0x049 IMEP1 ni DA -

0x04A CEP1 ni DA -

0x04B CPEP1 ni DA -

0x04C GPEP1 ni DA -

0x04D EIEP1 ni DA -

0x04E EMEP1 ni DA -

0x04F ECEP1 ni DA -

0x050 IIEP2 ni DA -

0x051 IMEP2 ni DA -

0x052 CEP2 ni DA -

0x053 CPEP2 ni DA -

0x054 GPEP2 ni DA -

0x055 EIEP2 ni DA -

0x056 EMEP2 ni DA -

0x057 ECEP2 ni DA -

0x058 IIEP3 ni DA -

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
ADSP-21161 SHARC Processor Hardware Reference A-53

I/O Processor Registers
0x059 IMEP3 ni DA -

0x05A CEP3 ni DA -

0x05B CPEP3 ni DA -

0x05C GPEP3 ni DA -

0x05D EIEP3 ni DA -

0x05E EMEP3 ni DA -

0x05F ECEP3 ni DA -

0x060 II0A ni DA -

0x061 IM0A ni DA -

0x062 C0A ni DA -

0x063 CP0A ni DA -

0x064 GP0A ni DA -

0x067-65 Reserved

0x068 II1A ni DA -

0x069 IM1A ni DA -

0x06A C1A ni DA -

0x06B CP1A ni DA -

0x06C GP1A ni DA -

0x06F-6D Reserved

0x070 II2A ni DA -

0x071 IM2A ni DA -

0x072 C2A ni DA -

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
A-54 ADSP-21161 SHARC Processor Hardware Reference

Registers
0x073 CP2A ni DA -

0x074 GP2A ni DA -

0x078 II3A ni DA -

0x079 IM3A ni DA -

0x07A C3A ni DA -

0x07B CP3A ni DA -

0x07C GP3A ni DA -

0x080 II0B ni DA -

0x081 IM0B ni DA -

0x082 C0B ni DA -

0x083 CP0B ni DA -

0x084 GP0B ni DA -

0x088 II1B ni DA -

0x089 IM1B ni DA -

0x08A C1B ni DA -

0x08B CP1B ni DA -

0x08C GP1B ni DA -

0x090 II2B ni DA -

0x091 IM2B ni DA -

0x092 C2B ni DA -

0x093 CP2B ni DA -

0x094 GP2B ni DA -

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
ADSP-21161 SHARC Processor Hardware Reference A-55

I/O Processor Registers
0x098 II3B ni DA -

0x099 IM3B ni DA -

0x09A C3B ni DA -

0x09B CP3B ni DA -

0x09C GP3B ni DA -

0x0B4 SPICTL 0x0000 0000 LSP page A-117

0x0B5 SPISTAT ni LSP page A-115

0x0B6 SPITX ni LSP page A-121

0x0B7 SPIRX ni LSP page A-121

0x0B8 SDCTL ni SD page A-73

0x0B9 SDRDIV ni SD page A-72

0x0C0 LBUF0 ni LSP page A-92

0x0C2 LBUF1 ni LSP page A-92

0x0CC LCTL 0x0000 0000 LSP page A-92

0x0D0 LSRQ 0x0000 0000 LSP page A-98

0x0D7 – 0x0DF Reserved

0x1C0 SPCTL0 0x0000 0000 SC page A-114

0x1C1 TX0A ni SC page A-112

0x1C2 TX0B ni SC page A-112

0x1C3 RX0A ni SC page A-112

0x1C4 RX0B ni SC page A-112

0x1C5 DIV0 ni SC page A-112

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
A-56 ADSP-21161 SHARC Processor Hardware Reference

Registers
0x1C6 CNT0 ni SC -

0x1C7 MR0CS0 ni SC page A-114

0x1C8 MR0CCS0 ni SC page A-114

0x1C9 MR0CS1 ni SC page A-114

0x1CA MR0CCS1 ni SC page A-114

0x1CB MR0CS2 ni SC page A-114

0x1CC MR0CCS2 ni SC page A-114

0x1CD MR0CS3 ni SC page A-114

0x1CE MR0CCS3 ni SC page A-114

0x1D0 SPCTL2 0x0000 0000 SC page A-100

0x1D1 TX2A ni SC page A-112

0x1D2 TX2B ni SC page A-112

0x1D3 RX2A ni SC page A-112

0x1D4 RX2B ni SC page A-112

0x1D5 DIV2 ni SC page A-112

0x1D6 CNT2 ni SC

0x1D7 MT2CS0 ni SC page A-113

0x1D8 MT2CCS0 ni SC page A-113

0x1D9 MT2CS1 ni SC page A-113

0x1DA MT2CCS1 ni SC page A-113

0x1DB MT2CS2 ni SC page A-113

0x1DC MT2CCS2 ni SC page A-113

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
ADSP-21161 SHARC Processor Hardware Reference A-57

I/O Processor Registers
0x1DD MT2CS3 ni SC page A-113

0x1DE MT2CCS3 ni SC page A-113

0x1DF SP02MCTL 0x0000 0000 SC page A-109

0x1E0 SPCTL1 0x0000 0000 LSP page A-109

0x1E1 TX1A ni LSP page A-112

0x1E2 TX1B ni LSP page A-112

0x1E3 RX1A ni LSP page A-112

0x1E4 RX1B ni LSP page A-112

0x1E5 DIV1 ni LSP page A-112

0x1E6 CNT1 ni LSP -

0x1E7 MR1CS0 ni LSP page A-114

0x1E8 MR1CCS0 ni LSP page A-114

0x1E9 MR1CS1 ni LSP page A-114

0x1EA MR1CCS1 ni LSP page A-114

0x1EB MR1CS2 ni LSP page A-114

0x1EC MR1CCS2 ni LSP page A-114

0x1ED MR1CS3 ni LSP page A-114

0x1EE MR1CCS3 ni LSP page A-114

0x1F0 SPCTL3 0x0000 0000 SC page A-100

0x1F1 TX3A ni LSP page A-112

0x1F2 TX3B ni LSP page A-112

0x1F3 RX3A ni LSP page A-112

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
A-58 ADSP-21161 SHARC Processor Hardware Reference

Registers
0x1F4 RX3B ni LSP page A-112

0x1F5 DIV3 ni LSP page A-112

0x1F6 CNT3 ni LSP -

0x1F7 MT3CS0 ni LSP page A-113

0x1F8 MT3CCS0 ni LSP page A-113

0x1F9 MT3CS1 ni LSP page A-113

0x1FA MT3CCS1 ni LSP page A-113

0x1FB MT3CS2 ni LSP page A-113

0x1FC MT3CCS2 ni LSP page A-113

0x1FD MT3CS3 ni LSP page A-113

0x1FE MT3CCS3 ni LSP page A-113

0x1FF SP13MCTL 0x0000 0000 SC page A-109

1 Initialization depends on the booting mode.

Table A-17. I/O Processor Registers Memory Map (Cont’d)

Register Address Register Name Initialization After
Reset

Register Group Reference

Notes: An “ni” in the Initialization column indicates that the register is Not Initialized.
For information on Register Groups, see Table A-16 on page A-49.
ADSP-21161 SHARC Processor Hardware Reference A-59

I/O Processor Registers
System Configuration Register (SYSCON)
The SYSCON register, described in Table A-18 and Figure A-15, is used to
set up system configuration selections. This register’s address is 0x00. The
reset value for this register is 0x0001 0020, based on HBW configured for an
8-bit host.

Table A-18. System Configuration Register (SYSCON) Bit
Definitions

Bit(s) Name Definition

0 SRST Software Reset. This bit resets (when set, =1) the processor. When a
program sets (=1) SRST, the processor responds to the non-maskable
RSTI interrupt and clears (=0) SRST.

1 BSO Boot Select Override. This bit enables (if set, =1) or disables (if
cleared, =0) access to Boot Memory Space. When BSO is set, the
processor uses the BMS select line (instead of MS3-0) to perform
DMA channel 10 accesses of external memory. The processor uses
8-to 48-bit packing when reading from 8-bit boot memory space,
but does no packing on writes to this space.

2 IIVT Internal Interrupt Vector Table. This bit forces placement of the
interrupt vector table at address 0x0004 0000 regardless of booting
mode (if 1) or allows placement of the interrupt vector table as
selected by the booting mode (if 0).

3 Reserved

5-4 HBW Host Bit Width. These bits select the bit width for host access as
follows: 00= 32-bit, 01= 16-bit, 10=8-bit (default), 11=reserved.

6 Reserved

7 HMSWF Host Most Significant Word First Packing Select. This bit selects
the word packing order for host accesses as most-significant-word
first (if set, =1) or least-significant-word first (if cleared, =0).

8 Reserved

9 IMDW0 Internal Memory Block 0 Data Width. This bit selects the normal
word data access size for internal memory Block 0 as 40-bit data (if
set, =1) or 32-bit data (if cleared, =0).
A-60 ADSP-21161 SHARC Processor Hardware Reference

Registers
10 IMDW1 Internal Memory Block 1 Data Width. This bit selects the normal
word data access size for internal memory Block 1 as 40-bit data (if
set, =1) or 32-bit data (if cleared, =0).

11 ADREDY Active Drive REDY. This bit selects line driver type for the proces-
sor’s REDY pin as active drive (a/d) (if set, =1) or open drain (o/d)
(if cleared, =0).

15-12 Reserved

16 BHD Buffer Hang Disable. This bit controls whether the processor core
proceeds (hang disabled if set, =1) or is held-off (hang enabled if
cleared, =0) when the core tries to read from an empty EPBx, RXx,
SPIRX, or LBUFx buffer or tries to write to a full EPBx, TXx,
SPITX, or LBUFx buffer. Is cleared by default at reset.

18-17 EBPR External Bus Priority. These bits select the priority for the I/O pro-
cessor’s EP bus when arbitrating access to the processor’s external
port as follows: 00—priority rotates between DM or PM and IO
buses, 01—the winning DM or PM bus has priority over the IO
bus, 10—the IO bus has priority over the winning DM or PM bus.

19 DCPR External Port DMA Channel Priority Rotation Enable. This bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority
rotation among external port DMA channels (channel 10-13).

20 LDCPR Link Port DMA Channel Priority Rotation Enable. This bit
enables (rotates if set, =1) or disables (fixed if cleared, =0) priority
rotation among link port DMA channels (channel 8-9).

21 PRROT Link–External Port DMA Channel Priority Rotation Enable. This
bit enables (rotates if set, =1) or disables (fixed if cleared, =0) prior-
ity rotation between link port DMA channels (channel 8-9) and
external port DMA channels (channel10-13).

22 COD CLKOUT Disable. This bit disables (if set, =1) or enables (if
cleared, =0) the processor clock output on the CLKOUT pin. If
enabled, the processor outputs the clock signal on CLKOUT. If dis-
abled, the processor three-states the CLKOUT pin.

Note: Is ignored if bit 23 COPT is set.

Table A-18. System Configuration Register (SYSCON) Bit
Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-61

I/O Processor Registers
23 COPT CLKOUT Option. This bit enables (if set, =1) the master device in
a multiprocessor system to drive the CLKOUT pin. If cleared (=0),
CLKOUT is controlled by bit 22 COD.

29-24 Reserved

31-30 IPACK External Packed Instruction Execution Mode. This bit sets the
packing of instructions as follows: 00=32- to 48-bit packing, 01=no
packing, 10=16- to 48-bit packing, 11=8- to 48-bit packing.

Table A-18. System Configuration Register (SYSCON) Bit
Definitions (Cont’d)

Bit(s) Name Definition
A-62 ADSP-21161 SHARC Processor Hardware Reference

Registers
Vector Interrupt Address Register (VIRPT)
The VIRPT register’s address is 0x01. The reset value for this register is
0x0004 0014. In no boot mode, the reset value is 0x0020 0014 because
the interrupt resides in external memory. The sequencer uses the VIRPT
register (Table A-19 and Figure A-16)to support multiprocessor vector
interrupts. The vector interrupt (VIRPTI) permits passing interprocessor

Figure A-15. SYSCON Register

SYSCON
(0x0000)

IPACK

PRROT
Link Port/External Port Rotating Priority

1=rotating priority, 0=fixed priority
between DMA chs 8/9 & 10/11/12/13

COD
Clock Out Disable

0=CLKOUT Enabled,
1=CLKOUT Disabled

ADREDY
Active Drive REDY

IMDW1

IMDW0
Internal Memory Block 0 Data Width

Internal Memory Block 1 Data Width
0=32-bit data, 1=40-bit data

0=open drain (o/d), 1=active drive (a/d)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COPT
CLKOUT Option

0=CLKOUT controlled by COD bit
1=CLKOUT driven by MMS master

External Packed Instruction Execution Mode
00=32 to 48 packed instruction execution
01=Full 48-bit instruction execution /No-Packing Mode
10=16 to 48 packed instruction execution
11=8 to 48 packed instruction execution

SRST
Soft Reset
BSO
Boot Select Override

IIVT
Internal Interrupt Vector Table

HBW
Host Bus Width 00=32-bit host,

HMSWF
Host Packing Order
0=LSW First, 1=MSW First

01=16-bit host, 10=8-bit host

(“no boot” mode)

BHD

EBPR
External Bus Priority
00=even priority between core processor

10=I/O processor priority
and IOP bus 01=core processor priority,

DCPR
DMA rotating access priority DMA
channels 10-13, 1= rotating, 0=sequential

LDCPR
DMA rotating access priority
DMA channels 8 & 9
1=rotating, 0=sequential

Buffer Hang Disable
0=buffer hang enabled (DEFAULT),
1=disabled buffer hang

0=32-bit data, 1=40-bit data
ADSP-21161 SHARC Processor Hardware Reference A-63

I/O Processor Registers
commands in multiple-processor systems. This interrupt occurs when an
external processor (a host or another processor) writes an address to the
VIRPT register, inserting a new vector address for VIRPT.

Table A-19. Vector Interrupt Address Register (VIRPT) Bit Definitions

Bit(s) Name Definition

23-0 VIRPTA Vector Interrupt Address. These bits contain the multiprocessor
interrupt’s vector (address). When an external processor loads an
address into this register, the processor pushes the status stack and
starts executing the routine at the vector address.

31-24 VIRPTD Vector Interrupt (optional) Data. These bits contain optional data
that the external processor may pass to the interrupt service rou-
tine.

Figure A-16. VIRPT Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

VIRPT
(0x01)

VIRPTA
Vector Interrupt Address
(contains interrupt vector address loaded by
extern processor)

VIRPTD
Vector Interrupt (optional) Data

(contains optional data from extern
processor for ISR)
A-64 ADSP-21161 SHARC Processor Hardware Reference

Registers
External Memory Waitstate and Access Mode
Register (WAIT)

The WAIT register, shown in Table A-20 and Figure A-17, has an address
of 0x02. The reset value for this register is 0x01ce 739c, which equates to
the following processor external memory settings: asynchronous access
mode for all external memory banks, seven waitstates with a hold cycle for
all accesses to external memory banks, external DRAM page size of 256
words (if installed), and disable idle cycle for DMA handshake.
ADSP-21161 SHARC Processor Hardware Reference A-65

I/O Processor Registers
Table A-20. External Memory Setup Register (WAIT)
Bit Definitions

Bit(s) Name Definition

1-0 EB0AM External Bank 0 Access Mode. These bits select the access mode for
external memory Bank 0 as follows:

EBxAM External Bank Access Mode
00 Asynchronous—processor RD and WR strobes change
 before CLKOUT’s edge—accesses use the waitstate count
 setting from EBxWS and require external acknowledge
 (ACK), allowing a de-asserted ACK to extend
 the access time.
01 Synchronous—processor RD and WR strobes change on
 CLKOUT’s edge—reads use the waitstate count setting
 from EBxWS (minimum EBxWS=001); writes are
 0-wait state.
10 Synchronous—processor RD and WR strobes change on
 CLKOUT’s edge—reads use the waitstate count setting
 from EBxWS (minimum EBxWS=001); writes
 are 1-wait state.
11 Reserved

4-2 EB0WS External Bank 0 Waitstates. These bit fields select the waitstates for
external memory Bank 0 as follows:

EBxWS # of Waitstates Hold Time Cycle?
000 0 no
001 1 no
010 2 yes
011 3 yes
100 4 yes
101 5 yes
110 6 yes
111 7 yes

Note that Hold Cycles applies to asynchronous mode only.

6-5 EB1AM External Bank 1 Access Mode. (see EB0AM definition)

9-7 EB1WS External Bank 1 Waitstates. (see EB0WS definition)

11-10 EB2AM External Bank 2 Access Mode. (see EB0AM definition)
A-66 ADSP-21161 SHARC Processor Hardware Reference

Registers
14-12 EB2WS External Bank 2 Waitstates. (see EB0WS definition)

16-15 EB3AM External Bank 3 Access Mode. (see EB0AM definition)

19-17 EB3WS External Bank 3 Waitstates. (see EB0WS definition)

21-20 RBAM ROM Boot Access Mode. (see EB0AM definition)

24-22 RBWS ROM Boot Waitstates. (see EB0WS definition)

29-25 Reserved

30 HIDMA Handshake and Idle for DMA Enable. This bit enables (if set, =1) or
disables (if cleared, =0) adding an idle cycle after every memory access
for DMAs with handshaking (DMAR-DMAG).

The added cycle reduces bus contention by accommodating devices
with a slow three-state time. Also, the added cycle accommodates
long write recovery time by de-asserting DMAG longer.

31 Reserved

Table A-20. External Memory Setup Register (WAIT)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-67

I/O Processor Registers
Figure A-17. WAIT Register

WAIT
(0x0002)

EB3AM

EB3WS

RBAM
ROM Boot Access Mode

EB0AM
External Bank 0 Access Mode

External Bank 3
waitstates

EB0WS
External Bank 0 Waitstates
000= 0 waitstates , no hold time cycle
001=1 waitstate, no hold time cycle, minimum for sync
010=2 waitstates, hold time cycle
011=3 waitstates, hold time cycle
100=4 waitstates, hold time cycle
101=5 waitstates, hold time cycle
110=6 waitstates, hold time cycle
111=7 waitstates, hold time cycle
(hold time cycles for Async Mode only)

External Bank 3
Access Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0

00=Async, uses both internal waitstate& ext ACK
01=Sync (RD~ and WR~ change on CLKOUT’sedge)

min 2 cycle reads, 1 cycle writes (EP0WS=001)
10=Sync (RD~ and WR~ change on CLKOUT’sedge)

min 2 cycle reads, 2 cycles writes (EP0WS=001)
11= reserved

HIDMA
Handshake and Idle for
DMA enable

RBWS
ROM Boot Waitstates

EB2WS
External Bank 2
waitstates
EB2AM
External Bank 2 Access Mode

EB1WS
External Bank 1
waitstates
EB1AM
External Bank 1 Access Mode

0 =no idle cycle
1=adds an idle cycle after
every handshake DMA
DMAG asserted longer reduces
bus contention for slower devices
A-68 ADSP-21161 SHARC Processor Hardware Reference

Registers

-

System Status Register (SYSTAT)
The SYSTAT register’s address is 0x03. The reset value has all bits initial-
ized to zero, except for the IDC, CRBM, CRAT fields, which are set from values
on the ADSP-21161 processor’s pins. This register is described in
Table A-21 and Figure A-18.

Table A-21. System Status Register (SYSTAT) Bit Definitions

Bit(s) Name Definition

0 HSTM Host Bus Master. Indicates whether the Host processor has control of the
external bus (host bus master if set, =1) or does not have control of the
bus (host not bus master if cleared, =0, reset value).

1 BSYN Bus Synchronized. Indicates whether the processor’s bus arbitration logic
is synchronized (if set, =1) or is not synchronized (if cleared, =0, reset
value).

3-2 Reserved (reset value =0)

6-4 CRBM Current Bus Master. These bits indicate the ID of the processor that cur
rently is the bus master in a multiprocessor system. Because CRBM is
only valid for DSPs with ID inputs other than zero (e.g. a multiprocessor
system), the processor keeps CRBM set to 001 when ID equals 000. The
reset value of CRBM is undefined.

7 Reserved (reset value =0)

10-8 IDC ID Code. These bits indicate the state of the ID pins on the processor.
The reset value of IDCID is undefined.

12-11 Reserved (reset value =0)

13 VIPD Vector Interrupt Pending. Indicates whether a vector interrupt is pend-
ing (if set, =1) or is not pending (if cleared, =0, reset value). A vector
interrupt occurs when an address is written to the VIRPT register. The
processor clears VIPD on return from the VIRPT interrupt service rou-
tine.

Systems using vector interrupts should monitor VIPD to determine that
the processor has serviced the VIRPT interrupt and is ready for another
vector interrupt.

15-14 Reserved
ADSP-21161 SHARC Processor Hardware Reference A-69

I/O Processor Registers

-

18-16 CRAT Core Clock-to-CLKIN ratio. These bits indicate the state of the
CLK_CFG[1:0] pins (clock ratio) on the processor as follows 010 = 2:1
ratio, 011 = 3:1 ratio, 100 = 4:1 ratio. The reset value of CRAT is
undefined.

19 Reserved

20 SSWPD Synchronous Slave Write FIFO Data Pending. Indicates if set (=1) that a
synchronous slave IOP register write is pending. This bit indicates, if
cleared (=0), that no slave write is pending.

21 SWPD Slave Write FIFO Pending. Indicates whether a direct write (synchro-
nous or asynchronous) to processor’s IOP register is pending (if set, =1)
or is not pending (if cleared, =0, reset value). The processor clears SWPD
when the direct write is complete.

If an external device attempts a direct write during a DMA chaining
operation or if higher priority DMA request occurs, the direct IOP regis
ter write may be delayed for several cycles. The maximum delay for a
pending direct write is 12 cycles.

24-22 HPS Host Packing Status. These bits indicate the host’s packing status as fol-
lows:

000 = pack complete (reset value) and 6th stage of 8- to 48-bit packing,
4th stage of 8- to 32-bit packing etc.
001 = 1st stage pack/unpack
010 = 2nd stage multi-stage pack/unpack
011 = 3rd stage multi-stage pack/unpack
100 = 5th stage multi-stage pack/unpack
101 = 110 = 111 = reserved

These bits are read-only. The processor clears these bits when DEN is
cleared (changes from 1 to 0).

31-25 Reserved (reset value =0)

Table A-21. System Status Register (SYSTAT) Bit Definitions

Bit(s) Name Definition
A-70 ADSP-21161 SHARC Processor Hardware Reference

Registers

s

ed

aster

s

ata Pending
nding
pending
Figure A-18. SYSTAT Register

SYSTAT
0x03

CRAT

SSWPD

HSTM

CRBM

IDC

Host Bus Master
1=host bus master controls ext bu
0=no host bus master

BSYN
Bus Synchronized
1=bus arbitration logic synchroniz
0=not synchronized

Current ADSP-21161 Bus Master
Status of ID of DSP who is Bus M
CRPM=001 when ID=000

VIPD

HPS

ID Code

Vector Interrupt Pending
1=Vector interrupt pending

Host Packing Status
CCLK-to-CLKIN ratio
Indicate state of CLKCFG[1:0] pin
Undefined at RESET~

Synchronous Slave Write FIFO D
1=sync slave IOP register write pe
0=no sync slave IOP register write

000=packing complete [6th stage of 8-to -48,
4th stage of 8-to-32, etc.]

001=1st stage pack/unpack
010=2nd stage pack/unpack
011=3rd stage pack/unpack

100=5th stage of 8- to -48 bit packing
101=110=111=reserved

Displays state of the ID[2:0] pins

SWPD
Slave Write FIFO Data Pending

1=slave write pending to IOP register
0=slave no write pending to IOP register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0

any data (sync or async)
ADSP-21161 SHARC Processor Hardware Reference A-71

I/O Processor Registers
SDRDIV Register (SDRDIV)
This register’s address is 0xb9. The reset value for this register is unde-
fined. The SDRDIV register is a programmable refresh counter used to
coordinate the supplied clock rate with the SDRAM device’s required
refresh rate. This register is described in Figure A-19.

Figure A-19. SDRDIV Register

SDRDIV=
SDRAM refresh rate cycle

CL tRP 5
fCCLK

SDRDIV
0xB9

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-72 ADSP-21161 SHARC Processor Hardware Reference

Registers
SDRAM Control Register (SDCTL)
This register’s addresses is 0xb8. The reset value for this register is unde-
fined. At reset, all the SDCTL bits are cleared to zero. The SDCTL register is an
IOP register for the SDRAM controller. This register is described in
Table A-22 and Figure A-20. This register does not support bitwise
operations.

Table A-22. SDCTL Control Register Bits

Bit Number Name Description

1-0 SDCL SDRAM CAS Latency. Set the CAS delay as follows: 01= 1 latency,
10 = 2 latency, 11 = 3 latency, 00 = reserved. The CAS latency is
the delay, in clock cycles, between when the SDRAM detects the
read command and when it provides the data at its output pins.

2 DSDCTL Disable SDCLK0 and Control Signals. This bit disables if set (=1)
or enables if cleared (=0) the following signals: SDCLK0, RAS,
CAS, SDWE, SDCKE.

3 DSDCK1 Disable SDCLK1. This bit disables if set (=1) or enables if cleared
(=0), the SDCK1 signals.

7-4 SDTRAS SDRAM TRAS Specification. Set the SDRAM tRAS specification
in number of clock cycle (0-15 cycles). TRAS is the required delay
between issuing an activate command and issuing a precharge com-
mand.

10-8 SDTRP SDRAM TRP Specification. Set the SDRAM tRAS specification in
number of clock cycle (0-7 cycles). TRP is the required delay
between issuing a precharge command and issuing an activate com-
mand.
ADSP-21161 SHARC Processor Hardware Reference A-73

I/O Processor Registers
11 SDPM SDRAM Power-Up Mode. This bit enables if set (=1) or disables if
cleared (=0) the following commands as generated by the SDRAM
controller: 0 = PRE/ 8 CBR /MRS, 1= PRE/ MRS/ 8 CBR.

PRE - Precharge- closes an active bank.

CBR - Automatic Refresh - the SDRAM drives its own refresh
cycle with no external control input.

MRS- Mode Register Set - initializes the SDRAM operation
parameters during the power-up sequence.

13-12 SDPGS SDRAM Page Size. Set the SDRAM page size as follows: 00= 256
words, 01 = 512 words, 10 = 1k words, 11 = 2k words.

14 SDPSS SDRAM Power-Up Sequence. This bit enables if set (=1) or dis-
ables if cleared (=0) the SDRAM power up sequence start.

15 SDSRF SDRAM Self Refresh Mode. This bit enables if set (=1) or disables
if cleared (=0) SDRAM self refresh mode.

In this mode, the SDRAM drives its own refresh cycle with no
external control input. At cycle end, both SDRAM banks are pre-
charged (idle). This control bit always reads zero.

161 SDEM0 External Memory Bank 0. Indicates, if set (=1), that external mem-
ory bank 0 has SDRAM or, if cleared (=0), that external memory
bank 0 does not have SDRAM.

171 SDEM1 External Memory Bank 1. Indicates, if set (=1), that external mem-
ory bank 1 has SDRAM or, if cleared (=0), that external memory
bank 1 does not have SDRAM.

181 SDEM2 External Memory Bank 2. Indicates, if set (=1), that external mem-
ory bank 2 has SDRAM or, if cleared (=0), that external memory
bank 2 does not have SDRAM.

191 SDEM3 External Memory Bank 3. Indicates, if set (=1), that external mem-
ory bank 3 has SDRAM or, if cleared (=0), that external memory
bank 3 does not have SDRAM.

Table A-22. SDCTL Control Register Bits (Cont’d)

Bit Number Name Description
A-74 ADSP-21161 SHARC Processor Hardware Reference

Registers
20 SDBN SDRAM Bank Number. Indicates the number of banks your
SDRAM device contains. If set (=1), there are four bank in
SDRAM. If cleared (=0), there are two banks in SDRAM.

21 SDCKR SDRAM Clock to Core Clock Ratio. Indicates the SDRAM clock
to core clock ratio as follows: 1 = full core clock,
0 = half core clock.

22 Reserved

23 SDBUF External Register Buffer. Indicates, if set (=1), the existence of an
external register buffer for address and control of SDRAM. If this
bit is cleared (=0), there is no external register buffer.

26-24 SDTRCD SDRAM TRCD Specification. Set the SDRAM tRCD specification
in number of clock cycle (0-7 cycles). TRCD is the required delay
between an ACT command and the start of the first read or write
operation.

31-27 Reserved

1 The CS pin of a SDRAM chip should be connected to MSx pin of the ADSP-21161 processor
for the corresponding memory bank in which you want to map the SDRAM device. All four
memory banks can have SDRAM simultaneously.

Table A-22. SDCTL Control Register Bits (Cont’d)

Bit Number Name Description
ADSP-21161 SHARC Processor Hardware Reference A-75

I/O Processor Registers

s

SDCLKE
SDCLKE
External Port DMA Buffer Registers (EPBx)
The EPBx registers’ addresses are: EPB0–0x04, EPB1–0x06, EPB2–0x14, and
EPB3–0x16. The reset value for these registers is undefined.

External port buffers are 8 levels deep and 64 bits wide. The buffers con-
tain 40/48- or 32/64-bit words, depending on the external port buffer’s
data type selected with the DTYPE bit in the port’s DMACx register. If the
buffer contains 32-, 40- or 48-bit words, the port aligns the data with the
lower bits of the buffer and zero fills the upper 32, 24 or 16 bits.

Figure A-20. SDCTL Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDCL

DSDCTL

DSDCK1

SDTRAS

SDPSS

SDPGS

SDPM

SDRAM Page Size
00=256 words
01=512 words
10=1k words
11=2k words

up
sequence

SDRAM self refresh
command enable

SDSRF

up mode
, 8 CBR refs., mode reg. set
, mode reg. set, 8 CBR refs.

SDTRP

SDRAM Power-

SDEM0

SDEM1

SDEM2

SDEM3

SDBN

SDBUF

SDCKR

SDTRCD
spec

RAS to CAS delay
[# of SDCLK cycles: 1 to 7 cycles]

buffer
buffer enable

0=no buffer option]

banks
0=2 banks, 1=4 banks

CCLK ratio

1=CCLK Core clock freq. (1:1)
0=Half CCLK (core clock) freq. (1:2)

SDRAM tRCD

Pipelining option with external reg
[1=ext SDRAM ctl/addr

SDRAM # of SDRAM device mem

SDCLK-to-

Ext mem Bank2
SDRAM enable

Ext mem Bank 3
SDRAM enable

Ext mem Bank0
SDRAM enable

Ext mem Bank1
SDRAM enable

SDCTL
(0x00B8)

SDRAM Power-
0=prechg
1=prechg

SDRAM CAS Latency spec
01=1 cycle, 10=2 cycles, 11=3 cycle

Disable SDCLK0 &Control Signals
1=Disable SDCLK0, RAS~, CAS~ &
0=Activate SDCLK0, RAS~, CAS~ &

SDCLK1 Disable
1=disable SDCLK1, 0=SDCLK active

SDRAMtRAS spec
Active Command Delay
[# of SDCLK cycles: 0 to 15 cycles]

SDRAMtRP spec
PrechargeDelay
[# of SDCLK cycles: 1 to 7 cycles]
A-76 ADSP-21161 SHARC Processor Hardware Reference

Registers
Normally, a DMA process automatically accesses the buffer register for
memory transfer. Programs can also access these buffers as registers. How-
ever, programs must use the PX register to access the full width of the
buffer. A PX register move can access the entire 64 bits of an external port
buffer using the full width PX.

Message Registers (MSGRx)
The MSGRx registers’ addresses are: MSGR0–0x08, MSGR1–0x09, MSGR2–0x0a,
MSGR3–0x0b, MSGR4–0x0c, MSGR5–0x0d, MSGR6–0x0e, and MSGR7–0x0f. The
reset value for these registers is undefined.

PC Shadow Register (PC_SHDW)
The PCSHDW register’s address is 0x10. The reset value for this register
matches the PC register. PC_SHDW contains a read-only mirror of the 24-bit
address in the Program Counter (PC) register. External devices can poll
this PC_SHDW for the contents of PC. Note that the value in PC_SHDW may lag
behind the current PC by one or more core clock cycles. This register is
shown in Figure A-21.

Figure A-21. PC Shadow Register

PC_SHDW
(0x10)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PC IOP Shadow of Program Counter PC[24:0]
ADSP-21161 SHARC Processor Hardware Reference A-77

I/O Processor Registers
MODE2 Shadow Register (MODE2_SHDW)
This register’s address is 0x11. Because MODE2_SHDW register bits 31-25 are
the ADSP-21161 processor ID and silicon revision, the reset value varies
with the system setting and silicon revision. External devices can poll this
MODE2_SHDW for the processor’s processor ID and silicon revision. This reg-
ister is described in Table A-23 and Figure A-22.

Table A-23. Mode2 Shadow Register (MODE2_SHDW) Bit Definitions

Bit Name Definition

24-0 Reserved

27-25 PID2-0 Processor Identification (Read only) PID2-0.

29-28 Silicon Revision number. Silicon revision 1.0 and 1.1 are both 01.
Silicon revision 0.3 is 00.

31-30 PID4-3 Processor Identification (Read only) PID4-3.

Figure A-22. MODE2 Shadow Register

MODE2_SHDW
0x11

PID4- 3 PID 2-0
Processor Identification
(Read Only)

Processor Identification
(Read Only)

Silicon Revision
(Read Only)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Revision 0.3=00
Revision 1.0/1.1=01

Revision 1.2=10
A-78 ADSP-21161 SHARC Processor Hardware Reference

Registers
Bus Time-Out Maximum Register (BMAX)
This register’s address is 0x18 and it is shown in Figure A-23. The reset
value for this register is 0x0000 0000. The lower 16 bits of this register
hold the value for the maximum number of cycles -2 that the processor
can retain bus mastership. The upper 16 bits of this register are reserved.

For more information describing how BMAX and BCNT work, see “Bus Mas-
tership Timeout” on page 7-101.

Bus (Time-Out) Counter Register (BCNT)
This register’s address is 0x19 and it is shown in Figure A-24. The reset
value for this register is 0x0000 0000. The lower 16 bits of this register
hold the count of the number of cycles remaining for the processor to
retain bus mastership. The upper 16 bits of this register are reserved.

For more information describing how BMAX and BCNT work, see “Bus Mas-
tership Timeout” on page 7-101.

Figure A-23. BMAX Register

31 30 29 28 27 26 25 24 23 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BMAX
(0x18)

BMAX = (maximum # of bus
mastership cycles -2)

21 20 19 18 17 16
ADSP-21161 SHARC Processor Hardware Reference A-79

I/O Processor Registers
External Port DMA Control Registers (DMACx)
These registers’ addresses are: DMAC10–0x1C, DMAC11–0x1D, DMAC12–0x1E,
DMAC13–0x1F. The reset value for these registers is 0x0000 0000 unless
you are booting from a host processor or PROM booting.

Each external port DMA channel has its own control register. The regis-
ters, DMAC10, DMAC11, DMAC12, and DMAC13 correspond to DMA channels
10, 11, 12, and 13. Table A-24 and Figure A-25 provide bit definitions
for the DMACx registers.

Except for the FLSH bit, the control bits in the DMACx registers have a one
cycle effect latency. The FLSH bit has a two cycle effect latency.

Figure A-24. BCNT Register

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions

Bit(s) Name Definition

0 DEN External Port DMA Enable. This bit enables (if set, =1) or disables
(if cleared, =0) DMA for the corresponding external port FIFO
buffer (EPBx).

1 CHEN External Port DMA Chaining Enable. This bit enables (if set, =1)
or disables (if cleared, =0) DMA chaining for the corresponding
external port FIFO buffer (EPBx).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BCNT
(0x19)

BCNT=# CCLK cycles r e m a i n in g for DSP to
retain bus mastership (decrements every
cycle)
A-80 ADSP-21161 SHARC Processor Hardware Reference

Registers
2 TRAN External Port Transmit/Receive Select. This bit selects the transfer
direction (transmit if set, =1) (receive if cleared, =0) for the corre-
sponding external port FIFO buffer (EPBx).

4-3 Reserved

5 DTYPE External Port Data Type Select. This bit selects the transfer data
type (40/48=bit, 3-column if set, =1) (32/64-bit, 4-column if
cleared, =0) for the corresponding external port FIFO buffer
(EPBx). Programs must not change a buffer’s DTYPE setting while
the buffer is enabled.

The buffer’s DTYPE setting overrides the internal memory block’s
setting IMDWx for Normal word width. Whether buffer is set for
48- or 64- bit words, programs must index (IIx) the corresponding
DMA channel with a Normal word address; always an even address
64-bit.

8-6 PMODE External Port Packing Mode. These bits select the packing mode for
the corresponding external port FIFO buffer (EPBx) as follows:
001=16 external to 32/64 internal packing, 010=16 external to 48
internal packing, 011=32 external to 48 internal packing, 101=8
external to 48 internal packing, 100=32 external to 32/64 internal
packing (No pack), 110=8 external to 32/64 internal packing, 000
=111=reserved. Programs must not change a buffer’s PMODE set-
ting while the buffer is enabled.

For host processor accesses through the external port, the buffer’s
PMODE setting must match the Host Bus Width (HBW) setting in
the SYSCON registers.

9 MSWF Most Significant 16-bit Word First During Packing. When the
buffer’s PMODE is 001 or 010, this bit selects the packing order of
16-bit words (most significant first set, =1) (least significant first
cleared, =0) for the corresponding external port FIFO buffer
(EPBx). Programs must not change a buffer’s MSWF setting while
the buffer is enabled.

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-81

I/O Processor Registers
10 MASTER Master Mode Enable. This bit enables (if set, =1) or disables (if
cleared, =0) master mode for the corresponding external port FIFO
buffer (EPBx). Programs must not change a buffer’s MASTER set-
ting while the buffer is enabled.

The MASTER, HSHAKE, and EXTERN bits work together to
select the external port buffer’s mode.

11 HSHAKE Handshake Mode Enable. This bit enables (if set, =1) or disables (if
cleared, =0) handshake mode for the corresponding external port
FIFO buffer (EPBx). Programs must not change a buffer’s HSHAKE
setting while the buffer is enabled.

The MASTER, HSHAKE, and EXTERN bits work together to
select the external port buffer’s mode.

12 INTIO Single-Word Interrupt Enable. This bit enables (if set, =1) or dis-
ables (if cleared, =0) single-word, non-DMA, interrupt-driven trans-
fers for the corresponding external port FIFO buffer (EPBx). To
avoid spurious interrupts, programs must not change a buffer’s
INTIO setting while the buffer is enabled.

13 EXTERN External Handshake Mode Enable. This bit enables (if set, =1) or
disables (if cleared, =0) external handshake mode for the corre-
sponding external port FIFO buffer (EPBx). Programs must not
change a buffer’s EXTERN setting while the buffer is enabled.

The MASTER, HSHAKE, and EXTERN bits work together to
select the external port buffer’s mode.

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-82 ADSP-21161 SHARC Processor Hardware Reference

Registers
14 FLSH Flush DMA Buffers & Status. This bit flushes (when set, =1) set-
tings for the corresponding external port FIFO buffer (EPBx).
Flushing these settings does the following:

• Clears (=0) the FS and PS status bits
• Clears (=0) the FIFO buffer and DMA request counter
• Clears (=0) any partially packed words

When a program sets (=1) FLSH, the processor flushes the settings
and clears (=0) FLSH. There is a two-cycle effect latency in complet-
ing the flush operation.

Programs must not set a buffer’s FLSH during the same write that
enables the buffer. Also, programs must not set a buffer’s FLSH bit
while the DMA channel is active. Programs should determine the
channel’s active status by reading the corresponding bit in the
DMASTAT register.

15 PRIO External Port Bus Priority. This bit selects the external bus access
priority level (high if set, =1) (low if cleared, =0) for the correspond-
ing external port FIFO buffer (EPBx). Programs must not change a
buffer’s PRIO setting while the buffer is enabled.

When PRIO is set, the processor asserts the PA pin as part of exter-
nal bus arbitration for DMA accesses using this buffer. The PRIO
bit does not effect internal DMA priority arbitration.

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-83

I/O Processor Registers
17-16 FS External Port FIFO Buffer Status. These bits indicate the corre-
sponding FIFO buffer’s status as 00=buffer empty,
01=buffer-not-full, 10=buffer-not-empty, 11=buffer full.

For transmit (TRAN=1), buffer-not-full means that the buffer has
space for one Normal word, and buffer-not-empty means that the
buffer has space for two-or-more Normal words.

For receive (TRAN=0), buffer-not-full means that the buffer con-
tains one Normal word, and buffer-not-empty means that the buffer
contains two-or-more Normal words. Any type of full status (01, 10,
or 11) in receive mode indicates that new (unread) data is in the
buffer.

These bits are read-only. The processor clears these bits when DEN
is cleared (changes from 1 to 0).

18 INT32 Internal Memory 32-bit Transfers Select. This bit selects the exter-
nal bus access width (32-bit transfers only if set, =1) (64-bit transfers
when possible if cleared, =0) for the corresponding external port
FIFO buffer (EPBx). Programs must not change a buffer’s INT32
setting while the buffer is enabled.

Note that the buffer’s DTYPE and internal memory block’s IMDWx
setting (either can select 40/48-bit transfers) overrides a 32-bit
transfers only (INT32 =1) setting.

20-19 MAXBL Maximum Burst Length Select. These bits select the maximum
burst transfer length for the corresponding external port FIFO
buffer (EPBx) as follows: 00=burst disabled, 01=burst limit of 4,
10=11=reserved.

Processors may perform burst accesses to external memory banks
only when the bank is configured for synchronous access (EBxAM
field in WAIT register). For burst writes, the memory bank’s
EBxAM must be configured for the one-wait state write, synchro-
nous access mode.

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-84 ADSP-21161 SHARC Processor Hardware Reference

Registers
23-21 PS External Port Packing Status. These bits indicate the corresponding
FIFO buffer’s packing status as 000=pack complete, 001=1st stage
pack/unpack, 010=2nd stage multi-stage pack/unpack, 011= 3rd
stage, 100=5th stage of 8 to 48-bit packing, 101=110=111=reserved.

These bits are read-only. The processor clears these bits when DEN
is cleared (changes from 1 to 0).

31-24 Reserved

Table A-24. External Port DMA Control Registers (DMACx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-85

I/O Processor Registers

only)

elect
th
th

lect
ory

de

t)

lect
Figure A-25. DMAC Register

DMAC10 0x1c
DMAC11 0x1d
DMAC12 0x1e
DMAC13 0x1f

FS
Ext. Port FIFO Buffer Status (read-
00=buffer empty
01=buffer-not- full
10=buffer-not - empty
11=buffer full

MAXBL
Maximum Burst Length Select

00=burst disabled
01=burst limit of 4

10=11=reserved

INT32
Internal Memory 32 -bit Transfers S
1=32-bit transfers/EPBx access wid
0=64-bit transfers/EPBx access wid

DEN

TRAN

DTYPE

PMODE

Ext. Port DMA Enable
1=enable, 0=disable

CHEN
Ext. Port DMA Chaining Enable
1=enable, 0=disable

Ext. Port EPBx Transmit/Rcv. Se
1=transmit data from intern mem
0=receive data from ext memory

Ext Port EPBx FIFO Packing Mo
000, 111= reserved
001=16 ext- to-32/64 int
010=16 ext-to-48 int
011=32 ext- to -48 int
100=no pack (32 ext -to- 32/64 in
101=8 ext-to -48int
110=8 ext - to-32/64int

EPBx FIFO Buffer Data Type Se
1=40/48 - bit, 3-column data
0=32/64 - bit, 4- column data

EXTERN
External Handshake Mode Enable

1=enable, external devices to external memory
0=disable

Single Word Interrupts for EPBx FIFO Buffers
-wd non -DMA interrupt-driven xfers

0=disabled, FIFO fully enabled
1=enable single

INTIO

HSHAKE
EPBx DMA Handshake Mode Enable

1=enable, 0=disable

MASTER
EPBx DMA Master Mode Enable

1=enable, 0=disable

MSWF
Most Significant Word First During Packing

1=enable, MSW first
0=disable, LSW first

FLSH
Flush EPBx FIFO Buffers & Status

1=flush EPBx

PRIO
External Port Bus Priority Access

0=PA~ not asserted
1=DSP asserts PA~ for external bus access

PS

001=1st stage pack/unpack
010=2nd stage pack/unpack

011=3rd stage
100=5th stage of 8 to 48 -bit packing

101=110=111=reserved

000=packing complete

Ext Port EPBx FIFO Buffer Packing Status
(read-only)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-86 ADSP-21161 SHARC Processor Hardware Reference

Registers
Internal Memory DMA Index Registers (IIx)
The IIx registers’ addresses are: II0A–0x60, II0B–0x80, II1A–0x68,
II1B–0x88, II2A–0x70, II2B–0x90, II3A–0x78, II3B–0x98, IILB0–0x30,
IISRX–0x30, IILB1–0x38, IISTX–0x38, IIEP0–0x40, IIEP1–0x48,
IIEP2–0x50, IIEP3–0x58. The reset value for these registers is undefined.
The IIx register is an 18-bit wide register that holds an address and acts as
a pointer to memory for a DMA transfer. For more information, see “I/O
Processor” on page 6-1.

Internal Memory DMA Modifier Registers (IMx)
The IMx registers’ addresses are: IM0A–0x61, IM0B–0x81, IM1A–0x69,
IM1B–0x89,IM2A–0x71, IM2B–0x91,IM3A–0x79, IM3B–0x99, IMLB0–0x31,
IMSRX–0x31, IMLB1–0x39, IMSTX–0x39, IMEP0–0x41, IMEP1–0x49,
IMEP2–0x51, IMEP3–0x59. The reset value for these registers is undefined.
The IMx register is a 16-bit wide register that provides the increment or
step size by which an IIx register is post-modified during a DMA opera-
tion. For more information, see “I/O Processor” on page 6-1.

Internal Memory DMA Count Registers (Cx)
The Cx registers’ addresses are: C0A–0x62, C0B–0x82, C1A–0x6a, C1B–0x8a,
C2A–0x72, C2B–0x92, C3A–0x7a, C3B–0x9a, CLB0–0x32, CSRX–0x32,
CLB1–0x3a, CSTX–0x3a, CEP0–0x42, CEP1–0x4a, CEP2–0x52, CEP3–0x5a.
The reset value for these registers is undefined. The Cx registers are 16 bits
wide and hold the word count for a DMA transfer. For more information,
see “I/O Processor” on page 6-1.
ADSP-21161 SHARC Processor Hardware Reference A-87

I/O Processor Registers
Chain Pointer For Next DMA TCB Registers (CPx)
These registers’ addresses are CP0A–0x63, CP0B–0x83, CP1A–0x6B,
CP1B–0x8B, CP2A–0x73, CP2B–0x93, CP3A–0x7B, CP3B–0x9B, CPLB0–0x33,
CPLB1–0x3B, CPEP0–0x43, CPEP1–0x4B CPEP2–0x53, CPEP3–0x5B. The
reset value for these registers is undefined. The CPx registers are 19 bits
wide and hold the address for the next transfer control block in a chained
DMA operation. For more information, see “I/O Processor” on page 6-1.

Figure A-26. IOP Parameter Registers

PCI Bit
Program -Controlled Interrupt Bit
If this bit is set, the I/O processor will generate a DMA
interrupt on completion of a chained DMA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IIx

IMx

Cx

CPx

GPx

EIEPx

EMEPx

ECEPx
(Reserved bi ts must always be set to zero when programming DMA parameter registers)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A-88 ADSP-21161 SHARC Processor Hardware Reference

Registers
General Purpose DMA Registers (GPx)
The GPx registers’ addresses are GP0A–0x64, GP0B–0x84, GP1A–0x6C,
GP1B–0x8C, GP2A–0x74, GP2B–0x94, GP3A–0x7C, GP3B–0x9C, GPLB0–
0x34, GPSRX–0x34, GPLB1–0x3C, GPSTX–0x3C, GPEP0–0x44, GPEP1–0x4C,
GPEP2–0x54, GPEP3–0x5C. The GPx registers are 17 bits wide. The reset
value for these registers is undefined.

External Memory DMA Index Registers (EIEPx)
These registers’ addresses are: EIEP0–0x45, EIEP1–0x4D, EIEP2–0x55,
EIEP3–0x5D. The reset value for these registers is undefined. The EIEPx
registers hold an external memory address and acts as a pointer to memory
for an external port DMA transfer. The 32-bit wide EIEPx registers have
more bit space than required to generate external memory addresses.
When programming these registers, write zeros to the upper address bits
ADDR28 through ADDR31. The lower 28 bits contain a valid address field
while the upper MSBs are never generated off-chip in the processor’s 254
Mword address space. For more information, see “I/O Processor” on
page 6-1.

Only External Port DMA channels have EIEPx registers, because
these channels exclusively address ADSP-21161 processor external
memory.

External Memory DMA Modifier Registers (EMEPx)
The EMEPx registers’ addresses are: EMEP0–0x46, EMEP1–0x4E, EMEP2–0x56,
EMEP3–0x5E. The reset value for these registers is undefined. The EMEPx
registers provide the increment or step size by which an EIEPx register is
post-modified during an external port DMA operation.
ADSP-21161 SHARC Processor Hardware Reference A-89

I/O Processor Registers
The value of EMEPx should be such that after being modified with EMEPx,
the value of EIEPx does not fall outside the valid memory range. For more
information, see “I/O Processor” on page 6-1.

Only External Port DMA channels have EMEPx registers, because
these channels exclusively address processor external memory.

External Memory DMA Count Registers (ECEPx)
The ECEPx registers’ addresses are: ECEP0–0x47, ECEP1–0x4F, ECEP2–0x57,
ECEP3–0x5F. The reset value for these registers is undefined. The ECEPx
registers hold the word count for an external port DMA transfer.

When doing multiple transfers, the word count indicated by ECEPx should
be such that the value of EIEPx doesn’t go beyond the valid memory range.
For more information, see “I/O Processor” on page 6-1.

Only External Port DMA channels have ECx registers, because
these channels exclusively address processor external memory.

DMA Channel Status Register (DMASTAT)
The DMASTAT register’s address is 0x37. The reset value for this register is
undefined.

The lower bits in the DMASTAT register indicate DMA channel activity. Bits
0 through 13 correspond to channels 0 through 13 and indicate DMA sta-
tus for each channel as active (if set, =1) or inactive (if cleared, =0). The
upper bits in the DMASTAT register indicate DMA chaining status. Bits 16
through 29 correspond to channels 0 through 13 and indicate DMA
chaining status for each channel as enabled/pending (if set, =1) or disabled
(if cleared, =0). This register is shown in Figure A-27.
A-90 ADSP-21161 SHARC Processor Hardware Reference

Registers

tus

tus

tus

tus

tus
Note that there is a single cycle of read latency between a change in
a DMA channel’s status and the update of its DMASTAT bit(s).

Figure A-27. DMASTAT Register

DMASTAT
0x37

Channel 0 (RX0A/TX0A) Chaining Sta

Channel 2 (RX1A/TX1A) Chaining Sta

Channel 4 (RX2A/TX2A) Chaining Sta

Channel 6 (RX3A/TX3A) Chaining Sta

Channel 8 (LBUF0) Chaining Status

Channel 9 (LBUF1) Chaining Status

Channel 1 (RX0B/TX0B) Chaining Sta

DMA0CHST

DMA2CHST

DMA4CHST

DMA6CHST

DMA8CHST

DMA9CHST

DMA1CHST

Channel 13(EPB3) Chaining Status

Channel 12 (EPB2) Chaining Status

Channel 11 (EPB1) Chaining Status

Channel 10 (EPB0) Chaining Status

Channel 7 (RX3B/TX3B) Chaining Status

Channel 5 (RX2B/TX2B) Chaining Status

Channel 3 (RX1B/TX1B) Chaining Status
DMA3CHST

DMA13CHST

DMA12CHST

DMA11CHST

DMA10CHST

DMA7CHST

DMA5CHST

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0

Channel 0 (RX0A/TX0A) Status

Channel 2 (RX1A/TX1A) Status

Channel 13 (EPB3) Status

Channel 4 (RX2A/TX2A) Status

Channel 12 (EPB2) Status

Channel 6 (RX3A/TX3A) Status

Channel 11 (EPB1) Status

Channel 8 (LBUF0/SPIRX) Status

Channel 10 (EPB0) Status

Channel 9 (LBUF1/SPITX) StatusChannel 5 (RX2B/TX2B) Status

Channel 1 (RX0B/TX0B) StatusChannel 3 (RX1B/TX1B) Status

Channel 7 (RX3B/TX3B) Status

* Channel Active Status: 1=Active [transferring data or waiting to transfer current block, and not transferring TCB]
0= Inactive [DMA transter complete, or in TCB chain loading]

** Channel Chaining Status: 1=Chaining is Enabled and currently transferring TCB, or is Pending to transfer TCB,
0 = Chaining Disabled

Status does not change on the master ADSP-21161 processor during external port DMA until the external portion is
completed (for example, the EPBx buffers are emptied).

If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status will never go to a 1. Therefore, test
channel status to see if it is ready so that your program can rewrite the chain pointer (CPx) register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

DMA0ST

DMA2ST

DMA4ST

DMA6ST

DMA8ST

DMA9ST

DMA1STDMA3ST

DMA13ST

DMA12ST

DMA11ST

DMA10ST

DMA7ST

DMA5ST
ADSP-21161 SHARC Processor Hardware Reference A-91

I/O Processor Registers
Link Port Buffer Registers (LBUFx)
These registers’ addresses are: LBUF0–0xc0, LBUF1–0xc2. The reset value
for these registers is undefined. These registers are shown in Figure A-28.

Link port buffers are two levels deep and 48 bits wide. The buffers contain
32- or 48-bit words, depending on the link port’s extended word size
selected with the LxEXT bit in the port’s LCTL register. If the buffer con-
tains 32-bit words, the port aligns the data with the lower 32 bits of the
buffer and zero fills the upper 16 bits.

Normally, a DMA process automatically accesses the buffer register for
memory transfer. Programs can also access these buffers as registers. How-
ever, programs must use the PX register to access the full width of the
buffer. A PX register move can access the entire 48 bits of a link buffer
using the lower 48 bits of PX.

Link Port Buffer Control Register (LCTL)
This register’s address is 0xCC. The reset value for this register is
0x0020 0000. Table A-25 and Figure A-29 on page A-97 describe the bit
fields within this register. To avoid spurious interrupts, programs should

Figure A-28. LBUFx Register

LBUF0 (0xc0) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

LBUF1 (0xc2) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
A-92 ADSP-21161 SHARC Processor Hardware Reference

Registers
mask Link Service Requests (LSRQ) before modifying the LCTL register. For
more information, see “Link Port Service Request & Mask Register
(LSRQ)” on page A-98.

Table A-25. Link Port Buffer Control Registers (LCTL)
Bit Definitions

Bit(s) Name Definition

0 L0EN Link Buffer Enable. This bit enables (if set, =1) or disables (if
cleared, =0) link buffer 0 (LBUF0). When the processor disables the
buffer (L0EN transitions from high to low), the processor clears the
corresponding L0STAT and L0RERR bits.

1 L0DEN Link Buffer DMA Enable. This bit enables (if set, =1) or disables (if
cleared, =0) DMA transfers link buffer 0 (LBUF0).

2 L0CHEN Link Buffer DMA Chaining Enable. This bit enables (if set, =1) or
disables (if cleared, =0) DMA chaining link buffer 0 (LBUF0)

3 L0TRAN Link Buffer Transfer Direction. This bit selects the transfer direc-
tion (transmit if set, =1) (receive if cleared, =0) for link buffer 0
(LBUF0).

4 L0EXT Link Buffer Extended Word Size. This bit selects the transfer
extended word size (48-bit if set, =1) (32-bit if cleared, =0) for link
buffer 0(LBUF0). Programs must not change a buffer’s L0EXT set-
ting while the buffer is enabled.

The buffer’s L0EXT setting overrides the internal memory block’s
setting IMDWx for Normal word width. Whether buffer is set for
48- or 32- bit words, programs must index (IIx) the corresponding
DMA channel with a Normal word address.

6-5 L0CLKD Link Port Clock Divisor. These bits select the transfer clock divisor
for link buffer 0 (LBUF0). The transfer clock equals the processor
core clock divided by L0CLKD, where L0CLKD[6-5] is: 01=1,
10=2, 11=3, or 00=4.

7 Reserved
ADSP-21161 SHARC Processor Hardware Reference A-93

I/O Processor Registers
8 L0PDRDE Link Port Pulldown Resistor Disable. This bit disables (if set, =1)
or enables (if cleared, =0) the internal pulldown resistors on the
L0CLK, L0ACK, and L0DAT7-0 pins of the corresponding unas-
signed or disabled link port for silicon revisions 0.3, 1.0 and 1.1 and
L0CLK and L0ACK for silicon revisions 1.2 and higher. this bit
applies to the port which is not necessarily the port assigned to link
buffer 0 (LBUF0).

For revisions 0.3, 1.0 and 1.1 systems should not leave link port pins
(L0CLK, L0ACK, and L0DAT7-0) unconnected without clearing
the corresponding L0PDRDE bit or applying an external pulldown.
For silicon revisions 1.2 or higher, this applies to L0CLK and
L0ACK pins only. In systems where several processors share a link
port, only one processor should have this bit cleared.

For complete pin descriptions, see Table 13-1 on page 13-4.

9 L0DPWID Link Port Data Path Width. This bit selects the link port data path
width (8-bit if set, =1) (4-bit if cleared, =0) for link buffer 0
(LBUF0).

Systems using a 4-bit width should connect the lower link port data
pins (L0DAT3-0) for data transfers and leave the upper pins
(L0DAT7-4) unconnected. In the 4-bit mode, the processor applies
pulldowns to the upper pins.

10 L1EN Link Buffer Enable. This bit enables (if set, =1) or disables (if
cleared, =0) link buffer 1 (LBUF1). When the processor disables the
buffer (L1EN transitions from high to low), the processor clears the
corresponding L1STAT and L1RERR bits.

11 L1DEN Link Buffer DMA Enable. This bit enables (if set, =1) or disables (if
cleared, =0) DMA transfers link buffer 1(LBUF1).

12 L1CHEN Link Buffer DMA Chaining Enable. This bit enables (if set, =1) or
disables (if cleared, =0) DMA chaining link buffer 1(LBUF1).

13 L1TRAN Link Buffer Transfer Direction. This bit selects the transfer direc-
tion (transmit if set, =1) (receive if cleared, =0) link buffer
1(LBUF1).

Table A-25. Link Port Buffer Control Registers (LCTL)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-94 ADSP-21161 SHARC Processor Hardware Reference

Registers
14 L1EXT Link Buffer Extended Word Size. This bit selects the transfer
extended word size (48-bit if set, =1) (32-bit if cleared, =0) for link
buffer 1(LBUF1). Programs must not change a buffer’s L1EXT set-
ting while the buffer is enabled.

The buffer’s L1EXT setting overrides the internal memory block’s
setting IMDWx for Normal word width. Whether buffer is set for
48- or 32- bit words, programs must index (IIx) the corresponding
DMA channel with a Normal word address.

16-15 L1CLKD Link Port Clock Divisor. These bits select the transfer clock divisor
for link buffer 1(LBUF1). The transfer clock equals the processor
core clock divided by L1CLKD, where L1CLKD[16-15] is: 01=1,
10=2, 11=3, or 00=4.

17 Reserved

18 L1PDRDE Link Port Pulldown Resistor Disable. This bit disables (if set, =1)
or enables (if cleared, =0) the internal pulldown resistors on the
L1CLK, L1ACK, and L1DAT7-0 pins of the corresponding unas-
signed or disabled link port for silicon revisions 0.3, 1.0 and 1.1 and
L1CLK and L1ACK for silicon revisions 1.2 and higher. This bit
applies to the port, which is not necessarily the port assigned to link
buffer 1 (LBUF1).

For revisions 0.3, 1.0 and 1.1 systems should not leave link port pins
(L1CLK, L1ACK, and L1DAT7-0) unconnected without clearing
the corresponding L1PDRDE bit or applying an external pulldown.
For silicon revisions 1.2 or higher, this applies to L1CLK and
L1ACK pins only. In systems where several DSPs share a link port,
only one processor should have this bit cleared.

For complete pin descriptions, see Table 13-1 on page 13-4.

Table A-25. Link Port Buffer Control Registers (LCTL)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-95

I/O Processor Registers
19 L1DPWID Link Port Data Path Width. This bit selects the link port data path
width (8-bit if set, =1) (4-bit if cleared, =0) for link buffer 1
(LBUF1).

Systems using a 4-bit width should connect the lower link port data
pins (L1DAT3-0) for data transfers and leave the upper pins
(L1DAT7-4) unconnected. In the 4-bit mode, the processor applies
pulldowns to the upper pins.

20 LAB0 Link Port Assignments for LBUF0. This bit assigns link buffer 0 to
link port 1 if set (=1) or link port 0 if cleared (=0).

21 LAB1 Link Port Assignments for LBUF1. This bit assigns link buffer 1 to
link port 1 if set (=1) or link port 0 if cleared (=0).

23-22 L0STAT Link Buffer 0 Status. These bits identify the status of link buffer 0
as follows: 11=full, 00=empty, 10=one word.

25-24 L1STAT Link Buffer 1 Status. These bits identify the status of link buffer 1
as follows: 11=full, 00=empty, 10=one word.

26 LRERR0 Receive Packing Error Status for Link Buffer 0. Indicates if the
packed bits in link buffer 0 were receive completely (=0), without
error, or incompletely (=1).

27 LRERR1 Receive Packing Error Status for Link Buffer 1. Indicates if the
packed bits in link buffer 1 were received completely (=0), without
error, or incompletely (=1).

31-28 Reserved

Table A-25. Link Port Buffer Control Registers (LCTL)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-96 ADSP-21161 SHARC Processor Hardware Reference

Registers
Figure A-29. LCTL Register

L0EN
Link Buffer 0 Enable
1=enable, 0=disable

L0DEN
Link Buffer 0 DMA Enable

L0TRAN
Link Buffer 0 Data Direction
1=Transmit, 0=Receive

L0EXT
Link Buffer 0 Extended Word Size

L0CLKD[1:0]
CCLK Divide Ratio - LBUF0
00=divide by 4, 01=divide by 1,
10=divide by 2, 11=divide by 3

L1EXT

L1TRAN

L1CLKD
CCLK Divide Ratio 0 - LBUF1

Link Buffer 1 Extended Word Size
1=48-bit transfers, 0=32-bit transfers

Link Buffer 1 Data Direction
1=Transmit, 0=Receive

L1CHEN
Link Buffer 1 DMA Chaining Enable
1=enable chaining, 0=disable chaining

L1DEN
Link Buffer 1 DMA Enable
1=enable DMA, 0=disable DMA

L1EN
Link Buffer 1 Enable
1=enable DMA, 0=disable DMA

L0DPWID
Link Buffer 0 Data Path Width
1=8-bits, 0=4-bits

L1CLKD
CCLK Divide Ratio 1 - LBUF1
00=divide by 4, 01=divide by 1
10=divide by 2, 11=divide by 3

L1PDRDE
Link Port 1 Pulldown Resister Disable

L1DPWID
Link Buffer 1 Data Path Width
1=8-bits, 0=4-bits

LAB0
Link Port Assignment for LBUF0
0=Link Port 0, 1=Link Port 1

LAB1
Link Port Assignment for LBUF1
0=Link Port 0, 1=Link Port 1

1=enable DMA 0=disable DMA

L0CHEN
Link Buffer 0 DMA Chaining Enable
1=enable chaining, 0=disable chaining

1=48 -bit transfers, 0=32 -bit transfers

L0PDRDE
Link Port 0 Pulldown Resister Disable

LCTL
0xCC

L0STAT[1:0]
Link Buffer 0 Status (Read-Only)
11=Full, 00=Empty, 10=one word

L1STAT[1:0]
Link Buffer 1 Status (Read- Only)
11=Full, 00=Empty, 10=one word

LRERR0
Rcv. Pack Error Status for Link Buffer 0
1=incomplete, 0=complete

LRERR1
Rcv. Pack Error Status for Link Buffer 1
1=incomplete, 0=complete

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference A-97

I/O Processor Registers
Link Port Service Request & Mask Register (LSRQ)
The LSRQ register’s address is 0xD0. This register is described in
Table A-26 and Figure A-30. The reset value for this register is
0x0000 0000. The LSRQ register contains transmit and receive mask and
status bits for each link port. The mask bits in LSRQ mask (disable if set,
=1) or unmask (enable if cleared, =0) the status bits in LSRQ register.

The status bits indicate whether a disabled link port (DEN=0) has a pending
service request to receive or transmit data. When an LSRQ receive request
status bit is set (LxRRQ=1), another ADSP-21161 processor has requested
to send data by setting the link port’s clock (LxCLK=1). When an LSRQ
transmit request status bit is set (LxTRQ=1), another ADSP-21161 proces-
sor has requested more data by setting the link port’s acknowledge
(LxACK=1).

Table A-26. Link Port Service Request Register (LSRQ)
Bit Definitions

Bit(s) Name Definition

3-0 Reserved

4 L0TM Link Port 0 Transmit Mask. This bit masks (if set, =1) or
unmasks (if cleared, =0) the L0TRQ status bit.

5 L0RM Link Port 0 receive mask. This bit masks (if set, =1) or unmasks
(if cleared, =0) the L0RRQ status bit.

6 L1TM Link Port 1 Transmit Mask. This bit masks (if set, =1) or
unmasks (if cleared, =0) the L1TRQ status bit.

7 L1RM Link Port 1 Receive Mask. This bit masks (if set, =1) or
unmasks (if cleared, =0) the L1RRQ status bit.

19-8 Reserved

20 L0TRQ Link Port 0 Transmit Request Status (Read-Only). If set (=1),
indicates that link port 0 is disabled, but L0ACK is set (indicat-
ing an external transmit request).
A-98 ADSP-21161 SHARC Processor Hardware Reference

Registers
21 L0RRQ Link Port 0 Receive Request Status (Read-Only). If set (=1),
indicates that link port 0 is disabled, but L0CLK is set (indicat-
ing an external receive request).

22 L1TRQ Link Port 1 Transmit Request Status (Read-Only). If set (=1),
indicates that link port 1 is disabled, but L1ACK is set (indicat-
ing an external transmit request).

23 L1RRQ Link Port 1 Receive Request Status (Read-Only). If set (=1),
indicates that link port 1 is disabled, but L1CLK is set (indicat-
ing an external receive request).

31-24 Reserved

Figure A-30. LSRQ Register

Table A-26. Link Port Service Request Register (LSRQ)
Bit Definitions (Cont’d)

Bit(s) Name Definition

11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

L0TM
Link Port 0 Transmit Mask

L0RML1TM

L1RM

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16LSRQ

L0TRQ

L0RRQL1TRQ

L1RRQ

Link Port 0 Receive MaskLink Port 1 Transmit Mask

Link Port 1 Receive Mask

Link Port 0 Receive Request

Link Port 0 Transmit RequestLink Port 1 Receive Request

Link Port 1 Transmit Request

0xD0
ADSP-21161 SHARC Processor Hardware Reference A-99

I/O Processor Registers
Serial Port Registers
This section provides bit descriptions for all ADSP-21161 SPORT
registers.

SPORT Serial Control Registers (SPCTLx)

These registers’ addresses are: SPCTL0–0x1C0, SPCTL1–0x1E0,
SPCTL2–0x1D0, SPCTL3–0x1F0. The reset value for these registers is
0x0000 0000. The SPCTLx registers are transmit and receive control regis-
ters for the corresponding serial port (SPORT 0, 1, 2 and 3). Table A-27
provides bit descriptions for the SPORT registers. Some these bits are
reserved or have different names when the SPORT is in multichannel or
I2S mode. The table notes these difference.

• Figure A-31 on page A-105 provides bit definitions for the SPCTLx
register in serial mode.

• Figure A-32 on page A-106 provides bit definitions for the SPCTLx
register in I2S mode.

• Figure A-33 on page A-107 provides bit definitions for SPORTS 0
and 1 (receive) in multichannel mode.

• Figure A-34 on page A-108 provides bit definitions for SPORTS 2
and 3 (transmit) in multichannel mode.

When changing SPORT operating modes, programs should clear a
serial port’s control register before writing new settings to the con-
trol register.
A-100 ADSP-21161 SHARC Processor Hardware Reference

Registers
Table A-27. Serial Port Control Registers (SPCTLx)
Bit Definitions

Bit(s) Name Definition

0 SPEN_A Serial Port Enable A. This bit enables (if set, =1) or disables (if
cleared, =0) the corresponding serial port A channel.

This bit is reserved when the SPORT is in multichannel mode.

2-1 DTYPE Data Type Select. These bits select the data type formatting for
normal and multi-channel transmissions as follows:

Normal Multi Data Type Formatting
00 x0 Right-justify, zero-fill unused MSBs
01 x1 Right-justify, sign-extend unused MSBs
10 0x Compand using µ-law
11 1x Compand using A-law

3 SENDN Serial Word Endian Select. This bit selects little endian words
(LSB first, if set, =1) or big endian words (MSB first, if cleared,
=0).

8-4 SLEN Serial Word Length Select. These bits select the word length in
bits. Word sizes can be from 3-bit (SLEN=2) to 32-bit
(SLEN=31).

9 PACK 16-bit to 32-Bit Word Packing Enable. This bit enables (if set,
=1) or disables (if cleared, =0) 16- to 32-bit word packing.

10 ICLK Internal Transmit Clock Select. This bit selects the internal
transmit clock (if set, =1) or external transmit clock (if cleared,
=0). This bit applies to processor serial and multichannel
modes for SPCTL0 and SPCTL1 registers.

MSTR (I2S
mode only)

In I2S mode, this bit selects the word source and internal trans-
mit clock (if set, =1) or external transmit clock (if cleared, =0)

11 OPMODE Sport Operation Mode. This bit selects the I2S mode if set (=1)
or processor Serial mode/Multichannel mode if cleared (=0).

12 CKRE Clock Rising Edge Select. This bit selects whether the serial
port uses the rising edge (if set, =1) or falling edge (if cleared,
=0) of the clock signal for sampling data and the frame sync.
This bit is reserved when the SPORT is in I2S mode.
ADSP-21161 SHARC Processor Hardware Reference A-101

I/O Processor Registers
13 FSR Frame Sync Required Select. This bit selects whether the serial
port requires (if set, =1) or does not require (if cleared, =0) a
transfer frame sync.

This bit is reserved when the SPORT is in I2S mode and multi-
channel mode.

14 IFS
(IRFS)

Internally Frame Sync Select. This bit selects whether the serial
port uses an internal generated FS (if set, =1) or uses an exter-
nal FS (if cleared, =0).

This bit is reserved when the SPORT is in I2S mode and multi-
channel transmit mode.

15 DITFS Data Independent Transmit Frame Sync Select. This bit
selects whether the serial port uses a data-independent transmit
FS (sync at selected interval, if set, =1) or uses a data-dependent
TFS (sync when data in TX, if cleared, =0) when DDIR=1.

This bit is reserved when the SPORT is in multichannel mode.

16 LFS
(LRFS, LTDV)

Low Active Frame Sync Select. This bit selects an active low FS
(if set, =1) or active high FS (if cleared, =0).

17 LAFS Late Transmit Frame Sync Select. This bit selects a late FS (FS
during first bit, if set, =1) or an early FS (FS before first bit, if
cleared, =0).

This bit is reserved when the SPORT is in I2S mode and multi-
channel mode.

18 SDEN_A Serial Port DMA Enable A. This bit enables (if set, =1) or dis-
ables (if cleared, =0) the serial port’s A channel DMA.

19 SCHEN_A Serial Port DMA Chaining Enable A. This bit enables (if set,
=1) or disables (if cleared, =0) serial port’s channel A DMA
chaining.

Table A-27. Serial Port Control Registers (SPCTLx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-102 ADSP-21161 SHARC Processor Hardware Reference

Registers
20 SDEN_B Serial Port DMA Enable B. This bit enables (if set, =1) or dis-
ables (if cleared, =0) the serial port’s channel B DMA.

This bit is reserved when the SPORT is in multichannel mode.

21 SCHEN_B Serial Port DMA Chaining Enable B. This bit enables (if set,
=1) or disables (if cleared, =0) serial port’s channel B DMA
chaining.

This bit is reserved when the SPORT is in multichannel mode.

22 FS_BOTH FS Both Enable. This bit issues WS if data is present in both
transmit buffers if set (=1). If cleared (=0), WS is issued if data
is present in either transmit buffers.

This bit is reserved when the SPORT is in multichannel mode.

23 Reserved

24 SPEN_B Serial Port Enable B. This bit enables (if set, =1) or disables (if
cleared, =0) the corresponding serial port B channel.

This bit is reserved when the SPORT is in multichannel mode.

25 DDIR Data Direction Control. This bit activates transmit buffers
TXnA or TXnB if set (=1) or enables receive buffers RXnA or
RXnB if cleared (=0).

This bit is reserved when the SPORT is in multichannel mode.

26 DERR_B DXB Error Status (Sticky, Read-Only). This bit indicates
whether the serial transmit operation has underflowed (if set,
=1 and DDIR=1) or a receive operation has overflowed (if
cleared, =0 and DDIR=0) in the DXB data buffer.

This bit is reserved when the SPORT is in multichannel mode.

Table A-27. Serial Port Control Registers (SPCTLx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
ADSP-21161 SHARC Processor Hardware Reference A-103

I/O Processor Registers
28-27 DXS_B DXB Data Buffer Status (Read-Only). These bits indicate the
status of the serial port’s DXB data buffer as follows: 11=full,
00=empty, 10=partially full.

This bit is reserved when the SPORT is in multichannel mode.

29 DERR_A
(ROVF_A,
TUVF_A)

DXA Error Status (Sticky, Read-Only). This bit indicates
whether the serial transmit operation has underflowed (if set,
=1 and DDIR=1) or a receive operation has overflowed (if
cleared, =0 and DDIR=0) in the DXA data buffer.

31-30 DXS_A
(RXS_A,
TXS_A)

DXA Data Buffer Status (Read-Only). These bits indicate the
status of the serial port’s DXA data buffer as follows: 11=full,
00=empty, 10=partially full.

Table A-27. Serial Port Control Registers (SPCTLx)
Bit Definitions (Cont’d)

Bit(s) Name Definition
A-104 ADSP-21161 SHARC Processor Hardware Reference

Registers

channel

is

low

channel

channel

channel

with 0s
tend MSB

t

g

Figure A-31. SPCTL Register – DSP Serial Mode

SDEN_A
SPORT DMA enable A
1=enable, 0=disable

FS_BO TH
1=issue W S only if data
present in both Tx
0=issue W S if data is
present in either Tx

LFS
Active Low FS
0=active high, 1=active
LAFS
Late FS
0=early FS, 1=late FS

SDEN_B

SCHEN_B

SCHEN_A
DMA chaining enable A
1=enable, 0=disable

SPORT DMA enable B
1=enable, 0=disable

DMA chaining enable B
1=enable, 0=disable

SPEN_A
SPORT Enable A
(1=enable, 0=disable)
DTYPE
Data type
00=right-justify; fill M SB
01=right-justify; sign ex
10=compand mu-law
11=compand A-law

SENDN
Endian word form at
0=MSB first, 1=LSB firs

SLEN
Serial W ord Length-1

PACK
16/32 packing
1=packing, 0=no packin

FSR
FS requirement

1=FS required, 0=FS not required

IFS
Internally generated FS

1=internal FS, 0=external FS

DITFS
Data Independent ‘tx’ FS (if DDIR=1)

1=data independent, 0= data dependent

CKRE
Clock edge for data Frame Sync sam pling

or driving (1=rising edge, 0=falling edge)

ICLK
Internally generated SCLK

1=internal clock, 0=external clock

OPMODE
SPORT Operation Mode

0=DSP serial m ode/m ultichannel m ode
1=I2S m ode

DXS_A
DXA Data Buffer Status

11=full, 10=partially full, 00=empty

DERR_A
DXA Error Status (sticky)

DDIR=1,‘transm it underflow’ status
DDIR=0, ‘receive overflow’ status

DXS_B*

DERR_B*

DDIR**
Data Direction Control

1=Active Transmit Buffers TXnB/TXnA
0=Enable Receive Buffers RXnB/RXnA

SPEN_B
SPORT Enable B

1=enable, 0=disable

DXB Data Buffer S tatus
11=full, 10=partially full ,00=em pty

DXB Error Status (sticky)

* Status is Read-only
** Do not read/write from /to inactive
RXn/TXn buffers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPCTL0 (0x01c0) DSP Serial Mode
SPCTL1 (0x01e0)

SPCTL2 (0x01d0)

SPCTL3 (0x01f0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ADSP-21161 SHARC Processor Hardware Reference A-105

I/O Processor Registers

first

oth Tx
Tx

le)
Figure A-32. SPCTLx Register–I2S Mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Left or Right I2S channel RX/TX first
1=start left data first 0= start right data

SDEN_A
SPORT Transmit DMA enable Ach.
1=enable, 0=disable

FS_BOTH
1=issue WS only if data is present in b
0=issue WS if data is present in either

L_FIRST

SDEN_B

SCHEN_B

SCHEN_A
DMA chaining enable A channel
1=enable, 0=disable

SPORT transmit DMA enable Bch.
1=enable, 0=disable

DMA Chaining enable B channel
1=enable, 0=disable

SPCTL0 (0x01c0)
SPCTL1 (0x01e0)
SPCTL2 (0x01d0)
SPCTL3 (0x01f0)

I2S Mode

DXS_A
DXA Data Buffer Status

11=full, 10=partially full, 00=empty

DERR_A
DXA Error Status (sticky)

DDIR=1,‘transmit underflow’ status
DDIR=0, ‘receive overflow’ status

DXS_B*

DERR_B*

D DIR**
Data Direction Control

1=Active Transmit Buffers TXnA/TXnB
0=Enable Receive Buffers RXnA/RXnB

SPEN_B
SPORT Enable B

1=enable, 0=disable

DXB Data Buffer Status
11=full, 10=partially full, 00=empty

DXB Error Status (sticky)

* Status is Read-only
** Do not read/write from/to inactive

RXn/TXn buffers

(Reserved bits must be cleared for I 2S operation)

SPEN_A
SPORT Enable A (1=enable, 0=disab

SLEN
Serial Word Length- 1

PACK
16/32 packing
1=packing, 0=no packingMSTR

DITFS
Data Independent ‘tx’ FS (if DDIR=1)

1=data independent, 0=data dependent

I2S serial and L/R clock Master
1=internal SCLK and WS, TX/RX is master
0=external SLCK and WS, TX/RX is slave

OPMODE
SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=I2S mode
A-106 ADSP-21161 SHARC Processor Hardware Reference

Registers
Figure A-33. SPCTL0 and SPCTL1 Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LRFS
Active Low Multichannel Receive
FS0/FS1
0=active high, 1=active low

SDEN_A
SPORT receive DMA enable A
1=enable, 0=disable

SCHEN_A
SPORT receive DMA
chaining enable A
1=enable, 0=disable

RXS_A*
RXA Data Buffer Status

11=full, 10=partially full, 00=empty

ROVF_A*
RXA Underflow Status (sticky)

*Status is Read-only

SENDN
Endian word format
0=MSB first, 1=LSB first

SLEN
Serial Word Length -1

CKRE

sampling (1=rising edge, 0=falling edge)

OPMODE
SPORT Operation Mode

1=I2S mode

IRFS

1=internal FS0/FS1, 0=external FS0/FS1

ICLK
Internally -generated Receive clock

1=internal clock, 0=external clock

Active clock edge for data & frame sync

0=DSP serial mode/multichannel mode

PACK
16/32 packing
1=packing, 0=no packing

Internally Generated Multichannel rx FS

(Reserved bits must be cleared for multichannel operation)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

SPCTL0 (0x01C0)

SPCTL1 (0x01E0)

Multichannel Mode
Receive Control Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DTYPE
Data type
00=right-justify; fill MSB with 0s
01=right-justify; sign extend MSB
10=compand mu-law
11=compand A-law
ADSP-21161 SHARC Processor Hardware Reference A-107

I/O Processor Registers
Figure A-34. SPCTL2 and SPCTL3 Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

*Status is Read-only

(Reserved bits must be cleared for multichannel operation)

DTYPE
Data type

SENDN
Endian word format
0=MSB first, 1=LSB first

SLEN
Serial Word Length -1

PACK
16/32 packing

1=packing, 0=no packing

Reserved**

OPMODE
SPORT Operation Mode

0=DSP serial mode/multichannel mode
1=I2S mode

LTDV
Active Low MC Transmit Data Valid
0=active high TVD2/TDV3
1=active low TDV2/TDV3

SDEN_A

SCHEN_A
SPORT transmit DMA
chaining enable A
1=enable, 0=disable

SPORT transmit DMA enable A
1=enable, 0=disable

TXS_A*
TXA Data Buffer Status

11=full, 10=partially full, 00=empty

TUVF_A*
TXA Underflow Status (sticky)

SPCTL2 (0x01d0)
SPCTL3 (0x01f0)

Multichannel Mode
Transmit Control Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**The CKRE values for SPCTL2 and SPCTL3
come from SPCTL0 and SPCTL1 (respectively)
in multichannel mode.“

x0=right-justify; fill MSB with 0s
x1=right-justify; sign extend MSB
0x=compand mu-law
1x=compand A-law
A-108 ADSP-21161 SHARC Processor Hardware Reference

Registers
SPORT Multichannel Control Registers (SPxyMCTL)

These registers’ addresses are SP02MCTL–0x1DF, SP13MCTL–0x1FF. The
SP02MCTL register is the multichannel control register for SPORTs 0 and
2. The SP13MCTL register is the multichannel control register for SPORTs
1 and 3. The reset value for these registers is undefined. These registers are
described in Table A-28 and Figure A-35.

Table A-28. SPORT Multichannel Control Register Bit Definitions

Bit(s) Name Definition

0 MCE Multichannel Mode Enable. Standard and multichannel
modes only. Bit 0 in the SP02MCTL and SP13MCTL regis-
ters.One of two configuration bits that enable and disable
multichannel mode on both the receive or transmit serial
port channels. See also, OPMODE.
0 = Disable multichannel operation.
1 = Enable multichannel operation if OPMODE=0.

4-1 MFD Multichannel Frame Delay. These bits set the interval, in
number of serial clock cycles, between the multichannel
frame sync pulse and the first data bit. These bits provide
support for different types of T1 interface devices.

Valid values range are from 0 to 15 with bits
SP02MCTL[4:1] or SP13MCTL[4:1].

Values of 1 to15 correspond to the number of intervening
serial clock cycles.

A value of 0 corresponds to no delay. The multichannel
frame sync pulse is concurrent with first data bit.

11-5 NCH Number of Multichannel Slots (minus one).These bits select
the number of channel slots (maximum of 128) to use for
multichannel operation.Valid values for actual number of
channel slots range from 1 to 128.

Use this formula to calculate the value for NCH:
NCH = Actual number of channel slots -1.
ADSP-21161 SHARC Processor Hardware Reference A-109

I/O Processor Registers
12 SPL SPORT Loopback Mode. This bit enables if set (=1) or dis-
ables if cleared (=0) the channel loopback mode. Loopback
mode enables developers to run internal tests and to debug
applications. Loopback only works under the following
SPORT configurations:

SPORT0 (configured as a receiver or transmitter)
together with SPORT2 (configured as a transmitter or
receiver).

SPORT0 can only be paired with SPORT2, controlled
via the SPL bit in the SP02MCTL register.

SPORT1 (configured as a receiver or transmitter)
together with SPORT3 (configured as a transmitter or
receiver).

SPORT1 can only be paired with SPORT3, controlled
via the SPL bit in the SP13MCTL register.

Either of the two paired SPORTs can be set up to transmit or
receive, depending on their DDIR bit configurations.

15-13 Reserved

22-16 CHNL Current Channel Selected (Read-Only, Sticky). These bits
identify the currently selected transmit channel slot (0 to
127).

31-23 Reserved

Table A-28. SPORT Multichannel Control Register Bit Definitions

Bit(s) Name Definition
A-110 ADSP-21161 SHARC Processor Hardware Reference

Registers
SPORT Transmit Buffer Registers (TXx)

The TXx registers’ addresses are: TX0A–0x1C1, Tx0B–0x1C2, Tx1A–0x1E1,
Tx1B–0x1E2, Tx2A–0x1D1, Tx2B–0x1D2, Tx3A–0x1F1, Tx3B–0x1F2. The
reset value for these registers is undefined. The 32-bit TXx registers hold
the output data for serial port transmit operations. For more information
on how transmit buffers work, see “Transmit and Receive Data Buffers”
on page 10-30.

SPORT Receive Buffer Registers (RXx)

The RXx registers’ addresses are: Rx0A–0x1C3, Rx0B–0x1C4, Rx1A–0x1E3,
Rx1B–0x1E4, Rx2A–0x1D3, Rx2B–0x1D4, Rx3A–0x1F3, Rx3B–0x1F4. The
reset value for these registers is undefined. The 32-bit RXx registers hold
the input data from serial port receive operations. For more information
on how receive buffers work, see “Transmit and Receive Data Buffers” on
page 10-30.

Figure A-35. SP02MCTL and SP13MCTL Registers

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHNL
Current Channel (read-only)

MCE
Multichannel enable (1=enable, 0=disable)

MFD
Multichannel Frame Delay

NCH
Number of Channels - 1

SPL
SPORTLoopback

SPORT0 & SPORT2 only
SPORT1 & SPORT3 only

SP02MCTL

SP13MCTL
(0x01DF)
(0x01FF)
ADSP-21161 SHARC Processor Hardware Reference A-111

I/O Processor Registers
SPORT Divisor Registers (DIVx)

The DIVx registers’ addresses are: DIV0–0x1C5, DIV1–0x1E5, DIV2–0x1D5,
DIV3–0x1F5 (shown in Figure A-36). The reset value for these registers is
undefined. These registers contain two fields:

• Bits 15-0 are CLKDIV. These bits select the Serial Clock Divisor for
internally generated SCLK as follows:

• Bits 31-16 are FSDIV. These bits select the Frame Sync Divisor for
internally generated TFS as follows:

Figure A-36. DIVx Register

CLKDIV
fCCLK

2 fSCLK()
-------------------- 1–=

FSDIV
fSCLK
fSFS

------------ 1–=

CLKDIV

FSDIV
Frame Sync Divisor

Clock Divisor

DIV0 (0x1C5)
DIV1 (0x1E5)
DIV2 (0x1D5)
DIV3 (0x1F5)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
A-112 ADSP-21161 SHARC Processor Hardware Reference

Registers
SPORT Count Registers (CNTx)

The CNTx registers’ addresses are: CNT0–0x1C6, CNT1–0x1E6, CNT2–0x1D6,
CNT3–0x1F6. The reset value for these registers is undefined. The CNTx
registers provides status information for the internal clock and frame sync.

SPORT Transmit Select Registers (MT2CSx and MT3CSx)

The MT2CSx and MT3CSx registers’ addresses are: MT2CS0–0x1D7,
MT2CS1–0x1D9, MT2CS2–0x1DB, MT2CS3–0x1DD, MT3CS0–0x1F7,
MT3CS1–0x1F9, MT3CS2–0x1FB, MT3CS3–0x1FD. The reset value for these
registers is undefined.

Each bit, 31-0, set (=1) in one of four MTxCSx registers correspond to an
active transmit channel, 127-0, on a multichannel mode serial port. When
the MT2CSx and MT3CSx registers activate a channel, the serial port trans-
mits the word in that channel’s position of the data stream. When a
channel’s bit in the MTCSx register is cleared (=0), the serial port’s DT (data
transmit) pin three-states during the channel’s transmit time slot.

SPORT Transmit Compand Registers (MT2CCSx and MT3CCSx)

The MT2CCSx and MT3CCSx registers’ addresses are: MT2CCS0–0x1D8,
MT2CCS1–0x1DA, MT2CCS2–0x1DC, MT2CCS3–0x1DE, MT3CCS0–0x1F8,
MT3CCS1–0x1FA, MT3CCS2–0x1FC, MT3CCS3–0x1FE. The reset value for
these registers is undefined.

Each bit, 31-0, set (=1) in one of four MTxCCSx registers correspond to an
companded transmit channel, 127-0, on a multichannel mode serial port.
When the MTCCSx register activates companding for a channel, the serial
port applies the companding from the serial port’s DTYPE selection to the
transmitted word in that channel’s position of the data stream. When a
channel’s bit in the MTCCSx register is cleared (=0), the serial port does not
compand the output during the channel’s receive time slot.
ADSP-21161 SHARC Processor Hardware Reference A-113

Serial Peripheral Interface Registers
SPORT Receive Select Registers

The MRCSx registers’ addresses are: MR0CS0–0x1C7, MR0CS1–0x1C9,
MR0CS2–0x1CB, MR0CS3–0x1CD, MR1CS0–0x1E7, MR1CS1–0x1E9,
MR1CS2–0x1EB, MR1CS3–0x1ED. The reset value for these registers is
undefined.

Each bit, 31-0, set (=1) in one of the four MRCSx registers corresponds to
an active receive channel, 127-0, on a multichannel mode serial port.
When the MRCSx register activates a channel, the serial port receives the
word in that channel’s position of the data stream and loads the word into
the RXx buffer. When a channel’s bit in the MRCSx register is cleared (=0),
the serial port ignores any input during the channel’s receive time slot.

SPORT Receive Compand Registers

These registers’ addresses are: MR0CCS0–0x1C8, MR0CCS1–0x1CA,
MR0CCS2–0x1CC, MR0CCS3–0x1CE, MR1CCS0–0x1E8, MR1CCS1–0x1EA,
MR1CCS2–0x1EC, MR1CCS3–0x1EE. The reset value for these registers is
undefined.

Each bit, 31-0, set (=1) in the MR0CCSx and MR1CCSx registers correspond
to an companded receive channel, 127-0, on a multichannel mode serial
port. When one of the four MR0CCSx and MR1CCSx registers activate com-
panding for a channel, the serial port applies the companding from the
serial port’s DTYPE selection to the received word in that channel’s position
of the data stream. When a channel’s bit in the MR0CCSx and MR1CCSx reg-
isters are cleared (=0), the serial port does not compand the input during
the channel’s receive time slot.

Serial Peripheral Interface Registers
The following sections provide descriptions of the registers used in setting
up the processor’s SPI interface.
A-114 ADSP-21161 SHARC Processor Hardware Reference

Registers
SPI Port Status Register
This register’s address is 0xB5 and it is described in Table A-29 and
Figure A-37. The reset value for this register is undefined.The SPISTAT
register is a read-only register used to detect when an SPI transfer is com-
plete, if transmission or reception errors occur, and the status of the SPITX
and SPIRX FIFOs.

Table A-29. SPI Status Register Bit Descriptions

Bit(s) Name Definition

0 SPIF SPI Transmit or Receive Transfer Complete. This bit is set (=1)
when the SPI transfer is complete and one of the following condi-
tions is met:

SPRINT = 1 and receive buffer full
—or—
RDMAEN = 1 and receive buffer full
—or—
SPTINT = 1 and transmit buffer empty
 —or—
TDMAEN = 1 and transmit buffer empty

1 MME Multimaster Error. This bit is set when a device that is not cur-
rently the master device tries to become the master by driving a
SPIDS signal while the current master device is communicating
to SPI slave devices.

2 TXE Transmission Error. This bit is set when SPI is Slave/Master,
SPTINT = 1 or TDMAEN = 1, but there is no data in SPITX
FIFO. If you are not servicing the interrupt quickly enough and
not updating the contents of SPITX, this bit is set. In master
mode, this means an end of operation and SPI going into idle
mode.

4-3 TXS Transmit Data Buffer Status. These bits indicate the status of the
SPITX data buffer status (read only) as follows: 00 = empty,
01 = partially full, 11 = full.
ADSP-21161 SHARC Processor Hardware Reference A-115

Serial Peripheral Interface Registers
5 RBSY Reception Error. This bit is set when a data is received with
receive buffer full. Either RDMAEN = 1 or SPRINT = 1 and the
receive buffer is full. In master mode, this means an end of opera-
tion and SPI going into idle mode.

7-6 RXS Receive Data Buffer Status. These bits indicate the status of the
SPIRX data buffer status (read only) as follows:

00 = empty, 01 = partially full, 11 = full.

31-8 Reserved

Figure A-37. SPISTAT Register

Table A-29. SPI Status Register Bit Descriptions (Cont’d)

Bit(s) Name Definition

SPIF
SPI Transm it Transfer Com plete
1=transfer com ple te , 0=active transfer

M ME
Multim aster Error

TXS
SPITX Data Buffer Status (read only)
00=SPITX em pty
01=TX B partially full
11=SPITX full
10=R eserved

RBSY
Reception Error (Overflow)
1=new data received with full RXB FIFO
SPI enters idle m ode if m aster device

RXS

0=no error, 1=SPIDS~ asserted by slave

TXE
Transm ission Error (U nderflow)
1=no new data in TX FIFO,
SPI enters idle m ode if m aster device

SPISTAT
0xB5

SPIRX Data Buffer Status (Read-only)
00=SPIRX em pty
01=SPIRX partially full
11=SPIRX full
10=Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-116 ADSP-21161 SHARC Processor Hardware Reference

Registers
SPI Control Register (SPICTL)
This register’s address is 0xB4 and it is described in Table A-30 and
Figure A-38. The reset value for these registers is undefined. The SPI
Control Register (SPICTL) register is used to configure and enable the SPI
system. This register is used to set up SPI configurations such as selecting
the device as a master or slave or determining the data transfer rate and
word size.

Table A-30. SPI Control Register Bit Descriptions

Bit(s) Name Function

0 SPIEN SPI Port Enable. This bit enables (if set, =1) or disables (if
cleared, =0) the SPI system.

1 SPRINT SPIRX Interrupt Enable. This bit enables (if set, =1) or disables
(if cleared, =0) an SPI interrupt. An interrupt is generated when
the receive buffer is not empty.

2 SPTINT SPITX Interrupt Enable. This bit enables (if set, =1) or disables
(if cleared, =0) an SPI interrupt. An interrupt is generated when
the transmit buffer is not full.

3 MS Master Select. This bit selects the device as a master device (if
set, =1) or a slave device (if cleared, =0).

4 CP Clock Polarity. This bit selects the clock polarity. SPICLK high
is the idle state (if set, =1), or SPICLK low is the idle state (if
cleared, =0).

5 CPHASE Clock Phase. This bit selects the clock phase transfer format.
When set (=1), the SPICLK starts toggling at the beginning of
the first data transfer bit. When cleared (=0), the SPICLK starts
toggling at the middle of the first data transfer bit.

For more information, see Figure 11-7 on page 11-22.

6 DF Data Format. This bit selects the data format. When set (=1), the
MSB is sent/received first. When cleared (=0), the LSB is
sent/received first.

7-8 WL Word Length. This bit selects the word length as follows: 00 = 8
bits, 01 = 16 bits, 11 = 32 bits,10 = reserved.
ADSP-21161 SHARC Processor Hardware Reference A-117

Serial Peripheral Interface Registers
9-12 BAUDR Baud Rate. These bits define the SPICLK frequency per the fol-
lowing equation:

SPICLK baud rate= Core clock / 2(2 + BR)

13 TDMAEN Transmit DMA Enable. This bit enables (if set, =1) or disables
(if cleared, =0) DMA transfers to the transmit buffer. At SPI boot
this bit is 0.

Bits 14 to 24 are controlled during master mode.

14 PSSE Programmable Slave Select Enable. This bit is used to program
the controlled automatic generation of slave device select signals
during SPI transfers. This bit enables (if set, =1) or disables (if
cleared, =0) the programmable slave select mode. The slave selec-
tion is subsequently made using the FLS bit.

15-18 FLS Flag Select. These bits select which flag pins are asserted when
multiple slaves are used (0=Disable, 1=Enable) as follows:

Bit 15= FLAG0
Bit 16= FLAG1
Bit 17= FLAG2
Bit 18= FLAG3

Note: Only Flag[0] to Flag[3] can be used this way.

19 NSMLS Non-Seamless Operation. This bit, if set (=1), indicates that
after each word transfer there is a delay before the next word
transfer starts. When cleared (=0), indicates no delay before the
next word starts, a seamless operation.

20 DCPH0 Deselect SPIDS in CPHASE = 0. This bit deselects when high
(=1) the slaves between successive word transfers in CPhase 0.
The slave is selected in master mode using PSSE functionality.

This bit has no effect in slave mode for the SPI port.
This functionality is valid only when NSMLS =1 and CPHASE
=0. This bit is cleared (=0) when not in use.

Table A-30. SPI Control Register Bit Descriptions (Cont’d)

Bit(s) Name Function
A-118 ADSP-21161 SHARC Processor Hardware Reference

Registers
25 DMISO Disable MISO Pin. This bit three-states, (if set, =1) the master
in slave out (MISO) pin or (if cleared, =0) enables MISO. This is
needed in an environment where master wishes to transmit to
various slaves at one time (broadcast). Except for the slave from
which it wishes to receive, all other slaves should have this bit set.

26 OPD Open Drain Output Enable. This bit enables an open drain for
data pins if set (=1) or remains normal if cleared (=0). If enabled,
the MISO, MOSI and SPICLK is driven only for logic low and
pulled up by a 50 kΩ resistance for a logic high.

27 RDMAEN Receive DMA Enable. This bit enables (if set, =1) or disables (if
cleared, =0) DMA transfers from the receive buffer.

At SPI boot this bit is set to 1 to enable the booting process via
the SPI port.

28 PACKEN Packing Enable. This bit enables, if set (=1), 8- to 32-bit packing
or disables the packing, if cleared (=0). If this bit is enabled, the
receiver packs the received byte whereas the transmitter unpacks
the data before sending it. Fore more information on the pack-
ing, see “SPI Word Packing” on page 11-24.

Note: This bit should be 1 only for 8-bit data word length
(WL = 00).

29 SGN Sign Extend. This bit sign extends the word if set (=1) or does
not extend the sign if cleared (=0).

30 SENDLW Send Last Data. When SPITX is empty, setting this bit(=1) re
transmits the last data. Clearing this bit (=0) sends zeros.

31 GM Get Data. This bit fetches incoming data when set (=1) or dis-
cards incoming data when cleared (=0). The data that comes in
overwrites the previous data in the SPIRX.

Table A-30. SPI Control Register Bit Descriptions (Cont’d)

Bit(s) Name Function
ADSP-21161 SHARC Processor Hardware Reference A-119

Serial Peripheral Interface Registers

it
SPI Receive Buffer Register (SPIRX)
This register’s address is 0xB7. The reset value for this register is unde-
fined. This is a 32-bit read-only register accessible by the core or DMA
controller. At the end of a data transfer, SPIRX is loaded with the data in
the shift register. During a DMA receive operation, the data in SPIRX is

Figure A-38. SPICTL Register

FLS0

8-bit Packing Enable

Receive DMA Enable

SGN
Sign Extend Data

DMISO

OPD

RDMAEN

PACKEN

0=no packing, 1=8 to 32-bit packing

Disable MISO Pin (Broadcast)

Open Drain Output Enable for Data Pins
0=Normal, 1=Open Drain

SENDLW
Send Zero/Repeat Byte When TXB Empty

0=Send zero, 1=Repeat last data

0=MISO Enabled, 1=MISO Disabled

1=Enable, 0=Disable

GM
Fetch/Discard Incoming RXB data when RXB full

0=Discard incoming data
1=Overwrite with new data

0=no sign extend, 1=sign extend

SPICTL
0xB4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0

FLS1
FLAG1 Slave Device Select
1=Enable, 0=Disable

FLS2
FLAG2 Slave Device Select
1=Enable, 0=Disable

FLS3
FLAG3 Slave Device Select
1=Enable, 0=Disable

NSMLS
Non-Seamless operation
0=no delay, 1=delay before next
word starts

DCPH0
Deselect SPIDS in CPHASE =0
(master mode only, NSMLS bit=1)
0=No SPI device select
1=Deselects slaves between
successive transfers

SPIEN
SPI System Enable
1=enable, 0=disable

SPRINT
SPI RX Buffer Interrupt Enable

MS
Master/Slave Mode Bit
0=SPI slave device, 1=SPI Master Device

CP
Clock polarity

CPHASE
Clock phase
0=SPICLK toggles at middle of 1st data bit
1=SPICLK toggles at beginning of 1st data b

1=enable SPI IRQ on RXB empty, 0=disable

SPTINT
SPI TX Buffer Interrupt Enable
1=enable SPI IRQ on TXB not full, 0=disable

0=SPICLK active high, low in idle state
1=SPICLK active low, high in idle state

PSSE
Programmable Slave Select Enable

0=Disable, 1=Enable

TDMAEN
Transmit DMA Enable

1=Enable, 0=Disable

DF
Data Format

0=LSB sent / received first

BAUDR
Baud Rate

CCLK / (2**(2 + BR))

FLAG0 Slave Device Select
1=Enable, 0=Disable

WL
Word Length

00=8 bits, 01=16 bits,
11=32 bits, 10=RESERVED

1=MSB sent / received first
A-120 ADSP-21161 SHARC Processor Hardware Reference

Registers
automatically loaded into the internal memory. For core or interrupt
driven transfer, you can also use the RXS status bits in the SPISTAT register
to determine if the receive buffer is full. Reading from an empty SPIRX
buffer causes a core hang if the buffer hang disable bit is cleared in the
SYSCON register.

SPI Transmit Buffer Register (SPITX)
This register’s address is 0xB6.The reset value for this register is unde-
fined. This SPI transmit data register is a 32-bit register which is part of
the IOP register set and can be accessed by the core or the DMA control-
ler. Data is loaded into this register before being transmitted. Prior to the
beginning of a data transfer, data in SPITX is automatically loaded into the
transmit shift register. During a DMA transmit operation, the data in
SPITX is automatically loaded from internal memory.

Register and Bit #Defines (def21161.h)
The following example definitions file is for the ADSP-21161 processor.
For the most current definitions file, programs should use the version of
this file included with the software development tools. The version of the
file that appears here is provided as a guide only.

/***/
 *
 * def21161.h
 *
 * (c) Copyright 2001 Analog Devices, Inc. All rights reserved.
 *
 /***/

/*--

def21161.h - SYSTEM & IOP REGISTER BIT & ADDRESS DEFINITIONS FOR ADSP-21161
Last updated 5/14/01

This include file contains a list of macro “defines” to enable the programmer
to use symbolic names for the following ADSP-21161 facilities:
 - instruction condition codes
 - system register bit definitions
 - IOP register address memory map
 - *most* IOP control/status register bit definitions

Changes from def21160 include new I/O flags, SDRAM and SPI interfaces, changes to SPORT, Link Port, and
DMA.
ADSP-21161 SHARC Processor Hardware Reference A-121

Register and Bit #Defines (def21161.h)
Here are some example uses:

 bit set mode1 BR0|IRPTEN|ALUSAT;
 ustat1=BSO|HPM01|HMSWF;
 DM(SYSCON)=ustat1;

--- */
#ifndef __DEF21161_H_
#define __DEF21161_H_

/*--*/
/* System Register bit definitions */
/*--*/
/* MODE1 and MMASK registers */
#define BR8 0x00000001 /* Bit 0: Bit-reverse for I8 */
#define BR0 0x00000002 /* Bit 1: Bit-reverse for I0 (uses DMS0- only) */
#define SRCU 0x00000004 /* Bit 2: Alt. register select for comp. units */
#define SRD1H 0x00000008 /* Bit 3: DAG1 alt. register select (7-4) */
#define SRD1L 0x00000010 /* Bit 4: DAG1 alt. register select (3-0) */
#define SRD2H 0x00000020 /* Bit 5: DAG2 alt. register select (15-12) */
#define SRD2L 0x00000040 /* Bit 6: DAG2 alt. register select (11-8) */
#define SRRFH 0x00000080 /* Bit 7: Register file alt. select for R(15-8) */
#define SRRFL 0x00000400 /* Bit 10: Register file alt. select for R(7-0) */
#define NESTM 0x00000800 /* Bit 11: Interrupt nesting enable */
#define IRPTEN 0x00001000 /* Bit 12: Global interrupt enable */
#define ALUSAT 0x00002000 /* Bit 13: Enable ALU fixed-pt. saturation */
#define SSE 0x00004000 /* Bit 14: Enable short word sign extension */
#define TRUNCATE 0x00008000 /* Bit 15: 1=fltg-pt. truncation 0=Rnd to nearest */
#define RND32 0x00010000 /* Bit 16: 1=32-bit fltg-pt.rounding 0=40-bit rnd */
#define CSEL 0x00060000 /* Bit 17-18: CSelect: Bus Mastership */
#define PEYEN 0x00200000 /* Bit 21: Processing Element Y enable */
#define SIMD 0x00200000 /* Bit 21: Enable SIMD Mode */
#define BDCST9 0x00400000 /* Bit 22: Load Broadcast for I9 */
#define BDCST1 0x00800000 /* Bit 23: Load Broadcast for I1 *
#define CBUFEN 0x01000000 /* Bit 23: Circular Buffer Enable */

/* MODE2 register */
#define IRQ0E 0x00000001 /* Bit 0: IRQ0- 1=edge sens. 0=level sens. */
#define IRQ1E 0x00000002 /* Bit 1: IRQ1- 1=edge sens. 0=level sens. */
#define IRQ2E 0x00000004 /* Bit 2: IRQ2- 1=edge sens. 0=level sens. */
#define CADIS 0x00000010 /* Bit 4: Cache disable */
#define TIMEN 0x00000020 /* Bit 5: Timer enable */
#define BUSLK 0x00000040 /* Bit 6: External bus lock */
#define FLG0O 0x00008000 /* Bit 15: FLAG0 1=output 0=input */
#define FLG1O 0x00010000 /* Bit 16: FLAG1 1=output 0=input */
#define FLG2O 0x00020000 /* Bit 17: FLAG2 1=output 0=input */
#define FLG3O 0x00040000 /* Bit 18: FLAG3 1=output 0=input */
#define CAFRZ 0x00080000 /* Bit 19: Cache freeze */
#define IIRAE 0x00100000 /* Bit 20: Illegal IOP Register Access Enable */
#define U64MAE 0x00200000 /* Bit 21: Unaligned 64-bit Memory Access Enable */
/* bits 31-30, 27-25 are Processor ID[4:0], read only, value: 0b01001
 bits 29-28 are silicon revision[1:0], read only, value: 0

These bits (only) are routed to Mode2 Shadow register (IOP register 0x11)*/

/* FLAGS register */
#define FLG0 0x00000001 /* Bit 0: FLAG0 value */
#define FLG1 0x00000002 /* Bit 1: FLAG1 value */
#define FLG2 0x00000004 /* Bit 2: FLAG2 value */
#define FLG3 0x00000008 /* Bit 3: FLAG3 value */

/* ASTATx and ASTATy registers */

#ifdef SUPPORT_DEPRECATED_USAGE
/* Several of these (AV, AC, MV, SV, SZ) are assembler-reserved keywords,
 so this style is now deprecated. If these are defined, the assembler-
 reserved keywords are still available in lowercase, e.g.,
 IF sz JUMP LABEL1.*/
A-122 ADSP-21161 SHARC Processor Hardware Reference

Registers
define AZ 0x00000001 /* Bit 0: ALU result zero or fltg-pt. underflow */
define AV 0x00000002 /* Bit 1: ALU overflow */
define AN 0x00000004 /* Bit 2: ALU result negative */
define AC 0x00000008 /* Bit 3: ALU fixed-pt. carry */
define AS 0x00000010 /* Bit 4: ALU X input sign (ABS and MANT ops) */
define AI 0x00000020 /* Bit 5: ALU fltg-pt. invalid operation */
define MN 0x00000040 /* Bit 6: Multiplier result negative */
define MV 0x00000080 /* Bit 7: Multiplier overflow */
define MU 0x00000100 /* Bit 8: Multiplier fltg-pt. underflow */
define MI 0x00000200 /* Bit 9: Multiplier fltg-pt. invalid operation */
define AF 0x00000400 /* Bit 10: ALU fltg-pt. operation */
define SV 0x00000800 /* Bit 11: Shifter overflow */
define SZ 0x00001000 /* Bit 12: Shifter result zero */
define SS 0x00002000 /* Bit 13: Shifter input sign */
define BTF 0x00040000 /* Bit 18: Bit test flag for system registers */
define CACC0 0x01000000 /* Bit 24: Compare Accumulation Bit 0 */
define CACC1 0x02000000 /* Bit 25: Compare Accumulation Bit 1 */
define CACC2 0x04000000 /* Bit 26: Compare Accumulation Bit 2 */
define CACC3 0x08000000 /* Bit 27: Compare Accumulation Bit 3 */
define CACC4 0x10000000 /* Bit 28: Compare Accumulation Bit 4 */
define CACC5 0x20000000 /* Bit 29: Compare Accumulation Bit 5 */
define CACC6 0x40000000 /* Bit 30: Compare Accumulation Bit 6 */
define CACC7 0x80000000 /* Bit 31: Compare Accumulation Bit 7 */

#endif

#define ASTAT_AZ 0x00000001 /* Bit 0: ALU result zero or fltg-pt. u'flow*/
#define ASTAT_AV 0x00000002 /* Bit 1: ALU overflow */
#define ASTAT_AN 0x00000004 /* Bit 2: ALU result negative */
#define ASTAT_AC 0x00000008 /* Bit 3: ALU fixed-pt. carry */
#define ASTAT_AS 0x00000010 /* Bit 4: ALU X input sign(ABS and MANT ops)*/
#define ASTAT_AI 0x00000020 /* Bit 5: ALU fltg-pt. invalid operation */
#define ASTAT_MN 0x00000040 /* Bit 6: Multiplier result negative */
#define ASTAT_MV 0x00000080 /* Bit 7: Multiplier overflow */
#define ASTAT_MU 0x00000100 /* Bit 8: Multiplier fltg-pt. underflow */
#define ASTAT_MI 0x00000200 /* Bit 9: Multiplier fltg-pt. invalid op. */
#define ASTAT_AF 0x00000400 /* Bit 10: ALU fltg-pt. operation */
#define ASTAT_SV 0x00000800 /* Bit 11: Shifter overflow */
#define ASTAT_SZ 0x00001000 /* Bit 12: Shifter result zero */
#define ASTAT_SS 0x00002000 /* Bit 13: Shifter input sign */
#define ASTAT_BTF 0x00040000 /* Bit 18: Bit test flag for system registers*/
#define ASTAT_CACC0 0x01000000 /* Bit 24: Compare Accumulation Bit 0 */
#define ASTAT_CACC1 0x02000000 /* Bit 25: Compare Accumulation Bit 1 */
#define ASTAT_CACC2 0x04000000 /* Bit 26: Compare Accumulation Bit 2 */
#define ASTAT_CACC3 0x08000000 /* Bit 27: Compare Accumulation Bit 3 */
#define ASTAT_CACC4 0x10000000 /* Bit 28: Compare Accumulation Bit 4 */
#define ASTAT_CACC5 0x20000000 /* Bit 29: Compare Accumulation Bit 5 */
#define ASTAT_CACC6 0x40000000 /* Bit 30: Compare Accumulation Bit 6 */
#define ASTAT_CACC7 0x80000000 /* Bit 31: Compare Accumulation Bit 7 */

/* STKYx and STKYy registers */
/* bits 0 to 9 in both STKYx and STKYY, bits 17 to 26 in STKYx only */
#define AUS 0x00000001 /* Bit 0: ALU fltg-pt. underflow */
#define AVS 0x00000002 /* Bit 1: ALU fltg-pt. overflow */
#define AOS 0x00000004 /* Bit 2: ALU fixed-pt. overflow */
#define AIS 0x00000020 /* Bit 5: ALU fltg-pt. invalid operation */
#define MOS 0x00000040 /* Bit 6: Multiplier fixed-pt. overflow */
#define MVS 0x00000080 /* Bit 7: Multiplier fltg-pt. overflow */
#define MUS 0x00000100 /* Bit 8: Multiplier fltg-pt. underflow */
#define MIS 0x00000200 /* Bit 9: Multiplier fltg-pt. invalid operation */
/* STKYx register *ONLY* */
#define CB7S 0x00020000 /* Bit 17: DAG1 circular buffer 7 overflow */
#define CB15S 0x00040000 /* Bit 18: DAG2 circular buffer 15 overflow */
#define IIRA 0x00080000 /* Bit 19: Illegal IOP Register Access */
#define U64MA 0x00100000 /* Bit 20: Unaligned 64-bit Memory Access */
#define PCFL 0x00200000 /* Bit 21: PC stack full */
#define PCEM 0x00400000 /* Bit 22: PC stack empty */
#define SSOV 0x00800000 /* Bit 23: Status stack overflow (MODE1 and ASTAT) */
ADSP-21161 SHARC Processor Hardware Reference A-123

Register and Bit #Defines (def21161.h)
#define SSEM 0x01000000 /* Bit 24: Status stack empty */
#define LSOV 0x02000000 /* Bit 25: Loop stack overflow */
#define LSEM 0x04000000 /* Bit 26: Loop stack empty */

/* IRPTL and IMASK and IMASKP registers */
#define EMUI 0x00000001 /* Bit 0: Offset: 00: Emulator Interrupt */
#define RSTI 0x00000002 /* Bit 1: Offset: 04: Reset */
#define IICDI 0x00000004 /* Bit 2: Offset: 08: Illegal Input Condition Detected */
#define SOVFI 0x00000008 /* Bit 3: Offset: 0c: Stack overflow */
#define TMZHI 0x00000010 /* Bit 4: Offset: 10: Timer = 0 (high priority) */
#define VIRPTI 0x00000020 /* Bit 5: Offset: 14: Vector interrupt */
#define IRQ2I 0x00000040 /* Bit 6: Offset: 18: IRQ2- asserted */
#define IRQ1I 0x00000080 /* Bit 7: Offset: 1c: IRQ1- asserted */
#define IRQ0I 0x00000100 /* Bit 8: Offset: 20: IRQ0- asserted */
#define SP0I0x00000400 /* Bit 10: Offset: 28: SPORT0 DMA channel */
#define SP1I0x00000800 /* Bit 11: Offset: 2c: SPORT1 DMA channel */
#define SP2I0x00001000 /* Bit 12: Offset: 30: SPORT2 DMA channel */
#define SP3I0x00002000 /* Bit 13: Offset: 34: SPORT3 DMA channel */
#define LPISUMI0x00004000 /* Bit 14: Offset: na: LPort Interrupt Summary */
#define EP0I0x00008000 /* Bit 15: Offset: 50: External port channel 0 DMA */
#define EP1I0x00010000 /* Bit 16: Offset: 54: External port channel 1 DMA */
#define EP2I0x00020000 /* Bit 17: Offset: 58: External port channel 2 DMA */
#define EP3I0x00040000 /* Bit 18: Offset: 5c: External port channel 3 DMA */
#define LSRQI 0x00080000 /* Bit 19: Offset: 60: Link service request */
#define CB7I 0x00100000 /* Bit 20: Offset: 64: Circ. buffer 7 overflow */
#define CB15I 0x00200000 /* Bit 21: Offset: 68: Circ. buffer 15 overflow */
#define TMZLI 0x00400000 /* Bit 22: Offset: 6c: Timer = 0 (low priority) */
#define FIXI 0x00800000 /* Bit 23: Offset: 70: Fixed-pt. overflow */
#define FLTOI 0x01000000 /* Bit 24: Offset: 74: fltg-pt. overflow */
#define FLTUI 0x02000000 /* Bit 25: Offset: 78: fltg-pt. underflow */
#define FLTII 0x04000000 /* Bit 26: Offset: 7c: fltg-pt. invalid */
#define SFT0I 0x08000000 /* Bit 27: Offset: 80: user software int 0 */
#define SFT1I 0x10000000 /* Bit 28: Offset: 84: user software int 1 */
#define SFT2I 0x20000000 /* Bit 39: Offset: 88: user software int 2 */
#define SFT3I 0x40000000 /* Bit 30: Offset: 8c: user software int 3 */

/* LIRPTL register */
#define LP0I 0x00000001 /* Bit 0: Offset: 38: Link port channel 0 DMA */
#define LP1I 0x00000002 /* Bit 1: Offset: 3C: Link port channel 1 DMA */
#define SPIRI 0x00000004 /* Bit 2: Offset: 40: SPI Receive DMA */
#define SPITI 0x00000008 /* Bit 3: Offset: 44: SPI Transmit DMA */
#define LP0MSK 0x00010000 /* Bit 16: Link port channel 0 Interrupt Mask */
#define LP1MSK 0x00020000 /* Bit 17: Link port channel 1 Interrupt Mask */
#define SPIRMSK 0x00040000 /* Bit 18: SPI Receive Interrupt Mask */
#define SPITMSK 0x00080000 /* Bit 19: SPI Transmit Interrupt Mask */
#define LP0MSKP 0x01000000 /* Bit 24: Link port channel 0 Interrupt Mask Pointer */
#define LP1MSKP 0x02000000 /* Bit 25: Link port channel 1 Interrupt Mask Pointer */
#define SPIRMSKP 0x04000000 /* Bit 26: SPI Receive Interrupt Mask Pointer */
#define SPITMSKP 0x08000000 /* Bit 27: SPI Transmit Interrupt Mask Pointer */

/* LSRQ register */
#define L0TM 0x00000010 /* Link Port 0 Transmit Mask */
#define L0RM 0x00000020 /* Link Port 0 Receive Mask */
#define L1TM 0x00000040 /* Link Port 1 Transmit Mask */
#define L1RM 0x00000080 /* Link Port 1 Receive Mask */
#define L0TRQ 0x00100000 /* Link Port 0 Transmit Request */
#define L1TRQ 0x00200000 /* Link Port 1 Receive Request */
#define L0RRQ 0x00400000 /* Link Port 0 Transmit Request */
#define L1RRQ 0x00800000 /* Link Port 1 Receive Request */

/*--*/
/* */
/* I/O Processor Register Address Memory Map */
/* */
/*--*/
#define SYSCON 0x00 /* System configuration register */
#define VIRPT 0x01 /* Vector interrupt register */
#define WAIT 0x02 /* External Port Wait register - renamed to EPCON */
A-124 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define EPCON 0x02 /* External Port configuration register */
#define SYSTAT 0x03 /* System status register */
/* the upper 32-bits of the 64-bit epbxs are only accessible as 64-bit reference*/
#define EPB0 0x04 /* External port DMA buffer 0 */
#define EPB1 0x06 /* External port DMA buffer 1 */
#define MSGR0 0x08 /* Message register 0 */
#define MSGR1 0x09 /* Message register 1 */
#define MSGR2 0x0a /* Message register 2 */
#define MSGR3 0x0b /* Message register 3 */
#define MSGR4 0x0c /* Message register 4 */
#define MSGR5 0x0d /* Message register 5 */
#define MSGR6 0x0e /* Message register 6 */
#define MSGR7 0x0f /* Message register 7 */

/* IOP shadow registers of the core control regs */
#define PC_SHDW 0x10 /* PC IOP shadow register (PC[23-0]) */
#define MODE2_SHDW 0x11 /* Mode2 IOP shadow register (MODE2[31-25]) */
#define EPB2 0x14 /* External port DMA buffer 2 */
#define EPB3 0x16 /* External port DMA buffer 3 */
#define BMAX 0x18 /* Bus time-out maximum */
#define BCNT 0x19 /* Bus time-out counter */
#define DMAC10 0x1c /* EP DMA10 control register */
#define DMAC11 0x1d /* EP DMA11 control register */
#define DMAC12 0x1e /* EP DMA12 control register */
#define DMAC13 0x1f /* EP DMA13 control register */
#define DMASTAT 0x37 /* DMA channel status register */

/* SPI Registers IOP Register Addresses*/
#define SPICTL 0xb4 /* Serial peripheral-compatible interface control register */
#define SPISTAT 0xb5 /* Serial periipheral-compatible interface status register */
#define SPIRX 0xb7 /* SPI receive data buffer */
#define SPITX 0xb6 /* SPI transmit data buffer */

/* IOFLAG Register Address */
#define IOFLAG 0x1b /* Address of programmable I/O flags 4-11 */

/* IOP registers for SDRAM controller. */
#define SDCTL 0xb8 /* SDRAM control reg. */
#define SDRDIV 0xb9 /* Refresh counter div reg. */

/* Link Port Registers */
#define LBUF0 0xc0 /* Link buffer 0 */
#define LBUF1 0xc2 /* Link buffer 1 */
#define LCTL 0xcc /* Link buffer control */
#define LSRQ 0xd0 /* Link service request and mask registers */

/* SPORT0 */
#define SPCTL0 0x1c0 /* SPORT0 serial port control register */
#define TX0A 0x1c1 /* SPORT0 serial port control register */
#define TX0B 0x1c2 /* SPORT0 transmit secondary B channel data buffer */
#define RX0A 0x1c3 /* SPORT0 receive primary A channel data buffer */
#define RX0B 0x1c4 /* SPORT0 receive secondary B channel data buffer */
#define DIV0 0x1c5 /* SPORT0 divisor for transmit/receive SLCK0 and FS0 */
#define CNT0 0x1c6 /* SPORT0 count register */

/* SPORT2 */
#define SPCTL2 0x1d0 /* SPORT2 serial port control register */
#define TX2A 0x1d1 /* SPORT2 serial port control register */
#define TX2B 0x1d2 /* SPORT2 transmit secondary B channel data buffer */
#define RX2A 0x1d3 /* SPORT2 receive primary A channel data buffer */
#define RX2B 0x1d4 /* SPORT2 receive secondary B channel data buffer */
#define DIV2 0x1d5 /* SPORT2 divisor for transmit/receive SLCK2 and FS2 */
#define CNT2 0x1d6 /* SPORT2 count register */

/* SPORT1 */
#define SPCTL1 0x1e0 /* SPORT1 serial port control register */
#define TX1A 0x1e1 /* SPORT1 serial port control register */
#define TX1B 0x1e2 /* SPORT1 transmit secondary B channel data buffer */
#define RX1A 0x1e3 /* SPORT1 receive primary A channel data buffer */
ADSP-21161 SHARC Processor Hardware Reference A-125

Register and Bit #Defines (def21161.h)
#define RX1B 0x1e4 /* SPORT1 receive secondary B channel data buffer */
#define DIV1 0x1e5 /* SPORT1 divisor for transmit/receive SLCK1 and FS1 */
#define CNT1 0x1e6 /* SPORT1 count register */

/* SPORT3 */
#define SPCTL3 0x1f0 /* SPORT3 serial port control register */
#define TX3A 0x1f1 /* SPORT3 serial port control register */
#define TX3B 0x1f2 /* SPORT3 transmit secondary B channel data buffer */
#define RX3A 0x1f3 /* SPORT3 receive primary A channel data buffer */
#define RX3B 0x1f4 /* SPORT3 receive secondary B channel data buffer */
#define DIV3 0x1f5 /* SPORT3 divisor for transmit/receive SLCK3 and FS3 */
#define CNT3 0x1f6 /* SPORT3 count register */

/* SPORT0 - MCM Receive (Works in pair with SPORT2) */
#define MR0CS0 0x1c7 /* SPORT0 multichannel rx select, channels 31 - 0 */
#define MR0CCS0 0x1c8 /* SPORT0 multichannel rx compand select, channels 31 - 0 */
#define MR0CS1 0x1c9 /* SPORT0 multichannel rx select, channels 63 - 32 */
#define MR0CCS1 0x1ca /* SPORT0 multichannel rx compand select, channels 63 - 32 */
#define MR0CS2 0x1cb /* SPORT0 multichannel rx select, channels 95 - 64 */
#define MR0CCS2 0x1cc /* SPORT0 multichannel rx compand select, channels 95 - 64 */
#define MR0CS3 0x1cd /* SPORT0 multichannel rx select, channels 127 - 96 */
#define MR0CCS3 0x1ce /* SPORT0 multichannel rx compand select, channels 127 - 96 */

/* SPORT2 - MCM Transmit (Works in pair with SPORT0) */
#define MT2CS0 0x1d7 /* SPORT2 multichannel tx select, channels 31 - 0 */
#define MT2CCS0 0x1d8 /* SPORT2 multichannel tx compand select, channels 31 - 0 */
#define MT2CS1 0x1d9 /* SPORT2 multichannel tx select, channels 63 - 32 */
#define MT2CCS1 0x1da /* SPORT2 multichannel tx compand select, channels 63 - 32 */
#define MT2CS2 0x1db /* SPORT2 multichannel tx select, channels 95 - 64 */
#define MT2CCS2 0x1dc /* SPORT2 multichannel tx compand select, channels 95 - 64 */
#define MT2CS3 0x1dd /* SPORT2 multichannel tx select, channels 127 - 96 */
#define MT2CCS3 0x1de /* SPORT2 multichannel tx compand select, channels 127 - 96 */

#define SP02MCTL 0x1df /* SPORTs 0 & 2 Multichannel Control Register */

/* SPORT1 - MCM Receive (Works in pair with SPORT3) */
#define MR1CS0 0x1e7 /* SPORT1 multichannel rx select, channels 31 - 0 */
#define MR1CCS0 0x1e8 /* SPORT1 multichannel rx compand select, channels 31 - 0 */
#define MR1CS1 0x1e9 /* SPORT1 multichannel rx select, channels 63 - 32 */
#define MR1CCS1 0x1ea /* SPORT1 multichannel rx compand select, channels 63 - 32 */
#define MR1CS2 0x1eb /* SPORT1 multichannel rx select, channels 95 - 64 */
#define MR1CCS2 0x1ec /* SPORT1 multichannel rx compand select, channels 95 - 64 */
#define MR1CS3 0x1ed /* SPORT1 multichannel rx select, channels 127 - 96 */
#define MR1CCS3 0x1ee /* SPORT1 multichannel rx compand select, channels 127 - 96 */

/* SPORT3 - MCM Transmit (Works in pair with SPORT1) */
#define MT3CS0 0x1f7 /* SPORT3 multichannel tx select, channels 31 - 0 */
#define MT3CCS0 0x1f8 /* SPORT3 multichannel tx compand select, channels 31 - 0 */
#define MT3CS1 0x1f9 /* SPORT3 multichannel tx select, channels 63 - 32 */
#define MT3CCS1 0x1fa /* SPORT3 multichannel tx compand select, channels 63 - 32 */
#define MT3CS2 0x1fb /* SPORT3 multichannel tx select, channels 95 - 64 */
#define MT3CCS2 0x1fc /* SPORT3 multichannel tx compand select, channels 95 - 64 */
#define MT3CS3 0x1fd /* SPORT3 multichannel tx select, channels 127 - 96 */
#define MT3CCS3 0x1fe /* SPORT3 multichannel tx compand select, channels 127 - 96 */

#define SP13MCTL 0x1ff /* SPORTs 1 & 3 Multichannel Control Register */

/*------ DMA Parameter Register Assignments - New Naming Conventions -------*/

/* DMA Channel 0 - Serial Port 0, A channel data */
#define II0A 0x60 /* Internal DMA0 memory address */
#define IM0A 0x61 /* Internal DMA0 memory access modifier */
#define C0A 0x62 /* Contains number of DMA0 transfers remaining */
#define CP0A 0x63 /* Points to next DMA0 parameters */
#define GP0A 0x64 /* DMA0 General purpose */

/* DMA Channel 1 - Serial Port 0, B channel data */
#define II0B 0x80 /* Internal DMA1 memory address */
A-126 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define IM0B 0x81 /* Internal DMA1 memory access modifier */
#define C0B 0x82 /* Contains number of DMA1 transfers remaining */
#define CP0B 0x83 /* Points to next DMA1 parameters */
#define GP0B 0x84 /* DMA1 General purpose */

/* DMA Channel 2 - Serial Port 1, A channel data */
#define II1A 0x68 /* Internal DMA2 memory address */
#define IM1A 0x69 /* Internal DMA2 memory access modifier */
#define C1A 0x6a /* Contains number of DMA2 transfers remaining */
#define CP1A 0x6b /* Points to next DMA2 parameters */
#define GP1A 0x6c /* DMA2 General purpose */

/* DMA Channel 3 - Serial Port 1, B channel data */
#define II1B 0x88 /* Internal DMA3 memory address */
#define IM1B 0x89 /* Internal DMA3 memory access modifier */
#define C1B 0x8a /* Contains number of DMA3 transfers remaining */
#define CP1B 0x8b /* Points to next DMA3 parameters */
#define GP1B 0x8c /* DMA3 General purpose */

/* DMA Channel 4 - Serial Port 2, A channel data */
#define II2A 0x70 /* Internal DMA4 memory address */
#define IM2A 0x71 /* Internal DMA4 memory access modifier */
#define C2A 0x72 /* Contains number of DMA4 transfers remaining */
#define CP2A 0x73 /* Points to next DMA4 parameters */
#define GP2A 0x74 /* DMA4 General purpose */

/* DMA Channel 5 - Serial Port 2, B channel data */
#define II2B 0x90 /* Internal DMA5 memory address */
#define IM2B 0x91 /* Internal DMA5 memory access modifier */
#define C2B 0x92 /* Contains number of DMA5 transfers remaining */
#define CP2B 0x93 /* Points to next DMA5 parameters */
#define GP2B 0x94 /* DMA5 General purpose */

/* DMA Channel 6 - Serial Port 3, A channel data */
#define II3A 0x78 /* Internal DMA6 memory address */
#define IM3A 0x79 /* Internal DMA6 memory access modifier */
#define C3A 0x7a /* Contains number of DMA6 transfers remaining */
#define CP3A 0x7b /* Points to next DMA6 parameters */
#define GP3A 0x7c /* DMA6 General purpose */

/* DMA Channel 7 - Serial Port 3, B channel data */
#define II3B 0x98 /* Internal DMA7 memory address */
#define IM3B 0x99 /* Internal DMA7 memory access modifier */
#define C3B 0x9a /* Contains number of DMA7 transfers remaining */
#define CP3B 0x9b /* Points to next DMA7 parameters */
#define GP3B 0x9c /* DMA7 General purpose */

/* DMA Channel 8 - Link Buffer 0 (or SPI Receive) */
#define IILB0 0x30 /* Internal DMA8 memory address */
#define IMLB0 0x31 /* Internal DMA8 memory access modifier */
#define CLB0 0x32 /* Contains number of DMA8 transfers remaining */
#define CPLB0 0x33 /* Points to next DMA8 parameters */
#define GPLB0 0x34 /* DMA8 General purpose */

/* DMA Channel 8 - SPI Receive (or Link Buffer 0) - No DMA Chain Pointer reg */
#define IISRX 0x30 /* Internal DMA8 memory address */
#define IMSRX 0x31 /* Internal DMA8 memory access modifier */
#define CSRX 0x32 /* Contains number of DMA8 transfers remaining */
#define GPSRX 0x34 /* DMA8 General purpose */

/* DMA Channel 9 - Link Buffer 1 (or SPI Transmit) */
#define IILB1 0x38 /* Internal DMA9 memory address */
#define IMLB1 0x39 /* Internal DMA9 memory access modifier */
#define CLB1 0x3a /* Contains number of DMA9 transfers remaining */
#define CPLB1 0x3b /* Points to next DMA9 parameters */
#define GPLB1 0x3c /* DMA9 General purpose */

/* DMA Channel 9 - SPI Transmit (or Link Buffer 1) - No DMA Chain Pointer reg */
#define IISTX 0x38 /* Internal DMA9 memory address */
ADSP-21161 SHARC Processor Hardware Reference A-127

Register and Bit #Defines (def21161.h)
#define IMSTX 0x39 /* Internal DMA9 memory access modifier */
#define CSTX 0x3a /* Contains number of DMA9 transfers remainnig */
#define GPSTX 0x3c /* DMA9 General purpose */

/* DMA Channel 10 - External Port FIFO Buffer 0 */
#define IIEP0 0x40 /* Internal DMA10 memory address */
#define IMEP0 0x41 /* Internal DMA10 memory access modifier */
#define CEP0 0x42 /* Contains number of DMA10 transfers remaining */
#define CPEP0 0x43 /* Points to next DMA10 parameters */
#define GPEP0 0x44 /* DMA10 General purpose */
#define EIEP0 0x45 /* External DMA10 address */
#define EMEP0 0x46 /* External DMA10 address modifier */
#define ECEP0 0x47 /* External DMA10 counter */

/* DMA Channel 11 - External Port FIFO Buffer 1 */
#define IIEP1 0x48 /* Internal DMA11 memory address */
#define IMEP1 0x49 /* Internal DMA11 memory access modifier */
#define CEP1 0x4a /* Contains number of DMA11 transfers remaining */
#define CPEP1 0x4b /* Points to next DMA11 parameters */
#define GPEP1 0x4c /* DMA11 General purpose */
#define EIEP1 0x4d /* External DMA11 address */
#define EMEP1 0x4e /* External DMA11 address modifier */
#define ECEP1 0x4f /* External DMA counter */

/* DMA Channel 12 - External Port FIFO Buffer 2 */
#define IIEP2 0x50 /* Internal DMA12 memory address */
#define IMEP2 0x51 /* Internal DMA12 memory access modifier */
#define CEP2 0x52 /* Contains number of DMA12 transfers remaining */
#define CPEP2 0x53 /* Points to next DMA12 parameters */
#define GPEP2 0x54 /* DMA12 General purpose */
#define EIEP2 0x55 /* External DMA12 address */
#define EMEP2 0x56 /* External DMA12 address modifier */
#define ECEP2 0x57 /* External DMA12 counter */

/* DMA Channel 13 - External Port FIFO Buffer 3 */
#define IIEP3 0x58 /* Internal DMA13 memory address */
#define IMEP3 0x59 /* Internal DMA13 memory access modifier */
#define CEP3 0x5a /* Contains number of DMA13 transfers remaining */
#define CPEP3 0x5b /* Points to next DMA13 parameters */
#define GPEP3 0x5c /* DMA13 General purpose */
#define EIEP3 0x5d /* External DMA13 address */
#define EMEP3 0x5e /* External DMA13 address modifier */
#define ECEP3 0x5f /* External DMA13 counter */

/*---- DMA Parameter Register Assignments - Old Legacy ADSP-21160 Naming Conventions ---- */
/* NOTE: For backwards compatibility, we can retain the old DMA parameter
register names used in the ADSP-21160. However, the naming conventions used for
DMA channels of the ADSP-21160 do not necessarily correspond to the actual DMA channel
priority assigment for the ADSP-21160

Ex) DMA Channel 4 IOP addresses on the ADSP-21160 are now DMA channel 8 on the ADSP-21161
 DMA Channel 5 IOP addresses on the ADSP-21160 are now DMA channel 9 on the ADSP-21161

To clear any confusion, we recommend using the new IOP naming conventions for the
DMA parameter registers as defined above */

#define II0 0x60 /* Internal DMA0 memory address */
#define IM0 0x61 /* Internal DMA0 memory access modifier */
#define C0 0x62 /* Contains number of DMA0 transfers remaining */
#define CP0 0x63 /* Points to next DMA0 parameters */
#define GP0 0x64 /* DMA0 General purpose */

#define II1 0x68 /* Internal DMA1 memory address */
#define IM1 0x69 /* Internal DMA1 memory access modifier */
#define C1 0x6a /* Contains number of DMA1 transfers remaining */
#define CP1 0x6b /* Points to next DMA1 parameters */
#define GP1 0x6c /* DMA1 General purpose */
A-128 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define II2 0x70 /* Internal DMA2 memory address */
#define IM2 0x71 /* Internal DMA2 memory access modifier */
#define C2 0x72 /* Contains number of DMA2 transfers remaining */
#define CP2 0x73 /* Points to next DMA2 parameters */
#define GP2 0x74 /* DMA2 General purpose */

#define II3 0x78 /* Internal DMA3 memory address */
#define IM3 0x79 /* Internal DMA3 memory access modifier */
#define C3 0x7a /* Contains number of DMA3 transfers remaining */
#define CP3 0x7b /* Points to next DMA3 parameters */
#define GP3 0x7c /* DMA3 General purpose */

#define II6 0x80 /* Internal DMA6 memory address */
#define IM6 0x81 /* Internal DMA6 memory access modifier */
#define C6 0x82 /* Contains number of DMA6 transfers remaining */
#define CP6 0x83 /* Points to next DMA6 parameters */
#define GP6 0x84 /* DMA6 General purpose */

#define II7 0x88 /* Internal DMA7 memory address */
#define IM7 0x89 /* Internal DMA7 memory access modifier */
#define C7 0x8a /* Contains number of DMA7 transfers remaining */
#define CP7 0x8b /* Points to next DMA7 parameters */
#define GP7 0x8c /* DMA7 General purpose */

#define II8 0x90 /* Internal DMA8 memory address */
#define IM8 0x91 /* Internal DMA8 memory access modifier */
#define C8 0x92 /* Contains number of DMA8 transfers remaining */
#define CP8 0x93 /* Points to next DMA8 parameters */
#define GP8 0x94 /* DMA8 General Purpose */

#define II9 0x98 /* Internal DMA9 memory address */
#define IM9 0x99 /* Internal DMA9 memory access modifier */
#define C9 0x9a /* Contains number of DMA9 transfers remaining */
#define CP9 0x9b /* Points to next DMA9 parameters */
#define GP9 0x9c /* DMA9 General purpose */

#define II4 0x30 /* Internal DMA4 memory address */
#define IM4 0x31 /* Internal DMA4 memory access modifier */
#define C4 0x32 /* Contains number of DMA4 transfers remaining */
#define CP4 0x33 /* Points to next DMA4 parameters */
#define GP4 0x34 /* DMA4 General purpose */

#define II5 0x38 /* Internal DMA5 memory address */
#define IM5 0x39 /* Internal DMA5 memory access modifier */
#define C5 0x3a /* Contains number of DMA5 transfers remaining */
#define CP5 0x3b /* Points to next DMA5 parameters */
#define GP5 0x3c /* DMA5 General purpose */

#define II10 0x40 /* Internal DMA10 memory address */
#define IM10 0x41 /* Internal DMA10 memory access modifier */
#define C10 0x42 /* Contains number of DMA10 transfers remaining */
#define CP10 0x43 /* Points to next DMA10 parameters */
#define GP10 0x44 /* DMA10 General purpose */
#define EI10 0x45 /* External DMA10 address */
#define EM10 0x46 /* External DMA10 address modifier */
#define EC10 0x47 /* External DMA10 counter */

#define II11 0x48 /* Internal DMA11 memory address */
#define IM11 0x49 /* Internal DMA11 memory access modifier */
#define C11 0x4a /* Contains number of DMA11 transfers remaining */
#define CP11 0x4b /* Points to next DMA11 parameters */
#define GP11 0x4c /* DMA11 General purpose */
#define EI11 0x4d /* External DMA11 address */
#define EM11 0x4e /* External DMA11 address modifier */
#define EC11 0x4f /* External DMA counter */

#define II12 0x50 /* Internal DMA12 memory address */
#define IM12 0x51 /* Internal DMA12 memory access modifier */
#define C12 0x52 /* Contains number of DMA12 transfers remaining */
ADSP-21161 SHARC Processor Hardware Reference A-129

Register and Bit #Defines (def21161.h)
#define CP12 0x53 /* Points to next DMA12 parameters */
#define GP12 0x54 /* DMA12 General purpose */
#define EI12 0x55 /* External DMA12 address */
#define EM12 0x56 /* External DMA12 address modifier */
#define EC12 0x57 /* External DMA12 counter */

#define II13 0x58 /* Internal DMA13 memory address */
#define IM13 0x59 /* Internal DMA13 memory access modifier */
#define C13 0x5a /* Contains number of DMA13 transfers remaining */
#define CP13 0x5b /* Points to next DMA13 parameters */
#define GP13 0x5c /* DMA13 General purpose */
#define EI13 0x5d /* External DMA13 address */
#define EM13 0x5e /* External DMA13 address modifier */
#define EC13 0x5f /* External DMA13 counter */

/* Emulation/Breakpoint Registers (remapped from UREG space) */
/* NOTES:
 - These registers are ONLY accessible by the core
 - It is *highly* recommended that these facilities be accessed only
 through the ADI emulator routines
*/
/* Core Emulation HWBD Registers */
#define PSA1S 0xa0 /* Instruction address start #1 */
#define PSA1E 0xa1 /* Instruction address end #1 */
#define PSA2S 0xa2 /* Instruction address start #2 */
#define PSA2E 0xa3 /* Instruction address end #2 */
#define PSA3S 0xa4 /* Instruction address start #3 */
#define PSA3E 0xa5 /* Instruction address end #3 */
#define PSA4S 0xa6 /* Instruction address start #4 */
#define PSA4E 0xa7 /* Instruction address end #4 */
#define PMDAS 0xa8 /* Program Data address start */
#define PMDAE 0xa9 /* Program Data address end */
#define DMA1S 0xaa /* Data address start #1 */
#define DMA1E 0xab /* Data address end #1 */
#define DMA2S 0xac /* Data address start #2 */
#define DMA2E 0xad /* Data address end #2 */
#define EMUN 0xae /* hwbp hit-count register */

/* IOP Emulation HWBP Bounds Registers */
#define IOAS 0xb0 /* IOA Upper Bounds Register */
#define IOAE 0xb1 /* IOA Lower Bounds Register */
#define EPAS 0xb2 /* EPA Upper Bounds Register */
#define EPAE 0xb3 /* EPA Lower Bounds Register */

/*--*/
/* */
/* IOP Control/Status Register Bit Definitions */
/* */
/*--*/

/* SYSCON Register */
#define SRST 0x00000001 /* Soft Reset */
#define BSO 0x00000002 /* Boot Select Override*/
#define IIVT 0x00000004 /* Internal Interrupt Vector Table*/
#define IWT 0x00000008 /* Instruction word transfer (0 = data, 1 = inst) */
#define HBW32 0x00000000 /* Host bus width: 32 */
#define HBW16 0x00000010 /* Host bus width: 16 */
#define HBW8 0x00000020 /* Host bus width: 8 */
#define HMSWF 0x00000080 /* Host packing order (0 = LSW first, 1 = MSW) */
#define HPFLSH 0x00000100 /* Host pack flush */
#define IMDW0X 0x00000200 /* Internal memory block 0, extended data (40 bit) */
#define IMDW1X 0x00000400 /* Internal memory block 1, extended data (40 bit) */
#define ADREDY 0x00000800 /* Active Drive Ready */
#define BHD 0x00010000 /* Buffer Hand Disable*/
#define EBPR00 0x00000000 /* External bus priority: Even*/
#define EBPR01 0x00020000 /* External bus priority: Core has priority */
#define EBPR10 0x00040000 /* External bus priority: IO has priority */
A-130 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define DCPR 0x00080000 /* Select rotating access priority on DMA10 - DMA13*/
#define LDCPR 0x00100000 /* Select rotating access priority on DMA8 - DMA9 */
#define PRROT 0x00200000 /* Select rotating prio between LPort and EPort */
#define COD 0x00400000 /* Clock Out Disable */
#define IPACK0 0x40000000 /* External instruction execution packing mode bit 0 */
#define IPACK1 0x80000000 /* External instruction execution packing mode bit 1 */

/* SYSTAT Register */
#define HSTM 0x00000001 /* Host is the Bus Master*/
#define BSYN 0x00000002 /* Bus arbitration logic is synchronized */
#define CRBM 0x00000070 /* Current ADSP211xx Bus Master*/
#define IDC 0x00000700 /* ADSP211xx ID Code */
#define VIPD 0x00002000 /* Vector interrupt pending (1 = pending) */
#define CRAT 0x00070000 /* CLK_CFG(3-0), Core:CLKIN clock ratio */
#define SSWPD 0x00100000 /* Sync slave write pending... SSWPD bit added for 21161 */
#define SWPD 0x00200000 /* Any (sync + Async) slave write pending */
#define HPS 0x01c00000 /* Host pack status... HPS modified for 21161 */

/* MODE2_SHDW Register - IOP register adrees 0x11 */
/* bits 31-30, 27-25 are Processor ID[4:0], read only, value: 01010
 bits 29-28 are silicon revision[1:0], read only, value: 01
 These former MODE2 register bitfields (only) are now routed to the MODE2
 Shadow register (IOP register 0x11). Bits 25-31 now reserved in MODE2. */
#define PID20 0x0E000000 /* PID[2:0] Processor Identification (read-only)*/
#define SIREV 0x30000000 /* Silicon Revision (read-only) */
#define PID43 0xC0000000 /* PID[4:3] Processor Identification (read-only) */

/* WAIT Register */
/* generic WAIT bitfields */
#define EB0AM 0x00000003 /* External Bank 0 Access Mode */
#define EB0WS 0x0000001C /* External Bank 0 Waitstate Configuration */
#define EB1AM 0x00000060 /* External Bank 1 Access Mode */
#define EB1WS 0x00000380 /* External Bank 1 Waitstate Configuration */
#define EB2AM 0x00000C00 /* External Bank 1 Access Mode */
#define EB2WS 0x00007000 /* External Bank 2 Waitstate Configuration */
#define EB3AM 0x00018000 /* External Bank 1 Access Mode */
#define EB3WS 0x000E0000 /* External Bank 3 Waitstate Configuration */
#define RBAM 0x00300000 /* ROM Boot Access Mode */
#define RBWS 0x01C00000 /* ROM Boot Waitstate Configuration */
#define HIDMA 0x80000000 /* Single idle cycle for DMA handshake */
/* specific wait access mode settings */
#define EB0A0 0x00000000 /* Ext Bank 0 Async, internal AND external ACK */
#define EB0S1 0x00000001 /* Ext Bank 0 Sync, 2-cycle reads, 1-cycle writes */
#define EB0S2 0x00000002 /* Ext Bank 0 Sync, 2-cycle reads, 2-cycle writes */
#define EB1A0 0x00000000 /* Ext Bank 1 Async, internal AND external ACK */
#define EB1S1 0x00000020 /* Ext Bank 1 Sync, 2-cycle reads, 1-cycle writes */
#define EB1S2 0x00000040 /* Ext Bank 1 Sync, 2-cycle reads, 2-cycle writes */
#define EB2A0 0x00000000 /* Ext Bank 2 Async, internal AND external ACK */
#define EB2S1 0x00000400 /* Ext Bank 2 Sync, 2-cycle reads, 1-cycle writes */
#define EB2S2 0x00000800 /* Ext Bank 2 Sync, 2-cycle reads, 2-cycle writes */
#define EB3A0 0x00000000 /* Ext Bank 3 Async, internal AND external ACK */
#define EB3S1 0x00008000 /* Ext Bank 3 Sync, 2-cycle reads, 1-cycle writes */
#define EB3S2 0x00010000 /* Ext Bank 3 Sync, 2-cycle reads, 2-cycle writes */
#define RBWA0 0x00000000 /* ROM boot: Async, internal AND external ACK */
#define RBWS1 0x00100000 /* ROM boot: Sync, 2-cycle reads, 1-cycle writes */
#define RBWS2 0x00200000 /* ROM boot: Sync, 2-cycle reads, 2-cycle writes */
/* individual waitstate combinations */
#define EB0WS0 0x00000000 /* External Bank 0: 0 waitstates, no hold cycle */
#define EB0WS1 0x00000004 /* External Bank 0: 1 waitstates, no hold cycle */
#define EB0WS2 0x00000008 /* External Bank 0: 2 waitstates, hold cycle */
#define EB0WS3 0x0000000C /* External Bank 0: 3 waitstates, hold cycle */
#define EB0WS4 0x00000010 /* External Bank 0: 4 waitstates, hold cycle */
#define EB0WS5 0x00000014 /* External Bank 0: 5 waitstates, hold cycle */
#define EB0WS6 0x00000018 /* External Bank 0: 6 waitstates, hold cycle */
#define EB0WS7 0x0000001C /* External Bank 0: 7 waitstates, hold cycle */
#define EB1WS0 0x00000000 /* External Bank 1: 0 waitstates, no hold cycle */
ADSP-21161 SHARC Processor Hardware Reference A-131

Register and Bit #Defines (def21161.h)
#define EB1WS1 0x00000080 /* External Bank 1: 1 waitstates, no hold cycle */
#define EB1WS2 0x00000100 /* External Bank 1: 2 waitstates, hold cycle */
#define EB1WS3 0x00000180 /* External Bank 1: 3 waitstates, hold cycle */
#define EB1WS4 0x00000200 /* External Bank 1: 4 waitstates, hold cycle */
#define EB1WS5 0x00000280 /* External Bank 1: 5 waitstates, hold cycle */
#define EB1WS6 0x00000300 /* External Bank 1: 6 waitstates, hold cycle */
#define EB1WS7 0x00000380 /* External Bank 1: 7 waitstates, hold cycle */
#define EB2WS0 0x00000000 /* External Bank 2: 0 waitstates, no hold cycle */
#define EB2WS1 0x00001000 /* External Bank 2: 1 waitstates, no hold cycle */
#define EB2WS2 0x00002000 /* External Bank 2: 2 waitstates, hold cycle */
#define EB2WS3 0x00003000 /* External Bank 2: 3 waitstates, hold cycle */
#define EB2WS4 0x00004000 /* External Bank 2: 4 waitstates, hold cycle */
#define EB2WS5 0x00005000 /* External Bank 2: 5 waitstates, hold cycle */
#define EB2WS6 0x00006000 /* External Bank 2: 6 waitstates, hold cycle */
#define EB2WS7 0x00007000 /* External Bank 2: 7 waitstates, hold cycle */
#define EB3WS0 0x00000000 /* External Bank 3: 0 waitstates, no hold cycle */
#define EB3WS1 0x00020000 /* External Bank 3: 1 waitstates, no hold cycle */
#define EB3WS2 0x00040000 /* External Bank 3: 2 waitstates, hold cycle */
#define EB3WS3 0x00060000 /* External Bank 3: 3 waitstates, hold cycle */
#define EB3WS4 0x00080000 /* External Bank 3: 4 waitstates, hold cycle */
#define EB3WS5 0x000A0000 /* External Bank 3: 5 waitstates, hold cycle */
#define EB3WS6 0x000C0000 /* External Bank 3: 6 waitstates, hold cycle */
#define EB3WS7 0x000E0000 /* External Bank 3: 7 waitstates, hold cycle */
#define RBWST0 0x00000000 /* ROM boot wait state 0, no hold cycle*/
#define RBWST1 0x00400000 /* ROM boot wait state 1, no hold cycle*/
#define RBWST2 0x00800000 /* ROM boot wait state 2, hold cycle*/
#define RBWST3 0x00C00000 /* ROM boot wait state 3, hold cycle*/
#define RBWST4 0x01000000 /* ROM boot wait state 4, hold cycle*/
#define RBWST5 0x01400000 /* ROM boot wait state 5, hold cycle*/
#define RBWST6 0x01800000 /* ROM boot wait state 6, hold cycle*/
#define RBWST7 0x01C00000 /* ROM boot wait state 7, hold cycle*/

/* DMAC10, DMAC11, DMAC12, DMAC13 Register Bitfield Definitions */
#define DEN 0x00000001/* External Port DMA Enable */
#define CHEN 0x00000002/* External Port DMA Chaining Enable */
#define TRAN 0x00000004/* External Port EPBx Transmit/Receive Select */
#define DTYPE 0x00000020/* EPBx FIFO Buffer Data Type Select */
#define PMODE1 0x00000040/* EPBx FIFO Pack Modes.16-bit ext to 32/64-bit int packing */
#define PMODE2 0x00000080/* 16-bit external to 48-bit internal packing */
#define PMODE3 0x000000C0/* 32-bit external to 48-bit internal packing */
#define PMODE4 0x00000100/* No Pack Mode-32-bit external to 32/64-bit internal packing */
#define PMODE5 0x00000140/* 8-bit external to 48-bit internal packing */
#define PMODE6 0x00000180/* 8-bit external to 32/64-bit internal packing */
#define MSWF 0x00000200/* Most Significant Word First During Packing */
#define MASTER 0x00000400/* EPBx DMA Master Mode Enable */
#define HSHAKE 0x00000800/* EPBx DMA Handshake Mode Enable */
#define INTIO 0x00001000/* Single Word Interrupts for EPBx FIFO Buffers */
#define EXTERN 0x00002000/* External Handshake Mode Enable */
#define FLSH 0x00004000/* Flush EPBx FIFO Buffers and Status */
#define PRIO 0x00008000/* External Port Bus Priority Access */
#define FS 0x00030000/* External Port FIFO Buffer Status (read-only) */
#define INT32 0x00040000/* Internal Memory 32-bit Transfer Select */
#define MAXBL0 0x00000000/* Maximum Burst Length Select Disabled */
#define MAXBL1 0x00080000/* Bit 19 set; Maximum Burst Length Limit of 4 Enabled*/
#define PS 0x00E00000/* Ext. Port EPBx FIFO Buffer Pack Status (read-only)*/

/* DMASTAT Register (read-only) */
#define DMA0ST 0x00000001 /* DMA channel 0 (RX0A/TX0A) Active Status */
#define DMA2ST 0x00000002 /* DMA channel 2 (RX1A/TX1A) Active Status */
#define DMA4ST 0x00000004 /* DMA channel 4 (RX2A/TX2A) Active Status */
#define DMA6ST 0x00000008 /* DMA channel 6 (RX3A/TX3A) Active Status */
#define DMA8ST 0x00000010 /* DMA channel 8 (LBUF0) Active Status */
#define DMA9ST 0x00000020 /* DMA channel 9 (LBUF1) Active Status */
#define DMA1ST 0x00000040 /* DMA channel 1 (RX0B/TX0B) Active Status */
#define DMA3ST 0x00000080 /* DMA channel 3 (RX1B/TX1B) Active Status */
#define DMA5ST 0x00000100 /* DMA channel 5 (RX2B/TX2B) Active Status */
#define DMA7ST 0x00000200 /* DMA channel 7 (RX3B/TX3B) Active Status */
#define DMA10ST 0x00000400/* DMA channel 10 (EPB0) Active Status */
A-132 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define DMA11ST 0x00000800 /* DMA channel 11 (EPB1) Active Status */
#define DMA12ST 0x00001000 /* DMA channel 12 (EPB2) Active Status */
#define DMA13ST 0x00002000 /* DMA channel 13 (EPB3) Active Status */
#define DMA0CHST 0x00010000/* DMA channel 0 (RX0A/TX0A) Chaining Status */
#define DMA2CHST 0x00020000/* DMA channel 2 (RX1A/TX1A) Chaining Status */
#define DMA4CHST 0x00040000/* DMA channel 4 (RX2A/TX2A) Chaining Status */
#define DMA6CHST 0x00080000/* DMA channel 6 (RX3A/TX3A) Chaining Status */
#define DMA8CHST 0x00100000/* DMA channel 8 (LBUF0) Chaining Status */
#define DMA9CHST 0x00200000/* DMA channel 9 (LBUF1) Chaining Status */
#define DMA1CHST 0x00400000/* DMA channel 1 (RX0B/TX0B) Chaining Status */
#define DMA3CHST 0x00800000/* DMA channel 3 (RX1B/TX1B) Chaining Status */
#define DMA5CHST 0x01000000/* DMA channel 5 (RX2B/TX2B) Chaining Status */
#define DMA7CHST 0x02000000/* DMA channel 7 (RX3B/TX3B) Chaining Status */
#define DMA10CHST 0x04000000/* DMA channel 10 (EPB0) Chaining Status */
#define DMA11CHST 0x08000000/* DMA channel 11 (EPB1) Chaining Status */
#define DMA12CHST 0x10000000/* DMA channel 12 (EPB2) Chaining Status */
#define DMA13CHST 0x20000000/* DMA channel 13 (EPB3) Chaining Status */

/* SDCTL - SDRAM Control Register bit definitions */
#define SDCL1 0x00000001/* SDCL[1:0] - CAS Latency field */
#define SDCL2 0x00000002/* (delay between RD cmd and data at o/p pins) */
#define SDCL3 0x00000003/* configurable between 1 and 3 SDCLK cycles */

#define DSDCTL 0x00000004 /* disable SDCLK0, /RAS, /CAS & SDCKE pins */
#define DSDCK1 0x00000008/* disable SDCLK1 pin */

#define SDTRAS0 0x00000000/* SDTRAS[3:0] - tRAS spec (active command delay)*/
#define SDTRAS1 0x00000010 /* (required delay between a Bank Activate */
#define SDTRAS2 0x00000020/* command to a Precharge command) */
#define SDTRAS3 0x00000030 /* configurable between 0 to 15 SDCLK cycles */
#define SDTRAS4 0x00000040
#define SDTRAS5 0x00000050
#define SDTRAS6 0x00000060
#define SDTRAS7 0x00000070
#define SDTRAS8 0x00000080
#define SDTRAS9 0x00000090
#define SDTRAS10 0x000000a0
#define SDTRAS11 0x000000b0
#define SDTRAS12 0x000000c0
#define SDTRAS13 0x000000d0
#define SDTRAS14 0x000000e0
#define SDTRAS15 0x000000f0

#define SDTRP0 0x00000000/* SDTRP[2:0] - tRP spec (precharge delay) */
#define SDTRP1 0x00000100/* (required delay between a precharge command */
#define SDTRP2 0x00000200/* to a Bank Activate command) */
#define SDTRP3 0x00000300 /* configurable between 1 to 7 cycles */
#define SDTRP4 0x00000400
#define SDTRP5 0x00000500
#define SDTRP6 0x00000600
#define SDTRP7 0x00000700

#define SDPM 0x00000800/* SDRAM power-up mode bit */
#define SDPGS256 0x00000000/* SDRAM Page Size - 256 words */
#define SDPGS512 0x00001000/* SDRAM Page Size - 512 words */
#define SDPGS1024 0x00002000/* SDRAM Page Size - 1024 words */
#define SDPGS2048 0x00003000/* SDRAM Page Size - 2048 words */
#define SDPSS 0x00004000/* SDRAM power-up sequence start command */
#define SDSRF 0x00008000/* Self refresh command */
#define SDEM0 0x00010000/* Memory Bank 0 SDRAM Enable*/
#define SDEM1 0x00020000/* Memory Bank 1 SDRAM Enable*/
#define SDEM2 0x00040000/* Memory Bank 2 SDRAM Enable*/
#define SDEM3 0x00080000/* Memory Bank 3 SDRAM Enable*/
#define SDBN2 0x00000000/* SDRAM contains 2 memory banks */
#define SDBN4 0x00100000/* SDRAM contains 4 memory banks*/
#define SDCKRx1 0x00200000/* 1:1 (full) SDCLK-to-CCLK (core-clock) ratio */
#define SDCKR_DIV2 0x00000000/* 1:2 (one-half) SDCLK-to-CCLK ratio */
#define SDBUF 0x00800000/* Pipeline (reg. buf) option*/
ADSP-21161 SHARC Processor Hardware Reference A-133

Register and Bit #Defines (def21161.h)
#define SDTRCD0 0x00000000/* SDTRCD[2:0] - tRCD spec. (RAS-to-CAS delay)*/
#define SDTRCD1 0x01000000/* (required delay between a Bank Activate cmd */
#define SDTRCD2 0x02000000/* and the start of the first RD or WR) */
#define SDTRCD3 0x03000000/* configurable between 1 to 7 SDCLK cycles*/
#define SDTRCD4 0x04000000
#define SDTRCD5 0x05000000
#define SDTRCD6 0x06000000
#define SDTRCD7 0x07000000

/* IOFLAG - programmable I/O status macro definitions */
#define FLG4 0x00000001 /* FLAG4 value (Low = '0', High = '1') */
#define FLG5 0x00000002 /* FLAG5 value (Low = '0', High = '1') */
#define FLG6 0x00000004 /* FLAG6 value (Low = '0', High = '1') */
#define FLG7 0x00000008 /* FLAG7 value (Low = '0', High = '1') */
#define FLG8 0x00000010 /* FLAG8 value (Low = '0', High = '1') */
#define FLG9 0x00000020 /* FLAG9 value (Low = '0', High = '1') */
#define FLG10 0x00000040 /* FLAG10 value (Low = '0', High = '1') */
#define FLG11 0x00000080 /* FLAG11 value (Low = '0', High = '1') */
/* IOFLAG - programmable I/O control macro definitions */
#define FLG4O 0x00000100 /* FLAG4 control ('0' = flag input, '1' = flag output) */
#define FLG5O 0x00000200 /* FLAG5 control ('0' = flag input, '1' = flag output) */
#define FLG6O 0x00000400 /* FLAG6 control ('0' = flag input, '1' = flag output) */
#define FLG7O 0x00000800 /* FLAG7 control ('0' = flag input, '1' = flag output) */
#define FLG8O 0x00001000 /* FLAG8 control ('0' = flag input, '1' = flag output) */
#define FLG9O 0x00002000 /* FLAG9 control ('0' = flag input, '1' = flag output) */
#define FLG10O 0x00004000 /* FLAG10 control ('0' = flag input, '1' = flag output) */
#define FLG11O 0x00008000 /* FLAG11 control ('0' = flag input, '1' = flag output) */

/*SPICTL register */
#define SPIEN 0x00000001 /* SPI system enable */
#define SPRINT 0x00000002 /* SPIRX buffer interrupt enable */
#define SPTINT 0x00000004 /* SPITX buffer interrupt enable */
#define MS 0x00000008 /* Master/Slave Mode bit */
#define CP 0x00000010 /* SPICLK Polarity */
#define CPHASE 0x00000020 /* SPICLK Phase */
#define DF 0x00000040 /* Data Format */
#define WL8 0x00000000 /* SPI Word Length = 8 */
#define WL16 0x00000080 /* SPI Word Length = 16 */
#define WL32 0x00000180 /* SPI Word Length = 32 */
#define BAUDR1 0x00000200 /* BAUDRATE = CCLK / 2**(2 + 1) = CCLK/8 */
#define BAUDR2 0x00000400 /* BAUDRATE = CCLK / 2**(2 + 2) = CCLK/16 */
#define BAUDR3 0x00000600 /* BAUDRATE = CCLK / 2**(2 + 3) = CCLK/32 */
#define BAUDR4 0x00000800 /* BAUDRATE = CCLK / 2**(2 + 4) = CCLK/64 */
#define BAUDR5 0x00000A00 /* BAUDRATE = CCLK / 2**(2 + 5) = CCLK/128 */
#define BAUDR6 0x00000C00 /* BAUDRATE = CCLK / 2**(2 + 6) = CCLK/512 */
#define BAUDR7 0x00000E00 /* BAUDRATE = CCLK / 2**(2 + 7) = CCLK/1024 */
#define BAUDR8 0x00001000 /* BAUDRATE = CCLK / 2**(2 + 8) = CCLK/2048 */
#define BAUDR9 0x00001200 /* BAUDRATE = CCLK / 2**(2 + 9) = CCLK/4096 */
#define BAUDR100x00001400 /* BAUDRATE = CCLK / 2**(2 + 10) = CCLK/8192 */
#define BAUDR110x00001600 /* BAUDRATE = CCLK / 2**(2 + 11) = CCLK/16384 */
#define BAUDR120x00001800 /* BAUDRATE = CCLK / 2**(2 + 12) = CCLK/32768 */
#define BAUDR130x00001A00 /* BAUDRATE = CCLK / 2**(2 + 13) = CCLK/65536 */
#define BAUDR140x00001C00 /* BAUDRATE = CCLK / 2**(2 + 14) = CCLK/131072 */
#define BAUDR150x00001E00 /* BAUDRATE = CCLK / 2**(2 + 15) = CCLK/262144 */
#define TDMAEN 0x00002000 /* SPITX transmit buffer DMA enable, DMA channel 9 */
#define PSSE 0x00004000 /* Programmable slave device select */
#define FLS0 0x00008000 /* FLAG0 slave device select enable */
#define FLS1 0x00010000 /* FLAG1 slave device select enable */
#define FLS2 0x00020000 /* FLAG2 slave device select enable */
#define FLS3 0x00040000 /* FLAG3 slave device select enable */
#define SMLS 0x00080000 /* Seamless operation
#define NSMLS 0x00080000 /* Seamless operation */
#define DCPH0 0x00100000 /* Select or deselect SPIDS~ between transfers */
#define DMISO 0x02000000 /* Disable MISO Pin for Broadcast Mode */
#define OPD 0x04000000 /* Open drain output enable for data pins */
#define RDMAEN 0x08000000 /* SPIRX recevie buffer DMA enable, DMA channel 8 */
A-134 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define PACKEN 0x10000000 /* 8-to-16 Bit Packing Enable */
#define SGN 0x20000000 /* Sign-extend SPIRX/SPITX data */
#define SENDZ 0x40000000 /* Send zero or repeat previous data when SPITX empty */
#define SENDLW 0x40000000 /* Send zero or repeat previous data when SPITX empty */
#define GM 0x80000000 /* Retrieve or discard incoming data when SPIRX full */

/* SPISTAT register */
#define SPIF 0x00000001 /* SPI transmit or receive transfer complete (in pre 1.2 Si)*/
#define SRS 0x00000001 /* SPI shift register status (in 1.2 Si and above)*/
#define MME 0x00000002 /* Multimaster error */
#define TXE 0x00000004 /* SPITX transmission error (underflow) */
#define TXS0 0x00000008 /* TXS[0] - SPITX data buffer status */
#define TXS1 0x00000010 /* TXS[1] - SPITX data buffer status */
#define RBSY 0x00000020 /* SPIRX reception error (overflow) */
#define RXS0 0x00000040 /* RXS[0] - SPIRX data buffer status */
#define RXS1 0x00000080 /* RXS[1] - SPIRX data buffer status */

/* LCTL register - 0xcc */
#define L0EN 0x00000001 /* Link buffer 0 enable */
#define L0DEN 0x00000002 /* Link buffer 0 DMA enable */
#define L0CHEN 0x00000004 /* Link buffer 0 DMA chaining enable */
#define L0TRAN 0x00000008 /* Link buffer 0 data direction */
#define L0EXT 0x00000010 /* Link buffer 0 extended word size */
#define L0CLKD00x00000020 /* L0CLKD[0] Link buffer 0 CCLK divide ratio */
#define L0CLKD10x00000040 /* L0CLKD[1] Link buffer 0 CCLK divide ratio */
#define L0PDRDE0x00000100 /* Link Port 0 pulldown resister disable */
#define L0DPWID0x00000200 /* Link buffer 0 data path width */
#define L1EN 0x00000400 /* Link buffer 1 enable */
#define L1DEN 0x00000800 /* Link buffer 1 DMA enable */
#define L1CHEN 0x00001000 /* Link buffer 1 DMA chaining enable */
#define L1TRAN 0x00002000 /* Link buffer 1 data direction */
#define L1EXT 0x00004000 /* Link buffer 1 extended word size */
#define L1CLKD00x00008000 /* L1CLKD[0] Link buffer 1 CCLK divide ratio */
#define L1CLKD10x00010000 /* L1CLKD[1] Link buffer 1 CCLK divide ratio */
#define L1PDRDE0x00040000 /* Link Port 1 pulldown resister disable */
#define L1DPWID0x00080000 /* Link buffer 1 data path width */
#define A0LB 0x00100000 /* Link Port Assignment for LBUF0 - 2106x/21160 compatibility */
#define A1LB 0x00200000 /* Link Port Assignment for LBUF1 - 2106x/21160 compatibility */
#define LAB0 0x00100000 /* Link Port Assignment for LBUF0 -new naming conventions */
#define LAB1 0x00200000 /* Link Port Assignment for LBUF1 - new naming conventions */
#define L0STAT00x00400000 /* L0STAT[0] - link buffer 0 status (read-only) */
#define L0STAT10x00800000 /* L0STAT[1] - link buffer 0 status (read-only) */
#define L1STAT00x01000000 /* L1STAT[0] - link buffer 1 status (read-only) */
#define L1STAT10x02000000 /* L1STAT[1] - link buffer 1 status (read-only) */
#define LRERR0 0x04000000 /* Link Buffer 0 receive pack error status */
#define LRERR1 0x08000000 /* Link Buffer 1 receive pack error status */

/* SP02MCTL & SP13MCTL registers */
#define MCE 0x00000001 /* Multichannel Mode Enable */
#define MFD0 0x00000000 /* no frame delay, multichannel FS pulse in same SCLK cycle as first data
bit */
#define MFD1 0x00000002 /* multichannel mode 1 cycle frame sync delay */
#define MFD2 0x00000004 /* multichannel mode 2 cycle frame sync delay */
#define MFD3 0x00000006 /* multichannel mode 3 cycle frame sync delay */
#define MFD4 0x00000008 /* multichannel mode 4 cycle frame sync delay */
#define MFD5 0x0000000A /* multichannel mode 5 cycle frame sync delay */
#define MFD6 0x0000000C /* multichannel mode 6 cycle frame sync delay */
#define MFD7 0x0000000E /* multichannel mode 7 cycle frame sync delay */
#define MFD8 0x00000010 /* multichannel mode 8 cycle frame sync delay */
#define MFD9 0x00000012 /* multichannel mode 9 cycle frame sync delay */
#define MFD10 0x00000014 /* multichannel mode 10 cycle frame sync delay */
#define MFD11 0x00000016 /* multichannel mode 11 cycle frame sync delay */
#define MFD12 0x00000018 /* multichannel mode 12 cycle frame sync delay */
#define MFD13 0x0000001A /* multichannel mode 13 cycle frame sync delay */
#define MFD14 0x0000001C /* multichannel mode 14 cycle frame sync delay */
#define NCH 0x00000FE0 /* Number of MCM channels - 1 */
ADSP-21161 SHARC Processor Hardware Reference A-135

Register and Bit #Defines (def21161.h)
#define SPL 0x00001000 /* SPORT 0&2 or SPORT 1&3 Internal Loopback Mode */
#define CHNL 0x007F0000 /* Current Channel Status (read-only) */

/* SPCTL0, SPCTL1, SPCTL2 and SPCTL3 registers */
#define SPEN_A 0x00000001/* SPORT enable primary A channel */
#define DTYPE0 0x00000000/* right justify, fill unused MSBs with 0s */
#define DTYPE1 0x00000002/* right justify, sign-extend into unused MSBs */
#define DTYPE2 0x00000004/* compand using mu law */
#define DTYPE3 0x00000006/* compand using a law */
#define SENDN 0x00000008/* MSB or LSB first */
#define SLEN3 0x00000020/* serial length 3 */
#define SLEN4 0x00000030/* serial length 4 */
#define SLEN5 0x00000040/* serial length 5 */
#define SLEN6 0x00000050/* serial length 6 */
#define SLEN7 0x00000060/* serial length 7 */
#define SLEN8 0x00000070/* serial length 8 */
#define SLEN9 0x00000080/* serial length 9 */
#define SLEN10 0x00000090/* serial length 10 */
#define SLEN11 0x000000A0/* serial length 11 */
#define SLEN12 0x000000B0/* serial length 12 */
#define SLEN13 0x000000C0/* serial length 13 */
#define SLEN14 0x000000D0/* serial length 14 */
#define SLEN15 0x000000E0/* serial length 15 */
#define SLEN16 0x000000F0/* serial length 16 */
#define SLEN17 0x00000100/* serial length 17 */
#define SLEN18 0x00000110/* serial length 18 */
#define SLEN19 0x00000120/* serial length 19 */
#define SLEN20 0x00000130/* serial length 20 */
#define SLEN21 0x00000140/* serial length 21 */
#define SLEN22 0x00000150/* serial length 22 */
#define SLEN23 0x00000160/* serial length 23 */
#define SLEN24 0x00000170/* serial length 24 */
#define SLEN25 0x00000180/* serial length 25 */
#define SLEN26 0x00000190/* serial length 26 */
#define SLEN27 0x000001A0/* serial length 27 */
#define SLEN28 0x000001B0/* serial length 28 */
#define SLEN29 0x000001C0/* serial length 29 */
#define SLEN30 0x000001D0/* serial length 30 */
#define SLEN31 0x000001E0/* serial length 31 */
#define SLEN32 0x000001F0/* serial length 32 */
#define PACK 0x00000200/* 16-to-32 data packing */
#define MSTR 0x00000400/* I2S Mode only... TX/RX is master or slave */
#define ICLK 0x00000400/* internally 1 or externally 0 generated transmit or recieve
SCLKx */
#define OPMODE 0x00000800/* I2S mode enable ('1') or DSP Serial Mode/Multichannel mode
('0') */
#define CKRE 0x00001000/* Clock edge for data and frame sync sampling (rx) or driving
(tx) */
#define FSR 0x00002000/* transmit or receive frame sync (FSx) required */
#define IFS 0x00004000/* internally generated transmit or receive frame sync (FSx) */
#define IRFS 0x00004000/* internally generated receive FS0 or FS1 in multichannel mode
*/
#define DITFS 0x00008000/* (I2S/DSP serial mode only) Data Independent tx FSx when DDIR
bit=1 */
#define LFS 0x00010000/* Active Low transmit or receive frame sync (FSx) */
#define LRFS 0x00010000/* SPORT0 and SPORT1 active low TDM frame sync FS0/FS1 in MC
mode */
#define LTDV 0x00010000/* (MC Mode only) SPORT2/SPORT3 tx data valid ena in TDM
mode-TDV2/TDV3 alternate pin config */
#define LFIRST 0x00010000/* (I2S Mode Only) transmit left channel first 1, or right
channel first 0 */
#define LAFS 0x00020000/* (DSP Serial Mode only) Late (vs early) frame sync FSx */
#define SDEN_A 0x00040000/* SPORT TXnA/RXnA DMA enable primary A channel */
#define SCHEN_A 0x00080000/* SPORT TXnA/RXnA DMA chaining enable primary A channel */
#define SDEN_B 0x00100000/* SPORT TXnB/RXnB DMA enable primary B channel */
#define SCHEN_B 0x00200000/* SPORT TXnB/RXnB DMA chaining enable primary B channel */
#define FS_BOTH 0x00400000/* (DSP Serial & I2S modes only) Issue FSx only if data is in
both TXnA & TXnB regs */
A-136 ADSP-21161 SHARC Processor Hardware Reference

Registers
#define SPEN_B 0x01000000/* SPORTx secondary B channel enable */
#define DDIR 0x02000000/* SPORT data buffer data dirrection 1 = transmitter, 0 =
receiver */
#define DERR_B 0x04000000/* SPORTx secondary B overflow/underflow error status in DSP
serial & I2S modes (read-only) */
#define DXS0_B 0x08000000/* SPORTx secondary B data buffer status in DSP Serial & I2S
modes

read-only)*/
#define DXS1_B 0x10000000/* SPORTx secondary B data buffer status in DSP Serial & I2S
modes (read-only)*/
#define DERR_A 0x20000000/* SPORTx primary A over/underflow error status in DSP Serial &
I2S modes (read-only) */
#define TUVF_A 0x20000000/* SPORT2/SPORT3 TX2A/TX3A underflow status in MC mode
(read-only, sticky)*/
#define ROVF_A 0x20000000/* SPORT0/SPORT1 RX0A/RX1A overflow status in MC mode
(read-only, sticky)*/
#define DXS0_A 0x40000000/* SPORTx primary A data buffer status in DSP serial and I2S
modes (read-only)*/
#define DXS1_A 0x80000000/* SPORTx primary A data buffer status in DSP serial and I2S
modes (read-only)*/
#define RXS0_A 0x40000000/* SPORT0/SPORT1 RX0A/RX1A data buffer status in MC mode
(read-only)*/
#define RXS1_A 0x80000000/* SPORT0/SPORT1 RX0A/RX1A data buffer status in MC mode
(read-only)*/
#define TXS0_A 0x40000000/* SPORT2/SPORT3 TX2A/TX3A data buffer status in MC mode
(read-only)*/
#define TXS1_A 0x80000000/* SPORT2/SPORT3 TX2A/TX3A data buffer status in MC mode
(read-only) */

#endif
ADSP-21161 SHARC Processor Hardware Reference A-137

Register and Bit #Defines (def21161.h)
A-138 ADSP-21161 SHARC Processor Hardware Reference

B INTERRUPT VECTOR
ADDRESSES

Table B-1 shows all ADSP-21161 processor interrupts, listed according

their bit position in the IRPTL, LIRPTL, and IMASK registers. For more
information, see “Interrupt Latch Register (IRPTL)” on page A-27 and
“Interrupt Mask Register (IMASK)” on page A-31. Also shown is the
address of the interrupt vector. Each vector is separated by four memory
locations. The addresses in the vector table represent offsets from a base
address. For an interrupt vector table in internal memory, the base address
is 0x0004 0000. For an interrupt vector table in external memory, the
base address is 0x0020 0000. The interrupt name column in Table B-1
lists a mnemonic name for each interrupt as they are defined by the
def21161.h file that comes with the software development tools. For more
information, see “Register and Bit #Defines (def21161.h)” on
page A-121.

Table B-1. Interrupt Vector Addresses

Register IRPTL/
IMASK,
LIRPTL
Bit#

Vector
Address

Interrupt
Name

Function

IRPTL 0 0x00 EMUI Emulator (read-only, non-maskable)
HIGHEST PRIORITY

IRPTL 1 0x04 RSTI Reset (read-only, non-maskable)

IRPTL 2 0x08 IICDI Illegal Input Condition Detected

IRPTL 3 0x0C SOVFI Status, loop, or mode stack overflow;
or PC stack full

IRPTL 4 0x10 TMZHI Timer=0 (high priority option)
ADSP-21161 SHARC Processor Hardware Reference B-1

IRPTL 5 0x14 VIRPTI Multiprocessor Vector Interrupt

IRPTL 6 0x18 IRQ2I IRQ2 asserted

IRPTL 7 0x1C IRQ1I IRQ1 asserted

IRPTL 8 0x20 IRQ0I IRQ0 asserted

IRPTL 9 0x24 - Reserved

IRPTL 10 0x28 SP0I SPORT0 DMA

IRPTL 11 0x2C SP1I SPORT1 DMA

IRPTL 12 0x30 SP2I SPORT2 DMA

IRPTL 13 0x34 SP3I SPORT3 DMA

LIRPTL 0/16 0x38 LP0I Link Buffer 0 DMA Interrupt

LIRPTL 1/17 0x3C LP1I Link Buffer 1 DMA Interrupt

LIRPTL 2/18 0x40 SPIRI SPI Receive DMA Interrupt

LIRPTL 3/19 0x44 SPITI SPI Transmit DMA Interrupt

LIRPTL - 0x48 - Reserved

LIRPTL - 0x4c - Reserved

IRPTL 15 0x50 EP0I DMA Channel 10 - Ext. Port Buffer 0

IRPTL 16 0x54 EP1I DMA Channel 11 - Ext. Port Buffer 1

IRPTL 17 0x58 EP2I DMA Channel 12 - Ext. Port Buffer 2

IRPTL 18 0x5C EP3I DMA Channel 13 - Ext. Port Buffer 3

IRPTL 19 0x60 LSRQI Link Port Service Request

IRPTL 20 0x64 CB7I Circular Buffer 7 overflow

IRPTL 21 0x68 CB15I Circular Buffer 15 overflow

IRPTL 22 0x6C TMZLI Timer=0 (low priority option)

Table B-1. Interrupt Vector Addresses (Cont’d)

Register IRPTL/
IMASK,
LIRPTL
Bit#

Vector
Address

Interrupt
Name

Function
B-2 ADSP-21161 SHARC Processor Hardware Reference

Interrupt Vector Addresses
IRPTL 23 0x70 FIXI Fixed-point overflow

IRPTL 24 0x74 FLTOI Floating-point overflow exception

IRPTL 25 0x78 FLTUI Floating-point underflow exception

IRPTL 26 0x7C FLTII Floating-point invalid exception

IRPTL 27 0x80 SFT0I User software interrupt 0

IRPTL 28 0x84 SFT1I User software interrupt 1

IRPTL 29 0x88 SFT2I User software interrupt 2

IRPTL 30 0x8C SFT3I User software interrupt 3

IRPTL 31 0x90 - Reserved - lowest priority

Table B-1. Interrupt Vector Addresses (Cont’d)

Register IRPTL/
IMASK,
LIRPTL
Bit#

Vector
Address

Interrupt
Name

Function
ADSP-21161 SHARC Processor Hardware Reference B-3

B-4 ADSP-21161 SHARC Processor Hardware Reference

C NUMERIC FORMATS

The ADSP-21161 processor supports the 32-bit single-precision float-

ing-point data format defined in the IEEE Standard 754/854. In addition,
the processor supports an extended-precision version of the same format
with eight additional bits in the mantissa (40 bits total). The processor
also supports 32-bit fixed-point formats—fractional and integer—which
can be signed (twos-complement) or unsigned.

IEEE Single-Precision Floating-Point Data
IEEE Standard 754/854 specifies a 32-bit single-precision floating-point
format, shown in Figure C-1. A number in this format consists of a sign
bit s, a 24-bit significand, and an 8-bit unsigned-magnitude exponent e.

For normalized numbers, the significand consists of a 23-bit fraction f and
a “hidden” bit of 1 that is implicitly presumed to precede f22 in the signif-
icand. The binary point is presumed to lie between this hidden bit and f22.
The least significant bit (LSB) of the fraction is f0; the LSB of the expo-
nent is e0.

The hidden bit effectively increases the precision of the floating-point sig-
nificand to 24 bits from the 23 bits actually stored in the data format. It
also insures that the significand of any number in the IEEE normalized
number format is always greater than or equal to 1 and less than 2.
ADSP-21161 SHARC Processor Hardware Reference C-1

IEEE Single-Precision Floating-Point Data
The unsigned exponent e can range between 1 ≤ e ≤ 254 for normal num-
bers in the single-precision format. This exponent is biased by
+127 (254¸ 2). To calculate the true unbiased exponent, 127 must be sub-
tracted from e.

The IEEE Standard also provides for several special data types in the sin-
gle-precision floating-point format:

• An exponent value of 255 (all ones) with a nonzero fraction is a
Not-A-Number (NAN). NANs are usually used as flags for data
flow control, for the values of uninitialized variables, and for the
results of invalid operations such as 0 * ∞.

• Infinity is represented as an exponent of 255 and a zero fraction.
Note that because the fraction is signed, both positive and negative
Infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
Infinity, both positive Zero and negative Zero can be represented.

The IEEE single-precision floating-point data types supported by the pro-
cessor and their interpretations are summarized in Table C-1.

Figure C-1. IEEE 32-Bit Single-Precision Floating-Point

s e0

31 30 23 22 0

1 . f22 f0e7 • • • • • •

Hidden Bit Binary Point
C-2 ADSP-21161 SHARC Processor Hardware Reference

Numeric Formats
Extended-Precision Floating-Point
The extended-precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the standard format but a 32-bit significand.
This format is shown in Figure C-2. In all other respects, the extended
floating-point format is the same as the IEEE standard format.

Table C-1. IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Nonzero Undefined

Infinity 255 0 (–1)s Infinity

Normal 1 ≤ e ≤ 254 Any (–1)s (1.f22-0) 2 e–127

Zero 0 0 (–1)s Zero

Figure C-2. 40-Bit Extended-Precision Floating-Point Format

s e0

39 38 31 30 0

1 . f30 f0e7 • • • • • •

Hidden Bit Binary Point
ADSP-21161 SHARC Processor Hardware Reference C-3

Short Word Floating-Point Format
Short Word Floating-Point Format
The ADSP-21161 processor supports a 16-bit floating-point data type and
provides conversion instructions for it. The short float data format has an
11-bit mantissa with a four-bit exponent plus sign bit, as shown in
Figure C-3. The 16-bit floating-point numbers reside in the lower 16 bits
of the 32-bit floating-point field.

Packing for Floating-Point Data
Two shifter instructions, FPACK and FUNPACK, perform the packing and
unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE float-
ing-point number to a 16-bit floating-point number. FUNPACK converts the
16-bit floating-point numbers back to 32-bit IEEE floating-point. Each
instruction executes in a single cycle. The results of the FPACK and FUNPACK
operations appear in Table C-2 and Table C-3.

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa

Figure C-3. 16-Bit Floating-Point Format

s e0

15 14 11 10 0

1 . f10 f0e3 • • • • • •

Hidden Bit Binary Point
C-4 ADSP-21161 SHARC Processor Hardware Reference

Numeric Formats
(including “hidden” 1) is right-shifted the appropriate amount. The
packed result is a denormal which can be unpacked into a normal IEEE
floating-point number.

During the FPACK operation, an overflow sets the SV condition and
non-overflow will clear it. During the FUNPACK operation, the SV condition
is cleared. The SZ and SS conditions are cleared by both instructions.

Table C-2. FPACK Operations

Condition Result

135 < exp Largest magnitude representation.

120 < exp ≤ 135 Exponent is MSB of source exponent concatenated with the three LSBs of
source exponent. The packed fraction is the rounded upper 11 bits of the
source fraction.

109 < exp ≤ 120 Exponent=0. Packed fraction is the upper bits (source exponent – 110) of
the source fraction prefixed by zeros and the “hidden” 1. The packed frac-
tion is rounded.

exp < 110 Packed word is all zeros.

exp = source exponent
sign bit remains the same in all cases

Table C-3. FUNPACK Operations

Condition Result

0 < exp ≤ 15 Exponent is the 3 LSBs of the source exponent prefixed by the MSB of
the source exponent and four copies of the complement of the MSB. The
unpacked fraction is the source fraction with 12 zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of leading zeros in the
source fraction. The unpacked fraction is the remainder of the source
fraction with zeros appended to pad it and the “hidden” 1 stripped away.

exp = source exponent
sign bit remains the same in all cases
ADSP-21161 SHARC Processor Hardware Reference C-5

Fixed-Point Formats
Fixed-Point Formats
The ADSP-21161 processor supports two 32-bit fixed-point formats: frac-
tional and integer. In both formats, numbers can be signed
(twos-complement) or unsigned. The four possible combinations are
shown in Figure C-4. In the fractional format, there is an implied binary
point to the left of the most significant magnitude bit. In integer format,
the binary point is understood to be to the right of the LSB. Note that the
sign bit is negatively weighted in a twos-complement format.

ALU outputs always have the same width and data format as the inputs.
The multiplier, however, produces a 64-bit product from two 32-bit
inputs. If both operands are unsigned integers, the result is a 64-bit
unsigned integer. If both operands are unsigned fractions, the result is a
64-bit unsigned fraction. These formats are shown in Figure C-5.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit posi-
tion. Normally bit 63 and bit 62 are identical when both operands are
signed. (The only exception is full-scale negative multiplied by itself.)
Thus, the left shift normally removes a redundant sign bit, increasing the
precision of the most significant product. Also, if the data format is frac-
tional, a single-bit left shift renormalizes the MSP to a fractional format.
The signed formats with and without left shifting are shown in
Figure C-6.

The multiplier has an 80-bit accumulator to allow the accumulation of
64- bit products. For more information on the multiplier and accumula-
tor, see “Multiply—Accumulator (Multiplier)” on page 2-15.
C-6 ADSP-21161 SHARC Processor Hardware Reference

Numeric Formats
Figure C-4. 32-Bit Fixed-Point Formats

3 1 3 0 2 9

• • •

2 1

-2 3 1 2 3 0 2 2 9 2 2 2 1 2 0

SIG N
BIT

W E IG H T

B IT

B IN A R Y
P O IN T

0

3 1 3 0 2 9

• • •

2 1

2 -2 9W EIG H T

B IT

B IN A R Y P O IN T

0

2 -3 0 2 -3 1-2 -0 2 -1 2 -2

S IG N
BIT

S IG N ED FR A C T IO N A L

S IG N ED IN TE G E R

U N S IG N ED IN TEG ER

U N S IG N ED FR A C TIO N A L

•

•

•

•

3 1 3 0 2 9

• • •

2 1

2 3 1 2 3 0 2 2 9 2 2 2 1 2 0W EIG H T

B IT

B IN A R Y
P O IN T

0

3 1 3 0 2 9

• • •

2 1

2 -3 0W EIG H T

B IT

B IN A RY P O IN T

0

2 -3 1 2 -3 22 -1 2 -2 2 -3
ADSP-21161 SHARC Processor Hardware Reference C-7

Fixed-Point Formats
Figure C-5. 64-Bit Unsigned Fixed-Point Product

Figure C-6. 64-Bit Signed Fixed-Point Product

UNSIGNED INTEGER

UNSIGNED FRACTIONAL

63 62 61

• • •

2 1

2
63

2
62

2
61

2
2

2
1

2
0WEIGHT

BIT 0

63 62 61

• • •

2 1

2
-62WEIGHT

BIT 0

2
-63

2
-64

2
-1

2
-2

2
-3

•

BINARY
POINT

•

BINARY
POINT

63 62 61

• • •

2 1

2
30

2
29

2
2

2
1

2
0

SIGN
BIT

WEIGHT

BIT 0

SIGNED INTEGER, NO LEFT SHIFT

-2
63

2
62

2
62

2
2

2
1

2
0• • •
•

BINARY
POINT

SIGNED FRACTIONAL, WITH LEFT SHIFT

63 62 61

• • •

2 1

2
-61WEIGHT

BIT 0

2
-62

2
-63

-2
0

2
-1

2
-2

SIGN
BIT

•

BINARY
POINT
C-8 ADSP-21161 SHARC Processor Hardware Reference

G GLOSSARY

Autobuffering Unit (ABU). (See I/O processor and DMA)
Arithmetic Logic Unit (ALU). This part of a processing element performs
arithmetic and logic operations on fixed-point and floating-point data.

Asynchronous transfers. Asynchronous host accesses of the processor.
After acquiring control of the processor’s external bus, the host must assert
the CS pin of the processor it wants to access.

Auxiliary registers. (See Index Registers)

Base address. The starting address of a circular buffer to which the DAG
wraps around. This address is stored in a DAG Bx register.

Base registers. A base (Bx) register is a Data Address Generator (DAG)
register that sets up the starting address for a circular buffer.

Bit-reverse addressing. The Data Address Generator (DAG) provides a
bit-reversed address during a data move without reversing the stored
address.

Block repeat. (See Do/Until instructions in the ADSP-21160 DSP
Instruction Set Reference)

Block size register. (See Length Registers)

Boot Memory Space. The processor supports an external boot EPROM
mapped to external memory and selected with the BMS pin. The boot
EPROM provides one of the methods for automatically loading a program
into the internal memory of the processor after power-up or after a soft-
ware reset.
ADSP-21161 SHARC Processor Hardware Reference G-1

Broadcast data moves. The Data Address Generator (DAG) performs dual
data moves to complementary registers in each processing element to sup-
port SIMD mode.

Buffered serial port. (See Serial ports)

Burst transfers. Multi-cycle synchronous transfers that contains a packet
of at least two 64-bit transfers. For a master, only a DMA channel can
master a burst transaction. As a slave, supports burst read transfers from
internal memory, or the EPBx data buffers.

Bus slave or slave mode. A processor can be a bus slave to another proces-
sor or to a host processor. The processor becomes a host bus slave when
the HBG signal is returned.

Bus Transition Cycle (BTC). A cycle in which control of the external bus
is passed from one processor to another (in a multiprocessor system).

Circular buffer addressing. The DAG uses the Ix, Mx and Lx register set-
tings to constrain addressing to a range of addresses. This range contains
data that the DAG steps through repeatedly, “wrapping around” to repeat
stepping through the range of addresses in a circular pattern.

Cluster multiprocessing. This is a multiprocessing system architecture in
which the processor uses its link ports and external port for inter-processor
communication.

Companding (compressing/expanding). This is the process of logarithmi-
cally encoding and decoding data to minimize the number of bits that
must be sent.

Conditional branches. These are JUMP or CALL/return instructions whose
execution is based on testing an IF condition.

Conflict resolution ratio. Because the external port must arbitrate accesses
over three internal buses to one external bus, there is a 3:1 conflict resolu-
tion ratio at the external port interface. This ratio plus the 2:1 or greater
clock ratio between the processor’s internal clock and the external system
G-2 ADSP-21161 SHARC Processor Hardware Reference

Glossary
clock forces systems that fetch instructions or data through the external
port must tolerate at least one cycle—and usually many additional
cycles—of latency.

DAGEN, Data address generator (See DAGs)

Data Address Generator (DAG). The Data Address Generators (DAGs)
provide memory addresses when data is transferred between memory and
registers.

Data flow multiprocessing. This is a multiprocessor system architecture
in which the processor uses its link ports for inter-processor
communication.

Data register file. This is the set of data registers that transfer data
between the data buses and the computation units. These registers also
provide local storage for operands and results.

Data registers (Dreg). These are registers in the PEx and PEy processing
elements. These registers are hold operands for multiplier, ALU, or shifter
operations and are denoted as Rx when used for fixed point operations or
Fx when used for floating-point operations.

Deadlock resolution. When both theprocessor subsystem and the system
try to access each other’s bus in the same cycle, a deadlock may occur in
which neither access can complete. Techniques for resolving deadlock vary
with the interface: DRAM, host, or multiprocessor system.

Delayed branches. These are JUMPS and CALL/return instructions with the
delayed branches (DB) modifier. In delayed branches, no instruction cycles
are lost in the pipeline, because the processor executes the two instructions
after the branch while the pipeline fills with instructions from the new
branch.

Direct branches. These are JUMP or CALL/return instructions that use an
absolute—not changing at runtime—address (such as a program label) or
use a PC-relative address.
ADSP-21161 SHARC Processor Hardware Reference G-3

Direct reads and writes. A direct access of the processor’s internal mem-
ory or I/O processor registers by another processor or by a host processor.

DMA (Direct Memory Accessing). The processor’s I/O processor sup-
ports DMA of data between processor memory and external memory,
host, or peripherals through the external, link, and serial ports. Each
DMA operation transfers an entire block of data.

DMA chaining. The processor supports chaining together multiple DMA
sequences. In chained DMA, the I/O processor loads the next Transfer
Control Block (DMA parameters) into the DMA parameter registers when
the current DMA finishes and auto-initializes the next DMA sequence.

DMA parameter registers. These registers function similarly to data
address generator registers, setting up a memory access process. These reg-
isters include Internal Index registers (IIx), Internal Modify registers
(IMx), Count registers (Cx), Chain Pointer registers (CPx), General Purpose
registers (GPx), External Index registers (EIEPx), External Modify registers
(EMEPx), and External Count registers (ECEPx).

DMA TCB chain loading. This is the process that the I/O processor uses
for loading the TCB of the next DMA sequence into the parameter regis-
ters during chained DMA.

DMACx control registers. The DMA control registers for the EPBx exter-
nal port buffers: DMAC10, DMAC11, DMAC12, and DMAC13. These correspond
respectively to EPB0, EPB1, EPB2, and EPB3.

Edge-sensitive interrupt. The processor detects this type of interrupt if
the input signal is high (inactive) on one cycle and low (active) on the next
cycle when sampled on the rising edge of CLKIN.

Endian format, little versus big. The processor uses big-endian format—
moves data starting with most-significant-bit and finishing with least sig-
nificant bit—in almost all instances. The two exceptions are bit order for
data transfer through the serial port and word order for packing through
the external port. For compatibility with little-endian (least signifi-
G-4 ADSP-21161 SHARC Processor Hardware Reference

Glossary
cant-first) peripherals, the processor supports both big- and little-endian
bit order data transfers. Also for compatibility little-endian hosts, the pro-
cessor supports both big- and little endian word order data transfers.

Explicit Versus Implicit operations. In SIMD mode, identical instruc-
tions execute on the PEx and PEy computational units; the difference is
the data. The data registers for PEy operations are identified (implicitly)
from the PEx registers in the instruction. This implicit relation between
PEx and PEy data registers corresponds to complementary register pairs.

External bus. The processor extends the following signals off-chip as an
external bus: DATA47-16, ADDR23-0, RD, WR, MS3-0, BMS, CLKOUT, BRST, ACK,
and SBTS.

External memory space. This space ranges from address 0x0200 0000
through 0x0CFF FFFF (Normal word) for Non-SDRAM and from
address 0x0020 0000 through 0x0FFF FFFF (Normal word) for SDRAM.
External memory space refers to the off-chip memory or memory mapped
peripherals that are attached to the processor’s external address (ADDR23-0)
and data (DATA47-16) buses.

External port FIFO buffers (EPB0, EPB1, EPB2, and EPB3). The I/O
processor registers used for external port DMA transfers and single-word
data transfers (from other processors or from a host processor). These
buffers are eight-deep FIFOs.

External port. This port extends the internal address and data buses off
chip, providing the processor’s interface to off-chip memory and
peripherals.

Field deposit (Fdep) instructions. These shifter instructions take a group
of bits from the input register (starting at the LSB of the 32-bit integer
field) and deposit the bits as directed anywhere within the result register.

Field extract (Fext) instructions. These shifter extract a group of bits as
directed from anywhere within the input register and place them in the
result register (aligned with the LSB of the 32-bit integer field).
ADSP-21161 SHARC Processor Hardware Reference G-5

Programmable Flag pins. These pins (FLGx) can be programmed as input
or output pins using bit settings in the MODE2 register. The status of the
flag pins is given in the FLAGS or IOFLAG register.

General-purpose input/output pins. (See Programmable Flag pins)

Flag update. The processor’s update to status flags occurs at the end of the
cycle in which the status is generated and is available on the next cycle.

Harvard architecture. A memory architectures that has separate buses for
program and data storage. The two buses allow a data word and an
instruction simultaneously.

Hold time cycle. This is an inactive bus cycle that is automatically gener-
ates at the end of a read or write (depending on the external port access
mode) to allow a longer hold time for address and data. The address—and
data, if a write—remains unchanged and is driven for one cycle after the
read or write strobes are deasserted.

Host transition cycle (HTC). A cycle in which control of the external bus
is passed from the ADSP-21161 processor to the host processor. During
this cycle the processor stops driving the RD, WR, ADDR23-0, MS3-0, CLKOUT,
PA, and DMAGx signals, which must then be driven by the host.

I/O processor register. One of the control, status, or data buffer registers
of the processor’s on-chip I/O processor.

Idle cycle. This is an inactive bus cycle that is automatically generated
(depending on the external port access mode) to avoid data bus driver
conflicts. Such a conflict can occur when a device with a long output dis-
able time continues to drive after RD is deasserted while another device
begins driving on the following cycle.

IDLE. An instruction that causes the processor to cease operations, hold-
ing its current state until an interrupt occurs. Then, the processor services
the interrupt and continues normal execution.
G-6 ADSP-21161 SHARC Processor Hardware Reference

Glossary
Index registers. An index register is a Data Address Generator (DAG) reg-
ister that holds an address and acts as a pointer to memory.

Indirect branches. These are JUMP or CALL/return instructions that use a
dynamic—changes at runtime—address that comes from the PM data
address generator.

Interleaved data. To take advantage of the processor’s data accesses to 4-
and 3-column locations, programs must adjust the interleaving of data
into (not necessarily sequential) memory locations to accommodate the
memory access mode.

Internal memory space. This space ranges from address 0x0000 0000
through 0x0005 3FFF (Normal word). Internal memory space refers to
the ADSP-21161 processor’s on-chip SRAM and memory mapped
registers.

Interrupts. Subroutines in which a runtime event (not an instruction)
triggers the execution of the routine.

JTAG port. This port supports the IEEE standard 1149.1 Joint Test
Action Group (JTAG) standard for system test. This standard defines a
method for serially scanning the I/O status of each component in a
system.

Jumps. Program flow transfers permanently to another part of program
memory.

Link ports. The processor has two 8-bit wide link ports, which can con-
nect to other processors’ or peripherals’ link ports. These bidirectional
ports have eight data lines, an acknowledge, and a clock line.

Length registers. A length registers is a Data Address Generator (DAG)
register that sets up the range of addresses a circular buffer.

Level-sensitive interrupts. This type of interrupt is detected if the signal
input is low (active) when sampled on the rising edge of CLKIN.
ADSP-21161 SHARC Processor Hardware Reference G-7

Loops. One sequence of instructions executes several times with zero
overhead.

McBSP, multichannel buffered serial port. (See Serial port)

MCM, multichannel mode. (See Multichannel mode)

Memory access modes. The processor supports Asynchronous and Syn-
chronous modes for accessing external memory space. In asynchronous
access mode, the processor’s RD and WR strobes change before CLKIN’s edge.
In synchronous access mode, the processor’s RD and WR strobes change on
CLKIN’s edge.

Memory blocks and banks. Memory is divided into blocks that are each
associated with different data address generators. The processor’s external
memory spaces is divided into banks, which may be addressed by either
data address generator.

Modified addressing. The DAG generates an address that is incremented
by a value or a register.

Modify address. The Data Address Generator (DAG) increments the
stored address without performing a data move.

Modify registers. A modify register is a Data Address Generator (DAG)
register that provides the increment or step size by which an index register
is pre- or post-modified during a register move.

Multichannel mode. In this mode, each data word of the serial bit stream
occupies a separate channel.

Multifunction computations. Using the many parallel data paths within
its computational units, the processor supports parallel execution of mul-
tiple computational instructions. These instructions complete in a single
cycle, and they combine parallel operation of the multiplier and the ALU
or dual ALU functions. The multiple operations perform the same as if
they were in corresponding single-function computations.
G-8 ADSP-21161 SHARC Processor Hardware Reference

Glossary
Multiplier. This part of a processing element does floating-point and
fixed-point multiplication and executes fixed-point multiply/add and
multiply/subtract operations.

Multiprocessor memory space. The portion of the memory map that
includes the I/O processor registers of in a multiprocessing system. This
address space is mapped into the unified address space of the
ADSP-21161 processor.

Multiprocessor system. A system with multiple processors, with or with-
out a host processor. The processors are connected by the external bus
and/or link ports.

Multiprocessor vector interrupt. The vector interrupt (VIRPT) permits
passing interprocessor commands in multiple-processor systems. One pro-
cessor writes a vector address to another processors VIRPT register. Writing
the address initiates the vector interrupt on the processor that receives the
write. The ADSP-21161 processor executes (vectors to) the interrupt ser-
vice routine at that address.

Neighbor registers. In Long word addressed accesses, data is moved to or
from two neighboring data registers. The least-significant-32-bits moves
to or from the explicit (named) register in the neighbor register pair. In
forced Long word accesses (Normal word address with LW mnemonic), the
the Normal word address is converted to Long word, placing the even
Normal word location in the explicit register and the odd Normal word
location in the other register in the neighbor pair.

PAGEN, Program address generation logic. (See the Program Sequencer
chapter)

Peripherals. This refers to everything outside the processor core. The
ADSP-21161 processor’s peripherals include internal memory, external
port, I/O processor, JTAG port, and any external devices that connect to
the ADSP-21161.
ADSP-21161 SHARC Processor Hardware Reference G-9

Precision. The precision of a floating-point number depends on the num-
ber of bits after the binary point in the storage format for the number.
The processor supports two high precision floating-point formats: 32-bit
IEEE single-precision floating-point (which uses 8 bits for the exponent
and 24 bits for the mantissa) and a 40-bit extended precision version of
the IEEE format.

Post-modify addressing. The Data Address Generator (DAG) provides an
address during a data move and auto-increments the stored address for the
next move.

Pre-modify addressing. The Data Address Generator (DAG) provides a
modified address during a data move without incrementing the stored
address.

Registers swaps. This special type of register-to-register move instruction
uses the special swap operator, <->. A register-to-register swap occurs
when registers in different processing elements exchange values.

Saturation (ALU saturation mode). In this mode, all positive fixed-point
overflows return the maximum positive fixed-point number
(0x7FFF FFFF), and all negative overflows return the maximum negative
number (0x8000 0000).

Semaphore. This is a flag that can be read and written by any of the pro-
cessors sharing the resource. Semaphores can be used in multiprocessor
systems to allow the processors to share resources such as memory or I/O.
The value of the semaphore tells the processor when it can access the
resource. Semaphores are also useful for synchronizing the tasks being per-
formed by different processors in a multiprocessing system.

Serial ports. The ADSP-21161 processor has four synchronous serial ports
that provide an inexpensive interface to a wide variety of digital and
mixed-signal peripheral devices.
G-10 ADSP-21161 SHARC Processor Hardware Reference

Glossary
SHARC. This is an acronym for Super Harvard Architecture. This archi-
tecture balances a high performance processor core with high performance
buses (PM, DM, IO).

Shifter. This part of a processing element completes logical shifts, arith-
metic shifts, bit manipulation, field deposit, and field extraction
operations on 32-bit operands. Also, the Shifter can derive exponents.

SMUL, Saturation on multiplication. (See Multiplier Saturation modes)

SST, Saturation on store. (See Multiplier Saturation modes)

Subroutines. The processor temporarily interrupts sequential flow to exe-
cute instructions from another part of program memory.

Single-word data transfers. Reads and writes to the EPBx external port
buffers, performed externally by the bus master (or host) or internally by
the slave's core. These occur when DMA is disabled in the DMACx control
register.

Synchronous transfers. Synchronous host accesses of the ADSP-21161
processor. When CS is not asserted, the host must act like another proces-
sor in a multiprocessor system, by generating an address in multiprocessor
memory space, asserting PA and WR or RD, and driving out or latching in
the data.

TADD, TDM address. (See the section “Multichannel Mode”)

TCB chain loading. The process in which the DMA controller downloads
a Transfer Control Block from memory and autoinitializes the DMA
parameter registers.

Time Division Multiplexed (TDM) mode. The serial ports support
TDM or multichannel operations. In multichannel mode, each data word
of the serial bit stream occupies a separate channel— each word belongs to
the next consecutive channel so that, for example, a 24-word block of data
contains one word for each of 24 channels.
ADSP-21161 SHARC Processor Hardware Reference G-11

Transfer control block (TCB). A set of DMA parameter register values
stored in memory that are downloaded by the DMA controller for chained
DMA operations.

Tristate versus three-state. Analog Devices documentation uses the term
“three-state” instead of “tristate” because Tristate™ is a trademarked
term, which is owned by National Semiconductor.

Universal registers (Ureg). These are any processing element registers
(data registers), any Data Address Generator (DAG) registers, any pro-
gram sequencer registers, and any I/O processor registers.

Von Neumann architecture. This is the architecture used by most
(non-DSP) microprocessors. This architecture uses a single address and
data bus for memory access.

Waitstates. Waitstates are applied to each external memory access
depending on the bank’s external memory access mode (EBxAM). The
External Bank Waitstate (EBxWS) field in the WAIT register sets the number
of waitstates for each bank.
G-12 ADSP-21161 SHARC Processor Hardware Reference

I INDEX

Numerics Alternate registers (See secondary registers)
16-bit floating-point format, C-4
32-bit data (See normal word)
40-bit extended-precision floating-point

format, C-3

A
Abs function, 2-9
Absolute address, 3-14, G-3
Acknowledge (ACK) pin, 5-42, 6-54, 6-56,

7-6, 7-40, 7-89, 13-4, 13-16
Acknowledge controls, 1-12
Active drive REDY (ADREDY) bit, 7-44,

7-51, A-61
Active low versus active high frame syncs,

10-43
Add instruction, 2-1, 2-9, 2-36
Address bus (ADDR) pin, 5-21, 7-6, 7-38,

7-49, 7-89, 7-96, 8-26, 8-29, 13-4,
13-16

Address buses, 1-2
Address fields, A-42

PM and DM, A-43
Address fields for asynchronous host

accesses, 5-21, 7-49
Addressing

(See post-modify, pre-modify, modify,
bit-reverse, or circular buffer)

Storing top-of-loop addresses, A-41
Addressing, DSP external memory

registers, A-90

ALU carry (AC) bit, 2-11, 3-54, A-14
ALU fixed-point overflow (AOS) bit, 2-11,

A-19
ALU floating-point (AF) bit, 2-11, A-16
ALU floating-point invalid (AI) bit, 2-11,

A-14
ALU floating-point invalid status (AIS) bit,

2-11, A-19
ALU floating-point overflow status (AVS)

bit, 2-11, A-19
ALU floating-point underflow status

(AUS) bit, 2-11, A-19
ALU negative (AN) bit, 2-11, A-13
ALU overflow (AV) bit, 2-11, 3-54, A-13
ALU saturation (ALUSAT) bit, 2-4, 2-10,

A-4
ALU x-input sign (AS) bit, 2-11, A-14
ALU zero (AZ) bit, 2-11, A-13
AND, logical, 2-9
And breakpoints (ANDBKP) bit, 12-11
Arithmetic logic unit (ALU), 1-6, 2-1, 2-9

Instructions, 2-9, 2-12
Interrupts, 3-43
Operations, 2-9
Saturation, 2-10
Status, 2-4, 2-8, 2-10, 2-11, 2-20, 3-43

Arithmetic operations, 1-3, 2-9, 2-10
Arithmetic shifts, 2-1, G-11
Arithmetic status (ASTATx/y) registers,

2-8, A-13
Assembly language, 2-2
ADSP-21161 SHARC Processor Hardware Reference I-1

INDEX
Asymmetric data moves, 2-39
Asynchronous access mode, 5-43, 7-6,

7-12, 7-13, 7-44, 7-50, 7-94, 13-16,
G-8

Direct write, 7-56
For all external memory banks, A-65
Interface Timing, 7-14
Interface timing, 7-14
Read—bus master, 7-15
Read/Write—bus slave, 7-14
Slave write FIFO, 7-50
Starting a transfer, 7-48
Timing derivation, 7-17
Transfers, 7-42, 7-48
transfers, 7-48
Write—bus master, 7-17

Asynchronous transfers, G-1
Average instructions, 2-9, 2-36

B
Background registers (See Secondary

registers)
Background registers (See secondary

registers)
Bank activate (ACT) command, 8-2, 8-20,

8-32
Barrel-shifter (See shifter)
Base (Bx) registers, 4-2, 4-16, A-47, G-1
Bidirectional functions, 10-1
Binary log (floating-point operation), 2-9
Bit (bit manipulation) instruction, 3-5
Bit manipulation, 2-1, 2-23, G-11
Bit-reverse addressing, 4-1, 4-4, 4-8, A-3,

G-1
Bit-reverse addressing (BRx) bits, 4-4, 4-8,

A-3
Bit-reverse (Bitrev) instruction, 4-8, 4-17,

4-23
Bit test flag (BTF) bit, 3-54, A-17
BIT TST instruction, 2-8

Bit XOR instruction, 3-54
Booting, 1-14, 5-23, 5-35, 5-37, 13-71

16-bit SPI host boot, 11-39
32-bit SPI host boot, 11-38
8-bit SPI host boot, 11-41
Another DSP, 7-108
External port booting, 6-70
From a 16-bit SPI host, 11-39
From a 32-bit SPI host, 11-38
From a 8-bit SPI host, 11-41
From an EPROM, 6-71, 13-73, 13-74,

13-75
From the link port, 6-88, 6-89, 6-113,

6-114
Mode selection, 6-70, 6-89, 6-114
Multiple DSPs, 13-73
Multiprocessor booting from external

memory, 13-75
Multiprocessor EPROM booting, 13-73
Multiprocessor host booting, 13-73
Multiprocessor link port booting, 13-75
Multiprocessor SPI booting, 11-42
Sequential booting, 13-74
Single and multiple processors, 13-71
SPI, 11-34

Boot memory select (BMS) pin, 5-35, 6-42,
6-70, 6-89, 6-114, 7-10, 13-5, 13-12

Boot select override (BSO) bit, 5-32, 5-35,
6-31, 6-42, A-60

Boundary scan, 12-1, 12-29
Branch

Conditional, 3-15
Delayed, 3-15 to 3-18
Direct, 3-14, G-3
Indirect, 3-14

Branches and sequencing, 3-13
Branching execution, 3-13

Direct and indirect branches, 3-14
Immediate branches, 3-16

Breakpoint output (BRKOUT) pin, 12-8
I-2 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Breakpoint status shift (BRKSTAT)
register, 12-12

Breakpoint status (STATx) bit, 12-13
Breakpoint stop (BKSTOP) bit, 12-8
Breakpoint triggering mode (xMODE) bit,

12-10
Broadcast load, 4-1, 4-2, 4-3, 4-5, 5-51,

A-5, G-2
Broadcast load enable (BDCSTx) bits, 4-2,

4-4, 4-5, 5-40, A-5
Broadcast writes, 7-50, 7-57
BSDL file, 12-4
BSDL Reference Guide, 12-29
Buffer hang disable (BHD) bit, 6-31, 6-43,

12-11, A-61
Buffer hang override (BHO) bit, 12-11
Buffer overflow, circular, 4-9, 4-12, 4-15
Buffers

Link port, 6-83, 6-133
Reading from an empty buffer, A-61
SDRAM buffering, 8-16

Buffer status, 6-129, 6-136, 6-139
Built-in self-test operation (BIST), 12-28
Burst length, 8-22
Burst length, setting, A-84
Bursts

Sequential bursts, external port, 7-58
Burst transfer (BRST) pin, 7-6, 7-38, 7-89,

7-96, 13-6, 13-16
Burst transfers, 7-26, 7-29, G-2
Buses, 1-2, 1-10

Accessing the DSP bus, 7-79
Acquiring the bus, 7-45
addressing operations, 5-7
Arbitration, 7-93, 7-95, 7-96
arbitration, 5-7
Bus contention, A-48
Bus lock, 7-83, 7-92, 7-110
Bus master, 7-44, 7-79, 7-97

Timeout, 7-101

Buses (continued)
Bus slave, 7-79, 7-97
Bus slave defined, G-2
Bus synchronization, 7-105, 7-108
Conflict resolution ratio, 7-3
Data access types, 5-47
Deadlock, 7-44, 7-54, 7-82
DSP bus, 7-79
Enhancements, 1-17
Multiprocessor bus arbitration, 7-93
Priority, 5-39
Processor core, 1-17

Bus exchange (See program memory bus
exchange (PX) register)

Bus lock and semaphores, 7-110
Bus lock (BUSLK) bit, 7-102, 7-111, A-10
Bus master, current (CRBMx) bit, A-69
Bus master (Bm) condition, 3-55, 7-95,

7-111
Bus master count (BCNT) register, 7-102,

A-79
Bus master max time-out (BMAX) register,

7-101, A-79
Bus master output (BMSTR) pin, 13-5
Bus master select (CSEL) bit, A-5
Bus Request, multiprocessor (BRx) pins,

7-89, 7-94, 7-111, 13-5
Bus synchronized (BSYN) bit, 7-106, A-69
Bus Transition Cycle (BTC), 7-20, 7-45,

7-96, G-2
BYPASS instruction, 12-4

C
Cache disable (CADIS) bit, 3-11, A-10
Cache efficiency, 3-11
Cache freeze (CAFRZ) bit, 3-11, A-11
Cache hit/miss (See cache efficiency)
CALL instructions, 3-13
ADSP-21161 SHARC Processor Hardware Reference I-3

INDEX
Capacitors
Bypass, 13-69
Decoupling capacitors, 13-69
Loading, 13-67

CAPTURE state, 12-7
CAS before RAS transaction (CBR), 8-3,

8-37, 8-39
CAS latency, 8-2, 8-8, 8-17, 8-24
CAS-to-RAS delay (SDTRCD), 8-4, 8-21
Chained DMA

External port, 6-46
Link ports, 6-85
Serial ports, 6-99

Chained DMA enable, external port
(CHEN) bit, 6-32, A-80

Chained DMA enable (SCHEN_A and
SCHEN_B) bit, serial port, A-102

Chained DMA sequences, 6-25
Chain insertion mode, 6-29, 6-130
Chain pointer (CPx) registers, 6-7, 6-12,

6-25, A-88
Chip select (CS) pin, 7-42, 7-44, 7-79,

7-89, 13-8, A-75
Circular buffer addressing, 1-8, 4-2, 4-4,

4-12, A-6, G-2
Registers, 4-15
Setup, 4-13
SIMD and Long word accesses, 4-17
Wrap around, 4-15

Circular buffer addressing enable
(CBUFEN) bit, 4-2, 4-4, 4-14, A-6

Circular buffering, length and base
registers, A-47

Circular buffer x overflow interrupt (CBxI)
bit, A-30

Circular buffer x overflow status (CBxS)
bit, A-20

Clear, bit, 2-23
Clear interrupt (CI) Jump instruction, 3-14

Clip function, 2-9
CLKOUT disable (COD) bit, A-61
Clock and frame sync frequencies (DIV),

10-33
Clock cycles delays, 8-2, A-73
Clock derivation, 13-24
Clock distribution, 13-63
Clock divisor (CLKDIV) bits, A-112
Clock double (CLKDBL) pin, 13-6, 13-25,

13-26
Clock input (CLKIN) pin, 7-38, 7-89,

10-8, 12-1, 13-16, 13-24, 13-28
Clock output (CLKOUT) pin, 7-7, 7-96,

13-8, 13-62
Clock ratio, 13-28
Clock ratio configuration (CLK_CFGx)

pins, 13-25, A-70
Clock relationships, 13-27
Clock rising edge (CKRE) bit, 10-21,

A-101
Clocks

CLKOUT and CCLK clock generation,
13-27

Coordinating the SDRAM CLK rate,
8-3

Core clock and system clock relationship
to CLKIN, 13-27

Core clock ratio, 8-12, 13-28
Determining switching frequencies,

13-26
Determining the period, 13-28
Jitter, 13-63
Programming clock ratio example, 13-40
SPICLK, 11-3
System clock CLKIN, 10-8

Clock signal options, 10-40
Cluster multiprocessing, G-2
CODECs, 10-1
Code select (CSEL) bit, 3-56, 7-95, A-5
I-4 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Commands, SDRAM
Active command tRAS, 8-4
Bank activate (ACT), 8-2, 8-20, 8-21,

8-32, A-73
CBR automatic refresh, 8-3
Mode register set (MRS), 8-19
Precharge, 8-20, 8-29, 8-33, 8-37, A-74
Refresh, 8-29, 8-30, 8-37
Self refresh (SREF), 8-3, 8-20, 8-39

Companding (compressing/expanding),
1-14, 10-2, 10-39, G-2

Compare accumulation (CACCx) bits,
2-11, A-17

Compare function, 2-9
Complementary conditions, 3-59
Complementary registers, 2-40, G-5
COM port, McBSP (See Link Ports)
COM port, McBSP (See link ports)
Computational mode, 2-42
Computational mode, setting, 2-4
Computational status, using, 2-8
Computational units (See processing

elements)
Conditional

Branches, 3-15, 3-59, G-2
Complementary conditions, 3-59
Compute operations, 3-58
Conditions list, 3-54
Execution summary, 3-58
Instructions, 3-3, 3-53
Sequencing, 3-53
SIMD mode and conditionals, 3-57

Condition codes, 3-54
Conditioning input signals, 13-60
Configuration register, 8-3
Configuring and enabling the SPI system,

11-9
Configuring frame sync signals, 10-4
Conflict resolution ratio, G-2
Context switch, 1-9, 2-32

Core clock ratio, 8-12
Core hang, causes, A-121
Core-memory halt (COMHALT) bit,

12-12
Core-to-CLKIN ratio (CRAT) bit, A-70
Count (Cx) registers, 6-7, 6-11, A-87
Counter-based loops, 3-26, 3-27

(See also Non-counter-based loops)
Crosstalk, 13-68
Current Bus Master (CRBMx) bits, 7-95,

7-96
Current loop counter (CURLCNTR)

register, 3-31, A-45

D
Data, fixed- and floating-point, 2-1, G-1
Data access

conflicts, 5-7
Dual-data accesses, 5-5
Dual-data access restrictions, 5-5
Options, 5-52
(See also data moves)
Settings, 5-32

Data Address Generators (DAGs), 1-8, 4-1,
5-8, 5-40, 8-22, G-3

Data alignment, 4-19
Data move restrictions, 4-21
Data moves, 4-18
Enhancements, 1-17
Features, 1-5
Instructions, 4-23
Operations, 4-9
Setting Modes, 4-2
SIMD mode, 4-18
Status, 4-8

Data addressing mode, 2-42
Data alignment, 5-10, 5-25, 5-48, 7-1
Data alignment, link data, 9-12
Data buffers, 6-13
ADSP-21161 SHARC Processor Hardware Reference I-5

INDEX
Data bus (DATA) pins, 7-8, 7-38, 7-89,
13-9, 13-16

Data (Dreg) registers, G-3
Data fetch, external port, 7-3, G-3
Data file registers, listed, A-23
Data flow, 1-3, 2-1
Data flow multiprocessing, G-3
Data format, 2-2

Extended-precision normal word, 40-bit
floating-point, 2-5

External data, 6-46
Link data, 6-86
Normal word, 32-bit fixed-point, 2-6
Normal word, 32-bit floating-point, 2-4
Serial data, 6-99
Short word, 16-bit floating-point, 2-6

Data hold cycle, 7-12
Data independent transmit frame sync

(DITFS) bit, 10-22
Data I/O mask DQM (data I/O mask) pin,

8-3, 8-29
Data memory data select (DMDSEL) bit,

12-11
Data Memory (DM) bus, 1-2
Data moves, 1-10

Conditional, 3-59
Moves to/from PX, 5-14

Data packing, 1-12, 7-56, 7-58, 7-59,
7-110, 10-37

Data registers, 1-6, 2-30, 2-42, G-3
Data registers, secondary hi/lo (SRRFH/L)

bits, 2-33
Data transfers, using EPBx buffers, 7-58
Data type, external port (DTYPE) bit,

6-32, 6-43, 6-46, A-81
Data type, serial port (DTYPE) bit, 6-96,

6-109, 10-24, A-101
Data type and formatting (multichannel

and non-multichannel), 10-37, 10-38
Data types, 5-47

Deadlock resolution, 7-82, G-3
Deadlock (See bus deadlock)
Debugging, tools, 13-49
Decode address (DADDR) register, 3-5,

A-44
Decode address register, 3-2
Decode cycle, 3-7
Delayed branch

(DB) instruction, 3-15 to 3-18, 3-19
(DB) Jump or Call instruction, 3-17,

G-3
limitations, 3-19

Denormal operands, 2-5
Deposit bit field, 2-23
Divisor (DIVx) register, serial port, 10-4
DMA

Bus slave versus bus master, 7-59
Defined, G-4
DSP DMA Access To System Bus, 7-84
External port, 7-58
Interrupt-driven DMA, 6-125
Serial port, 6-108
SPI, 11-32
SPI master mode, 11-32
SPI slave mode, 11-33
Transfers, 7-58

DMA Address (DA) Registers, listed, A-49
DMA block transfers, 10-59
DMA channel

Buffer registers, listed, 6-13
Interrupt priorities, 6-126
Latency, 6-125
Parameter registers, listed, 6-13
Priority, 6-12, 6-22, 6-24, 6-44, 6-83,

6-99, 6-112
Status, 6-124

DMA channel priority rotation, external
port (DCPR) bit, 6-31, 6-43, A-61

DMA channel status (DMASTAT)
register, 6-125, A-90
I-6 ADSP-21161 SHARC Processor Hardware Reference

INDEX
DMA control (DMACx) registers, 6-6,
6-30, 7-103, A-80, G-4

DMA controller, 1-2, 1-15
Enhancements, 1-18, 1-19
Priority pathways, 6-22

DMA data
16-bit external transfers, 6-52
32-bit external transfers, 6-51
32-bit internal transfers, 6-54
48-bit internal transfers, 6-53
64-bit internal transfers, 6-53

DMA enable, external port (DEN) bit,
6-15, 6-32, A-80

DMA external request counter, 6-61
DMA grant (DMAGx) pins, 6-57, 6-67,

7-59, 7-96, 13-9, 13-16
DMA hardware handshake, 6-59, 6-63,

A-65
DMA hardware interface, 6-140
DMA hold off, 6-56, 6-62
DMA internal request & grant paths, 6-22
DMA parameter registers, defined, G-4
DMA pipeline, 6-61
DMA request (DMARx) pins, 6-54 to

6-67, 7-59, 13-9, 13-16
DMA sequences

Chaining sequences, 6-25
Chain insertion, 6-28
Chain set up and start, 6-28
Sequence complete interrupt, 6-126
Sequence end, 6-21
TCB loading, 6-26, G-4

DMA slave, interrupts, 9-19
DMA targets

External memory, 6-49
Internal memory, 6-139

DMx register, 12-13, 12-15
DO UNTIL instruction, 3-24

(See also loops)

DSP
Architecture overview, 1-5
Design advantages, 1-1

DSP serial mode, 10-59
Dual add and subtract, 2-36
Dual-data accesses, 5-52
Dual processing element moves (See

broadcast load)
.D unit (See DAGs or ALU)
D unit (See DAGs or ALU)

E
Edge-sensitive interrupts, 3-40, A-10, G-4
Effect latency (See latency)
E field, address, A-42
EMULATION instruction, 12-4
Emulation (JTAG), 1-2
Emulation status EMU pin, 13-10, 13-54
Emulator 48-bit PX shift (EMUPX)

register, 12-6
Emulator 64-bit PX shift (EMU64PX)

register, 12-7
Emulator clock2 (EMUCLK2) register,

12-3, 12-16
Emulator clock (EMUCLK) register, 12-16
Emulator control shift (EMUCTL)

register, 12-8
Emulator enable (EMUENA) bit, 12-8
Emulator idle (EMUIDLE) instruction,

12-17
Emulator interface illustrated for ADI

JTAG processors, 13-50
Emulator Interrupt (EMUI) bit, A-27
Emulator interrupt enable (EIRQENA) bit,

12-8
Emulator Nth event counter (EMUN)

register, 12-3, 12-16
Emulator PC shift (EMUPC) register, 12-7
Emulator PM data shift (EMUPMD)

register, 12-5
ADSP-21161 SHARC Processor Hardware Reference I-7

INDEX
Emulator pod, connection, 13-56
Emulator ready (EMUREADY) bit, 12-12
Emulator shift (EMUPC) register, 12-7
Emulator space (EMUSPACE) bit, 12-12
Emulator status shift (EMUSTAT) register,

12-11
Enable breakpoint (ENBx) bit, 12-10
Enable (BRKOUT) pin, 12-8
Endian format, 1-14, 10-36, G-4
End-of-loop, 3-25
EPROM booting, 6-70, 6-71
EPROM boot select (EBOOT) pin, 13-10
Equals (EQ) condition, 3-54
Examples

bit reverse addressing, 4-8
Cache inefficient code, 3-12
Clock derivation, 13-28
Configuring flags, 13-37
Direct branch, 3-14
DO UNTIL loop, 3-23
Dual processor system example, 8-25
External port DMA programming

example, 6-76
Interrupt service routine, 3-48
Long word moves, 5-49
Programming clock ratio, 13-40
PX register transfers, 5-10 to 5-15
Rotating Priority Arbitration, 7-101

SDRAM programming examples, 8-40
Serial port programming examples,

10-67
Single and dual data access, 5-52
SPI programming examples, 11-44
Token passing, 9-27

Examples, timing
Framed vs. unframed data, 10-45
Host acquisition of bus, 7-46
Link port handshake, 9-10
Normal vs. alternate framing, 10-45
Serial port multichannel transfer, 10-52

Examples, tming (continued)
Serial port word select, 10-52
Typical synchronous write, 7-23

Execute cycle, 3-7
Execution stalls, bus transition, 7-97
Explicit versus implicit operations, G-5
Exponent derivation, 2-1, G-11
Extended precision normal word, 5-25,

5-50
Data access, 5-70
Data storage, 5-2
Mixed data access, 5-50
SIMD mode access, 5-74

External bank access mode (EBxAM) bits,
5-34, 5-42, A-66

External bank x waitstates (EBxWS) bits,
5-35, 5-45, 7-20, A-66, G-12

External bus arbitration, 6-24
External bus priority (EBPRx) bits, 5-33,

A-61
External handshake mode, 6-49, 6-66

DMA exceptions, 6-66
(EXTERN) bit, 6-33, 6-47 to 6-66, A-82
program control (PCI) interrupt, 6-67

External instruction execution packing
modes, 5-102

External memory, 1-18, 5-16, 5-22, G-5
Access modes, 5-42, G-8
Access timing, 7-13
Addressing registers, A-90
Banks, 7-9
Interface, 7-3, 7-6

External memory addresses, A-43
External memory DMA count (ECEPx)

registers, 6-8, 6-12, 6-55, 6-66, A-90
External memory DMA index (EIEPx)

registers, 6-7, 6-12, 6-55, 6-66, A-89
External memory DMA modifier (EMEPx)

registers, 6-8, 6-12, 6-55, 6-66, A-89
I-8 ADSP-21161 SHARC Processor Hardware Reference

INDEX
External port, 1-2, 1-12, 5-7, 7-1, G-5
Buffer modes, 6-42
Buffer status, 6-129
Conflict resolution, 7-3, G-3
Data packing, 1-12
DMA channel priority modes, 6-43
DMA channel priority swap, 6-24
DMA channel transfer modes, 6-46
DMA handshake modes, 6-47
DMA programming examples, 6-76
DMA setup, 6-68
Enhancements, 1-18
Latency, G-2
Modes, 6-30, 7-3
Packing status, 6-129
Selecting the external port buffer’s mode,

A-82
Setting External Port Modes, 7-3
Single-word transfers, 7-58
Status, 6-127
Termination values, 13-16

External port address (EPAx) register,
12-16

External port boot (EBOOT) pin, 6-70,
6-89, 6-114

External port buffer (EPBx) register data
transfers, 7-58

External port buffer (EPBx) registers, 6-4,
A-61, A-76

External port buffer x DMA interrupt
(EPxI) bit, A-30

External port bus priority (PRIO) bit, 6-33
External port DMA

Channels, 6-49
DMA hardware interface, 6-140
DMA setup, 6-68
Modes, 6-46, 6-47

External port DMA channel priority
rotation (DCPR) bit, A-61

External port (EP) registers, listed, A-49

External port FIFO buffers, 6-130, G-5
External port halt (EPHALT) bit, 12-12
External port-link port rotating DMA

channel priority (PRROT) bit, A-61
External port packing mode (PMODE)

bits, 6-32
External port stop (EPSTOP) bit, 12-9
EXTEST instruction, 12-4
Extract bit field, 2-23
Extract exponent, 2-23

F
False always (FOREVER) Do/Until

condition, 3-56
FAX for information, 1-21
Fetch address (FADDR) register, 3-2, A-44
Fetch cycle, 3-7
Fetched address, 3-2
Field deposition/extraction, 2-1, G-11
FIFO buffer status, external port (FS) bit,

6-128, A-84
File Transfer Protocol (FTP) site, 1-21
Fixed-point

ALU instructions, 2-12
Data, 2-1, G-1
Multiplier instructions, 2-21, 2-36
Operands, 2-10, A-14
Operations, 2-31
Saturation values, 2-19

Fixed-point overflow interrupt (FIXI) bit,
3-43, A-31

Fixed priority, 6-22, 6-44, 6-84, 6-99,
6-112

Flag input (FLAGx_IN) conditions, 3-55
Flag input/output (FLAGx) pins, 7-82,

10-7, 13-10, 13-16, 13-34, 13-39
Flag input/output (FLGx) bits, 13-34,

A-10, A-37
Flag input/output select (FLGxO) bits,

A-10
ADSP-21161 SHARC Processor Hardware Reference I-9

INDEX
Flag input/output value (FLAGS) register,
13-34, A-37

Flag pins, configuration example, 13-37
Flag update, 2-12, 2-20, 2-27, 2-46, 3-43,

4-9, 5-46, 7-82, 13-39, G-6
Floating-point

ALU instructions, 2-14
Data, 2-1, 2-7, G-1
Data format (RND32) bit, 2-4
Invalid operation (FLTII) interrupt,

3-43
Multiplier instructions, 2-21
Operations, 2-31, 2-36

Floating-point invalid interrupt (FLTII)
bit, A-31

Floating-point overflow interrupt (FLTOI)
bit, 3-43, A-31

Floating-point underflow interrupt
(FLTUI) bit, 3-43, A-13, A-31

Flow-through SBSRAM (See SBSRAM)
Flush DMA buffers/status (FLSH) bit,

6-30, 6-128, A-83
Format conversion, 2-9
Format packing (Fpack/Funpack)

instructions, 2-6
Fractional

Data, 2-6, 2-7
Input(s), 2-22
Results, 2-17, C-6

Framed versus unframed data, 10-42
Frame sync

early versus late, 10-44
(FSx) pins, 10-4, 13-10
internal vs. external, 10-42
options, 10-41
rates, setting, 10-49
required (FSR) bit, A-102
signals, configuration, 10-4

Full-duplex operation, specifications, 10-4
Functions, ABS (absolute value), 2-9

G
General-purpose (GPx) registers, 6-7, 6-12,

6-26, A-89
Global interrupt enable (IRPTEN) bit, A-4
Greater or Equals (GE) condition, 3-54
Greater Than (GT) condition, 3-54
Ground plane, 13-68

H
Handshake and idle for DMA enable

(HIDMA) bit, 6-31, A-67
Handshake mode, 6-48, 6-57, 6-144

DMA, A-65
Enable/disable transition, 6-62
Operation, 6-60
Register handshake/write-back

messaging, 7-77
Transfer Size, 6-58, 6-68

Handshake mode (HSHAKE) bit, 6-33 to
6-66, A-82

Handshaking
External port, 7-4, 7-42, 7-87
External port DMA, 6-47
Link port, 9-2, 9-10

Harvard architecture, 5-4, G-6
Hold off

DSP, bus transition, 7-97
DSP, during DMA, 6-62
External device, during DMA, 6-56
SBSRAM, 7-40

Hold time, inputs, 13-19
Hold time cycle, 5-45, 7-12, G-6
Host bus acknowledge (REDY) pin, 13-13
Host Bus Grant (HBG) pin, 7-42, 7-44,

7-79, 7-89, 7-96, 7-107, 13-11
Host bus master (HSTM) bit, A-69
Host bus request HBR pin, 7-42, 7-44,

7-111, 8-29, 13-10
Host bus width (HBW) bit, A-60
I-10 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Host interface, 1-13
Access to link buffers, 9-14
Booting, 6-70
Deadlock resolution See bus deadlock
Deadlock Resolution With SBTS, 7-54
Enhancements, 1-18
signals, 7-44
Status, 7-76
Uniprocessor, 7-50

Host most significant word first packing
(HMSWF) bit, 6-31, A-60

Host packing mode (HPM) bits, 6-31,
6-42, 7-43

Host packing status (HPS) bit, 6-127, A-70
Host Processor Interface, 7-42
Host Transfer Timing, 7-51
Host Transition Cycle (HTC), 7-45,

13-17, G-6
Hysteresis on Reset (RESET) pin, 13-61

I
I2S control bits, 10-49
I2S mode, 10-48, 10-59
I2S support, 1-14
IDCODE instruction, unsupported, 12-4
Identification, processor (PIDx) bit, A-78
Identification code (IDC) bit, A-69
Identification (ID2-0) pin, 7-94, 13-11,

13-16
Idle cycle, 7-10, 7-12, G-6
IDLE instruction, 3-1, 3-48
IDLE instruction, defined, G-6
Idle mode (INIDLE) bit, 12-12
IEEE 1149.1 JTAG specification, 1-16,

G-7
IEEE 1149.1 JTAG standard, 13-56
IEEE 754/854 floating-point data format,

2-4, C-1

IEEE floating-point number conversion,
2-6

Illegal input condition detected (IICD) bit,
5-41, A-27

Illegal IOP register access (IIRA) bit, A-20
Illegal I/O processor register access enable

(IIRAE) bit, 5-34, 5-41, A-11
Immediate branch, 3-16
Implicit operations, 5-41

Broadcast load, 4-5
Complementary registers, 2-40
Long Word (LW) accesses, 5-48
Neighbor registers, 5-49
SIMD mode, 2-40

In circuit signal analyzer (ICSA) function,
12-11, 12-17

INCLUDE directory, 10-10
Increment instruction, 2-9
Index (Ix) registers, 4-2, 4-15, A-47, G-7
Indirect addressing, 1-8
Indirect branch, 3-15, G-7
Inductance (run length), 13-67
Infinity, round-to, 2-5
Input filtering, link port, 13-60
Input/Output (IO) bus, 1-2
Input setup and hold time, 13-19
Input signal conditioning, 13-60
Input Synchronization Delay, 13-33
Instruction

External memory fetch, 7-3, 7-56, G-3
Moves, 7-56
Transfers, 7-56, 7-110

Instruction (bit), 3-5
Instruction cache, 1-9, 3-9, 5-5
Instruction dispatch/decode (See program

sequencer)
Instruction Execution Mode, external

packed (IPACK) bit, A-62
Instruction pipeline, 3-2, 3-7
Instruction register, 12-4
ADSP-21161 SHARC Processor Hardware Reference I-11

INDEX
Instructions
ADD, 2-1, 2-9, 2-36
AVE, 2-9, 2-36
BIT CLR, 2-23
BIT TST, 2-8
Computational, 2-1
Conditional, 2-8, 2-42

, 7-10
conditional, 2-44
Decrement, 2-9
delayed branch (DB), 3-19
FDEP, 2-25
Multiplier, 2-15, 2-20

Instruction set
Changes, 1-20
Enhancements, 1-20

Instruction word
Data access, 5-50
Storage, 5-2
Word Rotations, 5-25

Instruction Word Transfer (IWT) bit, 7-49
Integer

Input(s), 2-22
Results, 2-16, C-6

Integer data, 2-6
Interleaved data, 5-100, G-7
Internal address bus (IA), 8-26
Internal Buses, 1-10
Internal interrupt vector table (IIVT) bit,

5-32, 5-37, A-60
Internal I/O bus arbitration (request &

grant), 6-22
Internal memory, 5-2, 5-16, 5-18, 5-24,

G-7
Internal memory 32-bit transfers (INT32)

bit, A-84
Internal memory data width (IMDWx)

bits, 5-12, 5-32, 5-37, 5-47, 6-86,
A-60

Internal memory DMA Count (Cx)
registers, A-87

Internal memory DMA index (IIx)
registers, 6-7, 6-9, A-87

Internal memory DMA modifier (IMx)
registers, 6-7, 6-9, A-87

Internal serial clock (ICLK) bit, 10-24
Internal timer, 8-3
Internal transmit frame Sync (ITFS) bit,

10-25
Interprocessor Messages and Vector

Interrupts, 7-76
Interrupt and Timer Pins, 13-33
Interrupt controller, 3-2
Interrupt-driven I/O, external port

(INTIO) bit, 6-43, 6-128, 6-130,
A-82

Interrupt-driven transfers
External port, 6-130
Link port, 6-134
Serial port, 6-136

Interrupt enable, global (IRPTEN) bit,
3-41, A-4

Interrupting IDLE, 3-48
Interrupt input (IRQ2-0) pins, 13-11,

13-33
Interrupt input x interrupt (IRQxI) bit,

A-28
Interrupt latch (IRPTL) register, A-27
Interrupt latency, 3-36

Cache miss, 3-36
Delayed branch, 3-36
IRQx and multiprocessor vector

standard, 3-38
Single-cycle instruction, 3-36
Writes to IRPTL, 3-35

Interrupt mask (IMASK) register, 3-41,
A-31

Interrupt mask/mask pointer, link port
(LIRPTL) register, 3-42, 3-46, A-34
I-12 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Interrupt mask pointer (IMASKP) register,
3-45, A-32

Interrupt nesting enable (NESTM) bit,
3-45

Interrupts, 1-9, 2-8, 3-1, 3-34, 4-9, 5-41,
5-42, 5-46, A-28, G-7

Arithmetic, 3-43
Clear interrupt (CI) Jump, 3-48
Conditions for generating interrupts,

10-60
Data Address Generators (DAGs), 4-14
Delayed branch, 3-18
DMA interrupts, 6-125 to 6-130
DMA slave, 9-19
Hold off, 3-39
Idle instructions, 3-48
Inputs (IRQ2-0), 3-34
Interrupt sensitivity, 3-40, A-10, G-7
Interrupt vector table, 5-37, B-1
IRPTL write timing, 3-35
Latch status for, A-27
Latency (See interrupt latency)
Link port, spurious interrupts, 9-9, 9-22
Link ports, 9-17
Masking and latching, 3-41, 3-42,

6-126, 9-19
Multiprocessing, 3-49
Nested interrupts, 3-45, A-4
Non-maskable RSTI, A-60
PC stack full, 3-53
Program control (PCI) interrupts, 6-67
Response, 3-34
Re-using, 3-47
Sensitivity, interrupts, A-10
Software, 3-35
Spurious, link port, 9-9, 9-22
Timer, 3-51
Vector interrupts, 7-76, G-9
VIRPT, 3-45

Interrupts and sequencing, 3-34

Interrupt vector, sharing, 10-7
Interrupt x edge/level sensitivity (IRQxE)

bits, 3-40, A-10
Interval timer, 3-50
INTEST instruction, 12-4
IO architecture, 1-19
IOFLAG value register, A-38
I/O interface to peripheral devices, 10-1
I/O interrupt conditions, 6-124
IOP addresses for SPI registers, 11-9
I/O processor, 1-2, 1-14, 5-16, 6-1, 6-9,

6-81, 6-96
DMA channel priority, 6-22
External port modes, 6-29
Link port modes, 6-81
Registers, G-6
Serial port modes, 6-95
Shadow registers, 7-55
Status, 6-121

I/O processor registers, listed, A-48
IOP Shadow Registers, 7-55
I/O stop (IOSTOP) bit, 12-9
IR decode space, 12-2

J
Joint Electronic Device Engineering

Council (JEDEC), 8-9
JTAG

boundary register, 12-18
data output (TDO) pin, 13-15
emulation, designing for, 13-49
emulator references, 13-56
in circuit emulator (ICE), 12-3
instruction register codes, 12-4
interface, access to features, 12-2
interface pins, 13-41
logic, 12-3
pod connector, illustrated, 13-58
port, 1-2, 1-16, 12-1, 12-3, 13-49
ADSP-21161 SHARC Processor Hardware Reference I-13

INDEX
JTAG (continued)
port, defined, G-7
references, additional documents, 13-56
scan chain, restrictions, 13-54
signals, 13-54
signals, listed, 13-52
specification, IEEE 1149.1, 12-1, 12-3,

12-4, 12-29
test access port (TAP), 12-3, 13-49,

13-55
test clock (TCK) pin, 13-15
test data input (TDI) pin, 13-15
test-emulation port, 12-1 to 12-29
test mode select (TMS) pin, 13-15
test reset (TRST) pin, 13-16

JUMP instructions, 3-1, 3-13, G-7
Clear interrupt (CI), 3-14, 3-48
Loop abort (LA), 3-14, 3-24
Pops status stack with (CI), 3-45

L
Latch, characteristics, 12-1
Latch status for interrupts, A-27
Latchup, 13-60
Late frame sync (LAFS) bit, 10-25
Latency, 3-5, 3-11, 3-36, 6-30, 6-96,

6-108, 6-125, G-3
Direct read, 7-57
DMA status, A-91
Input Synchronization, 13-33
Instruction fetch, external memory, 7-3
I/O processor registers, A-48
Link ports, 9-13
Shadow registers, 7-55
Slave write FIFO, 7-56
Synchronous write, 7-22
System registers, 3-5
Vector interrupt, 3-38

Least significant bits (LSB), 3-9

LEFTO operation, A-17
LEFTZ operation, A-17
Length (Lx) registers, 4-2, 4-16, A-47, G-7
Less or Equals (LE) condition, 3-54
Less than (LT) condition, 3-54
Level-sensitive interrupts, 3-40, A-10, G-7
Line run length (inductance), 13-67
Line termination, link port, 9-30
Link buffer assignment (LARx) bits, 6-82
Link buffer DMA chaining enable

(LxCHEN) bit, 6-82, 6-85, 9-7, A-93
Link buffer DMA enable (LxDEN) bit,

6-15, 6-82, 6-85, 9-7, 9-13, A-93
Link buffer enable (LxEN) bit, 6-82, 6-83,

9-7, A-93, A-94
Link buffer extended word size (LxEXT)

bit, 6-83, 9-7, 9-13, A-92, A-93, A-95
Link buffer receive packing error status

(LRERRx) bits, 9-22, A-96
Link buffer status (LxSTATx) bits, 9-13,

A-96
Link buffer-to-port connections, 9-3
Link buffer transmit/receive (LxTRAN)

bit, 6-82, 6-86, 9-7, A-93, A-94
Link buffer x DMA interrupt mask

(LPxMSK) bit, A-35
Link buffer x DMA interrupt mask pointer

(LPxMSKP) bit, A-35
Link (LSP) registers, listed, A-50
Link port, 1-2, 1-15, 1-19, 9-1, 9-10, G-7

Booting, 6-85, 6-88, 6-89, 6-113, 6-114
Buffers, 6-83, 6-133, 9-3
Data transfers, cluster, 7-93
Designing for link ports, 9-30
DMA, 6-85, 6-86, 6-112, 9-4, 9-16
Enhancements, 1-19
Handshake timing, 9-10
Identifying the one to service, 9-21
Interrupt-driven transfers, 6-134
I-14 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Link port (continued)
Interrupts, 9-17 to 9-22
Line termination, 9-30
Priority modes, 6-83
Status, 6-131, 6-133
Throughput, 9-31
Token passing, 9-27
Transmission errors, 9-22

Link port acknowledge (LxACK) pins, 9-2
to 9-12, 13-12, 13-16

Link port assignments (LABx) bits, A-96
Link port boot (LBOOT) pin, 6-70, 6-89,

6-114, 13-12
Link port buffer (LBUFx) registers, 6-4,

9-3, 9-12, A-92
Link port buffer x DMA interrupt (LPxI)

bit, A-34
Link port clock divisor (LxCLKD) bit,

A-93, A-95
Link port clock divisor (LxCLKDx) bits,

9-8, 9-10, 13-26, 13-28
Link port clock (LxCLK) pins, 9-2, 9-10,

9-12, 13-11, 13-16
Link port control (LCTL) register, 6-6,

6-81, 9-9, 9-13, A-92, A-93
Link port data (LxDAT7-0) pins, 7-8, 9-2,

9-3, 9-12, 13-11, 13-16
Link port data path width (LxDPWID) bit,

9-8, 9-10, A-94, A-96
Link port DMA channel priority rotation

(LDCPR) bit, 6-82, 6-83, A-61
Link port DMA interrupts, latch and mask

bits, 3-43
Link port-external port rotating DMA

channel priority (PRROT) bit, A-61
Link port input filter circuits, 13-60
Link port interrupt DMA summary

interrupt (LPISUMI) bit, 3-43,
6-126, A-29, A-34

Link port interrupt (LIRPTL) register,
3-46, A-34

Link port pulldown resistor, caution when
enabled, 9-9

Link port pulldown resistor disable/enable
(LxPDRDE) bit, 9-8, 9-12, A-94,
A-95

Link port receive mask (LxRM)) bits,
6-131, A-98

Link port receive request status (LxRRQ)
bits, 6-131, A-99

Link port service request interrupt (LSRQI)
bit, 6-126, 6-133, 9-9, 9-17, A-30

Link port service request (LSRQ) register,
6-134, 9-19, A-93, A-98

Link port transmit mask (LxTM) bits,
6-131, A-98

Link port transmit request status (LxTRQ)
bits, 6-131, A-98

Logical operations, 2-9
Logical shifts, 2-1, G-11
Long word, 5-25, 5-48, 5-50

Data access, 5-10, 5-48, G-9
Data moves, 5-48
Data storage, 5-2
SIMD mode, 5-80
Single Data, 5-76
SISD Mode, 5-78

Loop, 3-1, 3-22, G-8
Address stack, 3-5, 3-29
Conditional loops, 3-23
Counter stack, 3-30, 3-31
End restrictions, 3-25
Status, 3-30
Termination, 3-3, 3-24, 3-30, 3-31, 3-54

Loop abort (LA) Jump, 3-14, 3-24
Loop address stack, 3-29
Loop address stack (LADDR) register,

A-45
Loopback mode, 9-3
ADSP-21161 SHARC Processor Hardware Reference I-15

INDEX
Loop counter expired (LCE) condition,
3-22, 3-56

Loop counter (LCNTR) register, 3-31,
3-32, A-45

Loop counter stack, 3-30
Loop counter stack, access, A-45
Loops and sequencing, 3-22
Loop stack empty (LSEM) bit, 3-31, A-21
Loop stack overflow (LSOV) bit, 3-31,

A-21
Low active transmit frame sync (LFS, LTFS

and LTDV) bit, 10-25, A-102
.L unit (See ALU)
L unit (See ALU)

M
Mantissa (floating-point operation), 2-9
Masking interrupts, 3-41
Masking interrupts, link port, 9-19
Master In Slave Out (MISO) pin, 11-6
Master mode, 6-48, 6-50

16-bit external transfers, 6-52
32-bit external transfers, 6-51
32-bit internal transfers, 6-54
48-bit internal transfers, 6-53
64-bit internal transfers, 6-53
Controls, 6-51
Internal address/transfer size generation,

6-52
SPI, 11-25
Transfer Size, 6-52

Master mode enable (MASTER) bit, 6-32,
6-47 to 6-66, A-82

Master Out Slave In (MOSI) pin, 11-6,
11-22

Maximum burst length (MAXBL) bit,
A-84

Max/Min function, 2-9

Memory, 1-2, 1-11, 5-1, 5-8, 5-16, 5-24,
G-7

Access priority, 5-5, 5-39, 5-82
access priority, 5-7
Access types, 5-40, 5-46, G-8
Access word size, 5-47
addressing external memory, A-90
Asynchronous interface, 5-43, G-8
Banked external memory, 7-9
Banks, 5-2, 5-22, 5-38
banks, 5-2
Banks of memory, 7-9, G-8
blocks, 5-2 to 5-8, 5-18, 5-37
blocks, defined, G-8
Booting, 5-23, 5-35
Boot memory, 5-23, 7-10
Boot memory, defined, G-1
Columns of memory, 5-8
Data types, 5-47
Enhancements, 1-18
internal memory addresses, A-43
Mixing 32-Bit & 48-Bit Words, 5-26
mixing 32-Bit and 48-Bit Words, 5-26
mixing 40/48-bit and 16/32/64-bit data,

5-24, 5-31
Mixing word width

SIMD mode, 5-84
SISD mode, 5-82

Multiprocessor, 5-19
Synchronous interface, 5-43, G-8
Transition from 32-bit/48-bit data, 5-30
Unbanked memory, 5-22

Memory map
restrictions, A-42

Memory mapped devices, 6-12
Memory mapped registers, 5-16, A-47,

A-51
Memory read RD pin, 6-54, 7-9, 7-38,

7-89, 7-96, 13-13, 13-16
I-16 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Memory select (MSx) pins, 5-22, 5-39, 7-8,
7-9 to 7-96, 7-97, 7-107, 8-4, 8-8,
8-32, 13-12, A-75

Memory test (MTST) bit, 12-11
Memory test shift (MEMTST) register,

12-2, 12-13
Memory test shift (MEMTST) register ,

12-13
Memory transfers, 5-53

16-bit (Short word), 5-54
32-bit (Normal word), 5-62
40-bit (extended-precision normal

word), 5-70
64-bit (Long word), 5-76

Message (MSGRx) registers, 7-76, 7-77,
A-77

M field, address, A-42
Microprocessor interface, 7-85
µ-law companding
Mnemonics (See instructions)
Mode control 1 (MODE1) register, A-3
Mode control 2 (MODE2) register, A-10
Mode control 2 shadow

(MODE2_SHDW) register, A-78
Mode mask (MMASK) register, 3-44,

4-14, A-8
Mode register

Defined for SDRAM, 8-3
Mode register set (MRS) command, 8-19
Modes, multichannel, 10-2
Modified addressing, 4-10, G-8
Modify address, 4-1, G-8
Modify instruction, 4-14, 4-17
Modify (Mx) registers, 4-2, 4-15, A-47,

G-8
Modulo addressing, 1-8
Most significant word first, packing

(MSWF) bit, 6-32, 6-42, A-81
Multichannel buffered serial port, McBSP

(See serial ports)

Multichannel mode, 10-2, G-11
Multichannel receive channel select

(MRCSx) registers, A-114
Multichannel selection registers, 10-57
Multichannel transmit compand select

(MTCCSx) registers, A-113
Multifunction computations, 2-34, G-8
Multi-master error (MME) bit, 11-30
Multiple DSP connection to JTAG header

illustrated, 13-54
Multiple DSP systems, 13-51
Multiplier, 1-6, 2-1, G-9

Clear operation, 2-18
Input modifiers, 2-21
Instructions, 2-15, 2-20
Operations, 2-15, 2-19
Result (MRF/B) registers, 2-15, 2-16
Rounding, 2-18
Saturation, 2-18
Status, 2-8, 2-19, 2-20

Multiplier fixed-point overflow status
(MOS) bit, 2-20, A-19

Multiplier floating-point invalid (MI) bit,
2-19, A-16

Multiplier floating-point invalid status
(MIS) bit, 2-20, A-20

Multiplier floating-point overflow status
(MVS) bit, 2-20, A-19

Multiplier floating-point underflow (MU)
bit, 2-19, A-16

Multiplier floating-point underflow status
(MUS) bit, 2-20, A-20

Multiplier negative (MN) bit, 2-19, A-14
Multiplier overflow (MV) bit, 2-19, 3-55,

A-15
Multiplier results (MRFx and MRBx)

registers, listed, A-24
Multiplier signed (MS) bit, 3-55
Multiply—accumulator (See multiplier)
ADSP-21161 SHARC Processor Hardware Reference I-17

INDEX
Multiprocessing
Booting, 6-71, 7-108
Bus arbitration, 7-93
Cluster Multiprocessing, 7-90, 7-91
Data flow multiprocessing, 7-90
Direct read and write, 7-109
DSP Interface, 7-87
Interface, 1-14, 1-19
Interface Status, 7-112
Interrupts, 3-49
Local memory, 7-85
Memory, 5-16, 7-3, 7-12, A-43, G-9
Multiprocessing pins, 7-94
Multiprocessing System Architectures,

7-90
SDRAM Dual processor system example,

8-24
SIMD processing, 7-93
SPI booting, 11-42
System, G-9
System architectures, 7-90
Vector interrupt, 3-49, G-9
wand local memory, 7-85

Multiprocessing operation, SDRAM, 8-24,
8-38

.M unit (See multiplier)
M unit (See multiplier)

N
Nearest, round-to, 2-5
Negate breakpoint (NEGx) bit, 12-9
Nested interrupt routines, 3-3
Nesting Multiple interrupts (NESTM) bit,

A-4
No boot mode (NOBOOT) bit, 12-11
Non-counter-based loops, 3-27, 3-28

(See also counter-based loops)
NOP command, 8-22, 8-37

Normal word, 5-25, 5-50
Accesses with LW, G-9
Data access, 5-50
Data storage, 5-2
Mixing 32-bit data and 48-bit

instructions, 5-25
Multiprocessor memory, 5-21
SIMD mode, 5-64, 5-68
SISD mode, 5-62, 5-66

Not, Logical, 2-9
Not-a-number (NAN), 2-5
Not Equal (NE), 3-54

O
Open drain drivers

Support, 1-15
Operands, 2-5, 2-9, 2-15, 2-23, 2-30, G-3
Operands and results

Storage for, A-23
Optimizing cache usage, 3-11
Optimizing DMA throughput, 6-139
Or, Logical, 2-9
Overflow (See ALU, multiplier, or shifter)

P
Paced master mode, 6-48, 6-54
Packed instruction mode (IPACK) bit,

A-62
Packing

16- to 32-bit, 7-69
16- to 48-bit, 7-75
32- to 64-bit from host, 7-66
40- to 48-bit from host, 7-74
8- to 48-bit, 7-68, 7-76
Data, 1-12, 6-12, 6-42, 6-49, 6-67, 7-56
External port status, 6-129
I-18 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Packing (continued)
Host data packing, 7-59
Link port status, 6-133
Packing mode combinations, 5-102,

7-60
SPI word packing, 11-37

Packing 16-bit to 32-bit Words (PACK)
bit, 6-97, 6-98, 6-111, A-101

Packing enable (PACKEN) bit, SPI port,
11-14, A-119

Packing mode (PMODE) bits, 5-36, 6-42,
7-110, A-81

Packing status, external port (PS) bits,
6-127, A-85

Parallel assembly code (See Multifunction
computation or SIMD operations)

Parallel operations, 2-34, G-8
Pass function, 2-9
PCB transmission line, 13-64
PC stack pointer (PCSTKP) register, 3-20
Peripherals, 1-2, 1-11, 5-7, 7-4, 7-9, 9-1,

9-30, G-7, G-9
connecting to link ports, 9-31
I/O interface to, 10-1

Pin, reset states, 13-22
Pin connections, SDRAM, 8-7
Pin descriptions, 13-2
Pin states at reset, 13-19, 13-22
Pipelined SBSRAMs (See SBSRAM), 7-40
Pipelining with the SDBUF bit, A-75
Plane, ground, 13-68
PLL-based clocking, 13-24
PLL ratios, 13-25
Pod logic

DSP 2.5V pod logic, 13-58
Pod logic, DSP 2.5V pod logic, 13-57,

13-59

Pop
Loop counter stack, 3-31
Program counter (PC) stack, 3-13
Status stack, 3-45

Porting from previous SHARCs
Assembly syntax, 2-31
Booting, 6-70, 6-88
Bus lock, 7-54
Circular Buffer Enable (CBUFEN) bit,

4-4, 4-14
Conditional instructions, 7-10
Instruction Word Transfer (IWT) bit,

7-49
Link ports, 9-1, 9-9
Multiprocessor Memory Space

Waitstates (MMSWS) bit, 7-13
Paged DRAM boundary, 7-12
Performance, 2-39
Symbol changes, 1-20

Port rotate rotating DMA channel priority,
link–external ports (PRROT) bit,
6-24, 6-82, 6-85, A-61

Post-modify addressing, 1-8, 4-1, 4-10,
4-23, G-10

Power sequence, JTAG emulator, 13-56
Power supply, analog (AVDD) pin, 13-5
Power supply, analog return (AGND) pin,

13-5
Power supply, core (VDDINT) pin, 13-16
Power supply, ground (GND) pin, 13-10
Power supply, I/O (VDDEXT) pin, 13-16
Power-up options, SDRAM, 8-19
Precharge command, 8-29, 8-32, 8-33,

8-37, A-74
Precharge command, defined, 8-3
Precision, 1-5, 2-4, 2-5, 2-6, G-10
Pre-modify addressing, 1-8, 4-1, 4-10,

4-23, G-10
Primary registers, 1-9, 2-30
ADSP-21161 SHARC Processor Hardware Reference I-19

INDEX
Priority
Access, 7-103
Fixed and rotating, 7-92
Rotating priority, 7-92
Rotating Priority Arbitration Example,

7-101
Priority, DMA requests (See also DMA

channel priority, Rotating priority, and
Fixed priority), 6-43

Priority, external port-bus (PRIO) bit,
7-103, A-83

Priority access (PA) pin, 7-89, 7-94, 7-103,
13-13, 13-16, A-83

Priority bus arbitration select, rotating
(RPBA) pin, 13-13

Probes, oscilloscope, 13-70
Processing elements, 1-1, 1-6, 1-7, 2-1,

2-31
Processing element Y enable (PEYEN) bit,

SIMD mode, 2-4, 2-38, 4-3, 4-6,
4-18, 5-34, 5-39, A-5

Processor clock frequency, 10-1
Processor core, 1-5

Access to link buffers, 9-13
Buses, 1-10, 1-17
Enhancements, 1-17

Program control interrupt (PCI) bit, 6-25,
6-26, 6-67, 6-126

Program counter (PC) register, 3-2, A-41
Program counter (PC) relative address,

3-14, G-3
Program counter (PC) stack, 3-52
Program counter (PC) stack empty

(PCEM) bit, 3-53
Program counter (PC) stack full (SOVFI)

interrupt, 3-53
Program counter shadow (PC_SHDW)

register, A-77
Program counter stack empty (PCEM) bit,

3-53, A-20

Program counter stack full (PCFL) bit,
3-53, A-20

Program counter stack (PCSTK) register,
3-5, A-44

Program counter stack pointer (PCSTKP)
register, 3-5, 3-53, A-44

Program fetch (See program sequencer)
Program flow, 3-8
Program memory address (PMDAx)

register, 12-15
Program memory bus exchange (PX)

register, 1-11, 5-10, 5-38, A-25, A-77
Program Memory (PM) bus, 1-2
Program sequence address (PSAx) register,

12-15
Program sequencer, 3-1 to 3-66

Control, 1-7
Latency, 3-5

PSx, DMx, IOx, & EPx (Breakpoint)
register, 12-13, 12-15

Pull-down resistors, link port, 9-12
Push

Loop counter stack, 3-32
Program counter (PC) stack, 3-13
Status stack, 3-44

R
RAS-to-CAS delay, 8-4, 8-12
Read command, SDRAM, 8-34
Read command, SDRAM, pin state during,

8-35
Read commands, SDRAM, 8-34
Read (RD) pin, 6-54, 7-9, 7-38, 7-89,

7-96, 13-13, 13-16
Reads

Direct read latencies, 7-57
Direct reads, 7-109
Direct reads & writes, 7-57
Slave, 7-55
I-20 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Ready-Host Acknowledge (REDY) pin,
6-56, 7-42, 7-44, 7-51, 7-79, 7-89,
A-61

Receive clock (RCLKx) pins, 13-16
Receive data buffer status (RXS) bits, 6-138
Receive data (RXx) registers, 6-4
Receive overflow status (ROVF) bit, 6-137
Reciprocal function, 2-9
Refresh command (REF), 8-2, 8-29, 8-30,

8-37, 8-39
Refresh cycle, 8-3, A-74
Register codes

JTAG instruction, 12-4
Registers, A-1 to A-121

Boundary, 12-17
data file registers, listed, A-23
Data (R0-R15, S0-S15) registers, A-23
Decode address, 3-2
files, 2-30, 10-10, G-3
files, (See also data register files), 2-30
groups (I/O Processor), A-49
I/O processor registers, listed, A-48
JTAG boundary, 12-18
latency (See latency)
load broadcasting (See broadcast load)
Memory mapped, A-47, A-51
Neighbor, 5-48, 5-49, 5-76, 5-78, 5-80
Universal (Ureg) registers, 2-40
write file precedence, 2-30

Registers, complementary (See
Complementary registers)

Registers, neighbor (See neighbor registers)
Register-to-register

Moves, 2-45, 5-11
Swaps, 2-44, G-10
Transfers, 2-43

Register writes and effect latency, 10-30
Reset interrupt (RSTI) bit, A-27
Reset out (RSTOUT) pin, 13-14

Reset (RESET) pin, 7-89, 13-13, 13-29,
13-61

Input hysteresis, 13-61
Pin states at reset, 13-19

Resistors, Pull-up/down, 13-16, 13-22,
13-54

restrictions
on ending loops, 3-25
on short loops, 3-26

restrictions, delayed branch, 3-19
Restrictions on short loops, 3-26
Results (MRF/MRB) registers, 2-32
Return (RTI/RTS) instructions, 3-13, 3-35
ROM boot accessmode (RBAM) bit, A-67
ROM boot waitstates (RBWS) bit, A-67
Rotate bits, 2-23
Rotate (See swap operator)
Rotating priority, 6-22, 6-24, 6-44, 6-84
Rotating Priority Bus Arbitration (RPBA)

pin, 7-94, 7-98
Rounded output, 2-22
Rounding 32-bit data (RND32) bit, A-5
Rounding mode, 2-4, 2-7, A-5
RS-232 device, restrictions, 10-7
RUNBIST instruction, 12-4

S
SAMPLE instruction, 12-4
Sampling edge for data and frame syncs,

10-43
Saturation (ALU saturation mode), G-10
Saturation maximum values, 2-19
SBSRAM

DSP pins, 7-37
Hold off, 7-40
Partial Truth table , 7-39
Signal mapping figure , 7-37
Support, 7-39
Using External SBSRAM, 7-36

Scale (floating-point operation), 2-9
ADSP-21161 SHARC Processor Hardware Reference I-21

INDEX
SDRAM
Accessing, 8-25
Block diagram, 8-24
Calculating the refresh counter, 8-13
Configuring, 8-10
Controller commands, 8-31
controller interface, illustrated, 8-5
Controller standard operation, 8-22
Device densities and page size

combinations, 8-28
DMA transfers, 8-37
Dual processor system example, 8-24
page size (SDPGS), 8-18
Page sizes supported, 8-10
Pin connections, 8-7
Powering up after reset, 8-30
Selecting the active command delay,

8-20
Specifications, 8-1
Timing specifications, 8-8

SDRAM A10 (SDA10) pin, 8-8, 13-14
SDRAM address mapping

128 Mbit, 8-28
256 Mbit, 8-28
64 Mbit, 8-27

SDRAM bank cycle time tRTP, 8-4
SDRAM buffer (SDBUF) bit, 8-16, 8-17,

A-75
SDRAM burst length, 8-2
SDRAM CAS latency (SDCL) bit, A-73
SDRAM clock enable (SDCKE) pin, 8-8,

8-32, 13-14
SDRAM clock ratio (SDCKR) bit, 8-12,

A-75
SDRAM clock (SDCLK) pin, 8-1, 8-6,

8-8, 8-15, 13-14
SDRAM column address select CAS pin,

8-7, 8-32, 13-6
SDRAM controller, 8-22

SDRAM controller (SD) registers, listed,
A-50

SDRAM control (SDCTL) register, 8-2 to
8-39, A-73

SDRAM control (SDCTL) register, bit
definitions, A-73

SDRAM data mask pin (DQM), 8-7, 13-9
SDRAM device memory bank (SDBN) bit,

8-15, A-75
SDRAM external address (EA) pin, 8-26
SDRAM external memory bank 0 enable

(SDEMx) bit, 8-16, 8-37, A-74
SDRAM external memory bank (SDBS),

8-16
SDRAM interface, 1-13, 8-29
SDRAM interface, storing configuration

data, 8-11
SDRAM latency mode, 8-33
SDRAM page length, specifying, 8-19
SDRAM page size, defined, 8-3
SDRAM page size (SDPGS) bit, 8-18,

8-19, A-74
SDRAM Parallel refresh command, 8-29
SDRAM power up mode (SDPM) bit,

8-19, 8-32, A-74
SDRAM power up sequence (SDPSS) bit,

8-19, 8-32, A-74
SDRAM refresh counters, 8-24, 8-38
SDRAM refresh counter value (SDRDIV)

register, 8-3, 8-13, 8-34, A-72
SDRAM row address select (RAS) pin, 8-8,

8-32, 13-13
SDRAM SDCLK0 disable (DSDCTL) bit,

8-15, A-73
SDRAM SDCLK1 disable (DSDCK1) bit,

A-73
SDRAM Self-refresh mode

Entering and exiting, 8-31
SDRAM self refresh (SDSRF) bit, 8-20,

8-31, 8-39, A-74
I-22 ADSP-21161 SHARC Processor Hardware Reference

INDEX
SDRAM tras (SDTRAS) bit, 8-21, A-73
SDRAM trcd (SDTRCD) bit, A-75
SDRAM trp (SDTRP) bit, 8-21, A-73
SDRAM write enable SDWE pin, 8-8,

8-32, 13-14
Secondary processing element, 2-37
Secondary registers, 1-9, 2-32, 2-43, 4-4,

4-6, A-4
Secondary registers for computational units

(SRCU) bit, 2-33, A-3
Secondary registers for DAGs (SRDxH/L)

bits, 4-4, A-3, A-4
Secondary registers for register file

(SRRFH/L) bit, A-4
Selecting the frame sync options

(FS_BOTH), 10-50
Selecting the I2S transmit and receive

channel order (L_FIRST), 10-49
Self refresh command (SREF), 8-3, 8-20,

8-39
Semaphores, 7-57, 7-110, G-10
Sensing interrupts, 3-40
Serial clock (SCLKx) pins, 10-4, 13-14
Serial peripheral interface(See SPI)
Serial port, 10-1 to 10-67

Data types, 10-37
Disabling the serial port(s), 10-8
Enabling DMA (SDEN), 10-51
Enabling I2S mode (OPMODE, MCE),

10-49
Enabling master mode (MSTR), 10-50
Interrupts, 10-60
timing example, word select timing in

I2S mode, 10-52
Word formats, 10-35

Serial port block diagram, 10-3
Serial port chained DMA enable (SCHEN)

bit, 6-97, 6-99, 10-28, A-102
Serial port clock, internal clock (ICLK) bit,

A-101

Serial port clock, internal clock (MSTR)
bit, I2S mode only, A-101

Serial port connections, 10-3
Serial port control registers and data

buffers, 10-9
Serial port control (SPCTLx) registers, 6-6,

6-96, 10-14, 10-15, A-100, A-101
Serial port count (CNTx) registers, A-113
Serial port current channel selected

(CHNL), A-110
Serial port data bufferstatus (DXS_A) bit,

A-104
Serial port data direction control (DDIR)

bit, A-103
Serial port data independent transmit frame

sync (DITFS) bit, A-102
Serial port divisor (DIVx) registers, 10-4,

A-112
Serial port DMA chaining, 10-65
Serial port DMA channels, 10-59
Serial port DMA enable (SDEN) bit, 6-15,

6-97, 6-99, 6-109, 10-28, A-102
Serial port DMA interrupt (SPxI) bit, A-29
Serial port DMA parameter registers, 10-61
Serial port DXA data buffer status

(DXS_A) bit, 13-10
Serial port DXA error status (DERR_A)

bit, A-104
Serial port DXB data buffer status

(DXS_B) bit, 13-10, A-104
Serial port DXB error status (DERR_B)

bit, A-103
Serial port enable (SPEN) bit, 6-96, 6-109,

6-136, 10-28, A-101
Serial port frame sync (IFS or IRFS) bit,

internal, A-102
Serial port FS both enable (FS_BOTH) bit,

A-103
Serial port interrupts, 10-7
Serial port interrupts, priority of, 10-8
ADSP-21161 SHARC Processor Hardware Reference I-23

INDEX
Serial port interrupt (SPxI) bit, 10-8, A-29
Serial port late frame sync (LAFS) bit,

A-102
Serial port loopback, 10-46
Serial port loopback mode (SPL) bit, A-110
Serial Port (LSP) registers, listed, A-50
Serial port multichannel frame delay

(MFD) bit, A-109
Serial port multichannel mode enable

(MCE) bit, A-109
Serial port multichannel mode pairings

SPORT0 and SPORT2, SPORT1 and
SPORT3, 10-52

Serial port number of multichannel slots
(NCH) bit, A-109

Serial port operation mode (OPMODE),
A-101

Serial port operation modes, 10-14, 10-47
Serial port pin/line terminations, 10-66
Serial port receive compand registers

(MRxCCSx), A-114
Serial port receive control (SRCTLx)

registers, 6-6
Serial port receive data status (RXS_A) bit,

A-104
Serial port receive select registers

(MRxCSx), A-114
Serial port receive underflow status

(ROVF_A) bit, A-104
Serial port registers, listed, 10-10
Serial port reset, 10-8
Serial ports

Features, 10-1
Moving data between SPORTS and

memory, 10-58
Named, 10-1

Serial port (SPORT), 1-14, G-10
Buffers, 6-97, 6-136, 6-139
DMA, 6-99, 6-100, 6-112
Interrupt-driven transfers, 6-136

Serial port (SPORT) (continued)
Multichannel operation, G-11
Priority modes, 6-99
Status, 6-135
Transfer modes, 6-99

Serial port transmit buffer (TXx) registers,
A-111

Serial port transmit compand registers
(MT2CCSx and MT3CCSx), A-113

Serial port transmit data status (TXS_A)
bit, A-104

Serial port transmit select registers
(MT2CSx and MT3CSx), A-113

Serial port transmit underflow status
(TUVF_A) bit, A-104

Serial port Word length, 10-36
Serial scan path, 12-5
Serial scan paths, 12-5
Serial shift register (EMUPX), 12-6
Serial test access port (TAP), 12-1
Serial word endian (SENDN) bit, 6-96,

6-97, 10-28, A-101
Serial word length (SLEN) bits, 6-96, 6-97,

6-109, 6-111, 10-28, 10-49, A-101
Set, bit, 2-23
Setting serial port modes, 10-9
Setup time, inputs, 13-19
S field, address, A-42
Shadow write FIFO, 5-23, 7-58
SHARC, G-11

Background information, 1-16
(See also Porting from previous SHARCs)

SHARC ICE hardware, compatibility, 12-7
Shift bits, 2-23
Shifter, 1-6, 2-1, 2-23, G-11

Instructions, 2-28
Operations, 2-23, 2-27
Status flags, 2-27

Shifter input sign (SS) bit, A-17
Shifter operations, A-17
I-24 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Shifter overflow (SV) bit, 3-55, A-17
Shifter zero (SZ) bit, 3-55, A-17
Short (16-bit data) sign extend (SSE) bit,

2-4, 5-51, A-5
Short word, 5-25, 5-51

Data access, 5-51
Data storage, 5-2
SIMD mode, 5-56, 5-60
SISD mode, 5-54, 5-58

Signal For Cluster Multiprocessor
Systems , 7-89

Signal integrity, 13-66
Signal skew, minimizing, 13-54
Signed data, 2-6
Signed input, 2-22
Sign extension, A-5
Silicon revision number, A-78
SIMD mode, 3-54, 5-51, A-5

Complementary registers, 2-40
Computational operations, 2-43
Defined, 2-37
Implicit operations, 2-40
Multiprocessing, 7-93
Status flags, 2-46

Single serial shift register path, 12-1
Single-step (SS) bit, 12-8
Single-word transfers, 10-65, G-11
SISD mode, 5-51

Defined, 1-7
Unidirectional register transfer, 2-45

Slave direct reads and writes (See direct read
and direct write)

Slave mode, 6-48, 6-55, 6-144
Operation, 6-55
SPI, 11-28
Transfer size, 6-57

Slave reads and writes, 7-55
Slave write FIFO, 7-50
Slave write FIFO data pending (SSWPD)

bit, synchronous, A-70

Slave write latency, 7-56
Slave write pending (SWPD) bit, 7-112,

A-70
Software interrupt x, user (SFTxI) bit, A-31
Software reset (SRST) bit, A-60
Software reset (SYSRST) bit, 12-8
Specifications, timing, 13-25
SPI

Block diagram, 11-2
Boot loader kernel, 11-35
Configuring and enabling, 11-9
Data word formats, 11-21
Disabling the SPI system, 11-30
DMA, 11-32
Error signals and flags, 11-29
Examples, programming, 11-44
Features, 11-1
Functional description, 11-2
hang in receive data buffer, A-121
Interface, enabling, 11-9
IOP registers, 11-9
Master mode, 11-25
Master mode DMA operation, 11-32
Master mode operation, 11-25
Slave mode, 11-28
Slave mode DMA operation, 11-28,

11-33
system, configuring and enabling, A-117
Transfer formats, 11-15, 11-21

SPI baud rate (BAUDR) bit, 11-12, A-118
SPI clock phase (CPHASE) bit, 11-12,

A-117
SPI clock polarity (CP) bit, 11-12, A-117
SPI clock rate (SPICLK) pin, 11-3, 11-22,

13-15
SPI control (SPICTL) register, 11-4, 11-9,

11-21, 11-25, 11-42, A-117
SPI data fetch (GM) bit, 11-14, A-119
SPI data format (DF) bit, 11-12, A-117
ADSP-21161 SHARC Processor Hardware Reference I-25

INDEX
SPI device select SPIDS pins, 11-4 to
11-33, 13-15

SPI enable (SPIEN) bit, 11-12, A-117
SPI flag select (FLS) bit, 11-13, A-118
SPI interrupt (LIRPTL) register, A-34
SPI master in slave out (MISO) pin, 13-12
SPI master out slave (MOSI) pin, 13-12
SPI master select (MS) bit, 11-12, A-117
SPI MISO pin disable (DMISO) bit,

11-13, A-119
SPI multimaster error (MME) bit, 11-17,

A-115
SPI open drain output enable (OPD),

11-13, A-119
SPI packing enable (PACKEN) bit, 11-14,

A-119
SPI Port (LSP) registers, listed, A-50
SPI programmable slave select enable

(PSSE) bit, 11-13, A-118
SPI receive data buffer (SPIRX), 11-9,

11-20, A-120
SPI receive DMA enable (RDMAEN) bit,

11-14, A-119
SPI receive DMA interrupt latch (SPIRI)

bit, A-34
SPI receive DMA interrupt mask pointer

(SPIRMSKP) bit, A-36
SPI receive DMA interrupt mask

(SPIRMSK) bit, A-35
SPI reception error (RBSY) bit, 11-19,

11-31, A-116
SPIRX interrupt enable (SPRINT) bit,

11-12, A-117
SPI seamless operation (SMLS) bit, 11-13,

A-118
SPI selection of SPIDS (DCPH0), 11-13,

A-118
SPI send zero (SENDZ) bit, 11-14, A-119
SPI shift register, 11-21, 11-25
SPI sign extend (SGN) bit, 11-14, A-119

SPI status (SPISTAT) register, 11-9, 11-15,
11-30, A-115, A-121

SPI transfer complete (SPIF) bit, 11-17,
A-115

SPI transmission error (TXE) bit, 11-30
SPI transmit buffer (SPITX) register, 11-9,

11-20, A-121
SPI transmit DMA enable (TDMAEN) bit,

11-12, A-118
SPI transmit DMA interrupt latch (SPITI)

bit, A-34
SPI transmit DMA Interrupt mask pointer

(SPITMSKP) bit, A-36
SPI transmit DMA interrupt mask

(SPITMSK) bit, A-35
SPITX interrupt enable (SPTINT) bit,

11-12, A-117
SPI word length (WL) bit, 11-12, A-117
SRAM (memory), 1-2
SREF command, pin state during, 8-40
Stacking status during interrupts, 3-44
Stack overflow/full interrupt (SOVFI) bit,

A-27
Stacks and sequencing, 3-52
Status, 5-46

Host interface, 7-76
Link port, 9-13

Status registers, 3-3
Status stack, 3-44

Pop, 3-45
Push, 3-44

Status stack empty (SSEM) bit, 3-44, A-20
Status stack overflow (SSOV) bit, 3-44,

A-20
Sticky status (STKYx/y) registers, 2-8,

2-20, A-16, A-18, A-19
Subroutines, 3-1, G-11
Subtract/add, 2-9
Subtract instructions, 2-36
Subtract/multiply, 2-1, G-9
I-26 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Subtract with borrow, 2-9
.S unit (See shifter)
S unit (See shifter)
Suspend Bus Three-state (SBTS) pin, 7-44,

7-54, 7-83, 7-89, 13-14
Swap register operator, 2-44, G-10
Switching frequencies, determining, 13-26
Synchronous access mode, 5-43, 7-6, 7-11,

7-12, 7-14, 7-44, 7-94, 13-16, G-8
Burst Interface timing, 7-26
Burst Length determination, 7-29
Burst Mode Interface Timing, 7-26
Burst read, external port buffers, 7-58
Burst Reads—bus master, 7-31
Burst Read/Write—bus slave, 7-26
Burst Stall Criteria, 7-29
Burst Writes—bus master, 7-33
example of synchronous write followed

by synchronous read, 7-25
Interface timing, 7-18
Read—bus master, 7-20
Read/Write—bus slave, 7-18
Synchronous Mode Interface Timing,

7-18
Write, One Waitstate Mode, 7-25
Write, Zero-Waitstate Mode, 7-22

Synchronous Burst Static RAM (See
SBSRAM)

Synchronous transfers, G-11
System, multiprocessor system diagram,

7-87
System bus, processor core access to system

bus, 7-82
System bus interfacing, 7-78
System configuration (SYSCON) register,

6-6, A-60
System control (SC) registers, listed, A-49

System design
Considerations for flags, 13-38
Designing for high frequency operation,

13-62
Designing for JTAG emulation, 13-49
Determining clock period, 13-28
Layout requirements, 13-54
layout requirements for routing signals,

13-54
Pod specifications, 13-56
Point-to-point connections, 13-65
Recommendations and suggestions,

13-68
System (Sreg) registers, A-2
System (Sreg) registers, program sequencer,

A-26
System status (SYSTAT) register, 7-76,

A-69

T
TAP pin, 12-3
Target board connector, 13-50
Target board connector, for emulator

probe, 13-50
TCB chain loading, 6-24, 6-25, 6-26, G-11
Termination, end-of-line termination

restrictions, 13-64
Termination codes

(See condition codes and loop termination)
Termination values, link port, 9-30
Test, bit, 2-23
Test access port (TAP) (See JTAG port)
Test clock (TCK) pin, 12-3, 13-41
Test data input (TDI) pin, 12-3, 13-41
Test Data Output (TDO) pin, 13-41
Test flag (TF) condition, 3-54, 3-55
Test logic reset (TRST) pin, 12-3, 13-16,

13-41
Test mode select (TMS) pin, 12-3, 13-16,

13-41
ADSP-21161 SHARC Processor Hardware Reference I-27

INDEX
Test mode (TMODE) bit, 12-11
Time-Division-Multiplexed (TDM) mode,

1-14, 10-1, G-11
Timed release bus mastership, 7-92
Timeout, bus mastership, 7-101
Timer, 1-9, 3-50, 8-3
Timer and sequencing, 3-50
Timer count (TCOUNT) register, 3-50,

A-46
Timer enable (TIMEN) bit, 3-50, A-10
Timer expired high priority (TMZHI) bit,

3-51, A-28
Timer expired low priority (TMZLI) bit,

3-51, A-30
Timer expired (TIMEXP) pin, 13-15,

13-33
Timer period (TPERIOD) register, 3-50,

A-46
Timing

External Memory Accesses, 7-13
External port, 7-1
Link port handshake, 9-10
SDRAM, 8-8
Specifications, System design, 13-25

Toggle, bit, 2-23
Token passing

Link ports, 9-27
Token passing, link ports, 9-27
Top-of-loop address, 3-23
Top-of-PC stack, 3-53
Transfer control block (TCB), 6-12, 6-26,

G-12
Transmit and receive data buffers (TXA/B,

RXA/B), 10-30
Transmit data status (TXS) bit, 10-23
Transmit data (TXx) registers, 6-4
Transmit frame synch divisor (TFSDIV)

bit, A-112
Transmit frame sync required (TFSR) bit,

10-27

Transmit/receive DMA, external port
(TRAN) bit, 6-32, A-81

Transmit underflow status (TUVF) bit,
6-137, 10-23

Tristate versus three-state, G-12
True always (TRUE) if condition, 3-56
Truncate, rounding (TRUNC) bit, 2-4,

A-5
Twos-complement data, 2-6, 2-10
Type, data (See data types)

U
Unaligned 64-bit memory access (U64MA)

bit, 5-34, 5-41, A-11, A-20
Underflow exception, 2-5
Underflow (See multiplier)
Unified address space, 1-12
Universal (Ureg) registers, 1-10, 2-40,

5-10, A-26, A-46, G-12
Control and status, A-2
Data Address Generator, A-46
Processing element, A-23
Program Sequencer, A-26

Unpacked data, 6-42, 7-56
Unsigned data, 2-6
Unsigned input, 2-22
Unsupported instructions, IPCODE, 12-4
UPDATE state, 12-5
USERCODE instruction, unsupported,

12-4
User-defined status (USTATx) registers,

A-22
Using the cache, 3-11

V
Values, saturation maximum, 2-19
Vector interrupt, 1-13, G-9
Vector interrupt, multiprocessor (VIRPTI)

bit, A-28
I-28 ADSP-21161 SHARC Processor Hardware Reference

INDEX
Vector interrupt address (VIRPTA) bit,
A-64

Vector interrupt address (VIRPT) register,
3-49, 6-126, 7-77, 7-78, A-63

Vector interrupt data optional (VIRPTD)
bit, A-64

Vector interrupt pending (VIPD) bit, A-69
Vector interrupts, 7-77

Host, 7-78
Interprocessor, 7-76

Von Neumann architecture, 5-4, G-12

W
Waitstates, 1-12, 5-42, 5-45, 7-12, 7-19,

G-12
Waitstates and access mode (WAIT)

register, 6-6, 8-16, A-65, A-66
Web site, 1-21

Word rotations, 5-25
Wrap around, buffer, 4-9, 4-12, 4-15
Write commands, SDRAM, 8-34, 8-36
Writes

Direct reads & writes, 7-110
direct write, asynchronous interface,

7-56
Slave, 7-55

Write (WR) pin, 6-54, 7-9, 7-38, 7-89,
7-96, 13-16

X
Xor, Logical, 2-9

Z
Zero, round-to, 2-5
ADSP-21161 SHARC Processor Hardware Reference I-29

INDEX
I-30 ADSP-21161 SHARC Processor Hardware Reference

	INTRODUCTION
	Design Advantages 1-1
	Architecture Overview 1-5
	Processor Core 1-5
	Processing Elements 1-6
	Program Sequence Control 1-7
	Processor Internal Buses 1-10

	Processor Peripherals 1-11
	Dual-Ported Internal Memory (SRAM) 1-11
	External Port 1-12
	I/O Processor 1-14

	JTAG Port 1-16

	Differences From Previous SHARC Processors 1-16
	Processor Core Enhancements 1-17
	Processor Internal Bus Enhancements 1-17
	Memory Organization Enhancements 1-18
	External Port Enhancements 1-18
	Host Interface Enhancements 1-18
	Multiprocessor Interface Enhancements 1-19

	IO Architecture Enhancements 1-19
	DMA Controller Enhancements 1-19
	Link Port Enhancements 1-19

	Instruction Set Enhancements 1-20

	For More Information About Analog Products 1-21
	For Technical or Customer Support 1-22
	What’s New in This Manual 1-22
	Related Documents 1-23
	Conventions 1-24

	Processing Elements
	Setting Computational Modes 2-4
	32-Bit (Normal Word) Floating-Point Format 2-4
	40-Bit Floating-Point Format 2-5
	16-Bit (Short Word) Floating-Point Format 2-6
	32-Bit Fixed-Point Format 2-6
	Rounding Mode 2-7

	Using Computational Status 2-8
	Arithmetic Logic Unit (ALU) 2-9
	ALU Operation 2-9
	ALU Saturation 2-10
	ALU Status Flags 2-11
	ALU Instruction Summary 2-12

	Multiply-Accumulator (Multiplier) 2-15
	Multiplier Operation 2-15
	Multiplier (Fixed-Point) Result Register 2-16
	Multiplier Status Flags 2-19
	Multiplier Instruction Summary 2-20

	Barrel-Shifter (Shifter) 2-23
	Shifter Operation 2-23
	Shifter Status Flags 2-27
	Shifter Instruction Summary 2-28

	Data Register File 2-30
	Alternate (Secondary) Data Registers 2-32
	Multifunction Computations 2-34
	Secondary Processing Element (PEy) 2-37
	Dual Compute Units Sets 2-39
	Dual Register Files 2-42
	Dual Alternate Registers 2-43
	SIMD (Computational) Operations 2-43
	SIMD And Status Flags 2-46

	Program Sequencer
	Instruction Pipeline 3-7
	Instruction Cache 3-8
	Using the Cache 3-11
	Optimizing Cache Usage 3-11

	Branches and Sequencing 3-13
	Conditional Branches 3-15
	Delayed Branches 3-15
	Restrictions and Limitations When Using Delayed Branches 3-19

	Loops and Sequencing 3-22
	Restrictions on Ending Loops 3-25
	Restrictions on Short Loops 3-26
	Loop Address Stack 3-29
	Loop Counter Stack 3-30

	Interrupts and Sequencing 3-34
	Sensing Interrupts 3-40
	Masking Interrupts 3-41
	Latching Interrupts 3-42
	Stacking Status During Interrupts 3-44
	Nesting Interrupts 3-45
	Reusing Interrupts 3-47
	Interrupting IDLE 3-48
	Multiprocessing Interrupts 3-49

	Timer and Sequencing 3-50
	Stacks and Sequencing 3-52
	Conditional Sequencing 3-53
	SIMD Mode and Sequencing 3-57
	Conditional Compute Operations 3-58
	Conditional Branches and Loops 3-59
	Conditional Data Moves 3-59
	Case 1: Complementary Register Pair Data Move 3-60
	Case 2: Uncomplemented-to-Complementary Register Move 3-63
	Case 3: Complementary Register => Uncomplimentary Register 3-64
	Case 4: Data Move Involves External Memory or IOP Memory Space 3-65

	Conditional DAG Operations 3-66

	Data Address Generator
	Setting DAG Modes 4-2
	Circular Buffering Mode 4-4
	Broadcast Loading Mode 4-5
	Alternate (Secondary) DAG Registers 4-6
	Bit-reverse Addressing Mode 4-8

	Using DAG Status 4-8
	DAG Operations 4-9
	Addressing With DAGs 4-10
	Addressing Circular Buffers 4-12
	Modifying DAG Registers 4-17
	Addressing in SISD and SIMD Modes 4-18

	DAGs, Registers, and Memory 4-18
	DAG Register-to-Bus Alignment 4-19
	DAG Register Transfer Restrictions 4-21

	DAG Instruction Summary 4-23

	Memory
	Internal Memory 5-2
	External Memory 5-2
	Processor Architecture 5-4
	Off-Chip Memory and Peripherals Interface 5-6
	Buses 5-7
	Internal Address and Data Buses 5-7
	Internal Data Bus Exchange 5-10

	ADSP-21161 Memory Map 5-16
	Internal Memory 5-16
	Multiprocessor Memory 5-19
	External Memory 5-22
	Shadow Write FIFO 5-24
	Memory Organization and Word Size 5-25
	Placing 32-Bit Words and 48-Bit Words 5-25
	Mixing 32-Bit and 48-Bit Words 5-26
	Restrictions on Mixing 32-Bit and 48-Bit Words 5-28
	48-Bit Word Allocation 5-31

	Setting Data Access Modes 5-32
	SYSCON Register Control Bits 5-32
	Mode 1 Register Control Bits 5-34
	Mode 2 Register Control Bits 5-34
	Wait Register Control Bits 5-34
	Using Boot Memory 5-35
	Reading From Boot Memory 5-35
	Writing to Boot Memory 5-36

	Internal Interrupt Vector Table 5-37
	Internal Memory Data Width 5-37
	Memory Bank Size 5-38
	External Bus Priority 5-39
	Secondary Processor Element (PEy) 5-39
	Broadcast Register Loads 5-40
	Illegal I/O Processor Register Access 5-41
	Unaligned 64-Bit Memory Access 5-41
	External Bank X Access Mode 5-42
	External Bank X Waitstates 5-45

	Using Memory Access Status 5-46
	Accessing Memory 5-46
	Access Word Size 5-47
	Long Word (64-Bit) Accesses 5-48
	Instruction Word (48-Bit) and Extended-Precision Normal Word (40-Bit) Accesses 5-50
	Normal Word (32-Bit) Accesses 5-50
	Short Word (16-Bit) Accesses 5-51

	SISD, SIMD, and Broadcast Load Modes 5-51
	Single and Dual Data Accesses 5-52
	Data Access Options 5-52
	Short Word Addressing of Single Data in SISD Mode 5-54
	Short Word Addressing of Single Data in SIMD Mode 5-56
	Short Word Addressing of Dual-Data in SISD Mode 5-58
	Short Word Addressing of Dual-Data in SIMD Mode 5-60
	32-Bit Normal Word Addressing of Single Data in SISD Mode 5-62
	32-Bit Normal Word Addressing of Single Data in SIMD Mode 5-64
	32-Bit Normal Word Addressing of Dual Data in SISD Mode 5-66
	32-Bit Normal Word Addressing of Dual Data in SIMD Mode 5-68
	Extended Precision Normal Word Addressing of Single Data 5-70
	Extended Precision Normal Word Addressing of Dual Data in SISD Mode 5-72
	Extended-Precision Normal Word Addressing of Dual Data in SIMD Mode 5-74
	Long Word Addressing of Single Data 5-76
	Long Word Addressing of Dual Data in SISD Mode 5-78
	Long Word Addressing of Dual Data in SIMD Mode 5-80
	Mixed Word Width Addressing of Dual Data in SISD Mode 5-82
	Mixed Word Width Addressing of Dual Data in SIMD Mode 5-84
	Broadcast Load Access 5-86

	Shadow Write FIFO Considerations in SIMD Mode 5-95

	Arranging Data in Memory 5-100
	Executing Instructions From External Memory 5-101
	32- to 48-Bit Packing Address Generation Scheme 5-109
	Total Program Size (32- to 48-Bit Packing) 5-110

	16- to 48-Bit Packing Address Generation Scheme 5-111
	Total Program Size (16- to 48-Bit Packing) 5-111

	8- to 48-Bit Packing Address Generation Scheme 5-112
	Total Program Size (8- to 48-Bit Packing) 5-113

	No Packing (48- to 48-Bit) Address Generation Scheme 5-113

	I/O Processor
	DMA Channel Allocation and Priorities 6-16
	DMA Interrupt Vector Locations 6-18
	Booting Modes 6-20
	DMA Controller Operation 6-20
	Managing DMA Channel Priority 6-22
	Chaining DMA Processes 6-25
	Transfer Control Block (TCB) Chain Loading 6-26
	Setting Up and Starting the Chain 6-28
	Inserting a TCB in an Active Chain 6-28

	External Port DMA 6-29
	External Port Registers 6-30
	External Port FIFO Buffers 6-33
	External Port DMA Data Packing 6-34
	32-Bit Bus Downloading 6-37
	16-Bit Bus Downloading 6-38
	8-Bit Bus Downloading 6-39

	Boot Memory DMA Mode 6-42
	External Port Buffer Modes 6-42
	External Port Channel Priority Modes 6-43
	External Port Channel Transfer Modes 6-46
	External Port Channel Handshake Modes 6-47
	Master Mode 6-50
	Paced Master Mode 6-54
	Slave Mode 6-55
	Handshake Mode 6-57

	DMA Handshake Idle Cycle 6-64
	External-Handshake Mode 6-66

	Setting Up External Port DMA 6-68
	Bootloading Through The External Port 6-70
	Host Processor Booting 6-72
	PROM Booting 6-74

	External Port DMA Programming Examples 6-76

	Link Port DMA 6-81
	Link Port Registers 6-81
	Link Port Buffer Modes 6-83
	Link Port Channel Priority Modes 6-83
	Link Port Channel Transfer Modes 6-85
	Setting Up Link Port DMA 6-86
	Bootloading Through The Link Port 6-88
	Link Port DMA Programming Examples 6-90

	Serial Port DMA 6-95
	Serial Port Registers 6-96
	Serial Port Buffer Modes 6-97
	Serial Port Channel Priority Modes 6-99
	Serial Port Channel Transfer Modes 6-99
	Setting Up Serial Port DMA 6-100
	SPORT DMA Programming Examples 6-102

	SPI Port DMA 6-108
	SPI Port Registers 6-108
	SPI Port Buffer 6-109
	SPI DMA Channel Priority 6-112
	Setting up SPl Port DMA 6-112
	Bootloading Through the SPI Port 6-113
	SPI Port DMA Programming Examples 6-116

	Using I/O Processor Status 6-121
	External Port Status 6-127
	Link Port Status 6-131
	Serial Port Status 6-135
	SPI Port Status 6-137

	Optimizing DMA Throughput 6-139
	Internal Memory DMA 6-139
	External Memory DMA 6-140
	System-Level Considerations 6-144

	External Port
	Setting External Port Modes 7-3
	External Memory Interface 7-3
	Banked External Memory 7-9
	Boot Memory 7-10
	Idle Cycle 7-10
	Data Hold Cycle 7-12
	Multiprocessor Memory Space Waitstates and Acknowledge 7-12

	Timing External Memory Accesses 7-13
	Asynchronous Mode Interface Timing 7-14
	Synchronous Mode Interface Timing 7-18
	Synchronous Burst Mode Interface Timing 7-26

	Using External SBSRAM 7-36
	SBSRAM Restrictions 7-41

	Host Processor Interface 7-42
	Acquiring the Bus 7-44
	Asynchronous Transfers 7-48
	Host Transfer Timing 7-51
	Host Interface Deadlock Resolution With SBTS 7-54
	Slave Reads and Writes 7-55
	IOP Shadow Registers 7-55
	Instruction Transfers 7-56
	Slave Write Latency 7-56
	Slave Reads 7-57

	Broadcast Writes 7-57
	Data Transfers Through the EPBx Buffers 7-58
	DMA Transfers 7-58
	Host Data Packing 7-59
	Packing Mode Variations For Host Accesses 7-61
	IOP Register Host Accesses 7-62
	LINK Port Buffer Access 7-63
	EPBx Buffer Accesses 7-64
	8- to 32-Bit Data Packing 7-66
	16- to 32-Bit Packing 7-69
	48-Bit Instruction Packing 7-74

	Host Interface Status 7-76
	Interprocessor Messages and Vector Interrupts 7-76
	Message Passing (MSGRx) 7-77
	Host Vector Interrupts (VIRPT) 7-78

	System Bus Interfacing 7-78
	Access to the Processor Bus - Slave Processor 7-79
	Access to the System Bus - Master Processor 7-79
	Processor Core Access to System Bus 7-82
	Deadlock Resolution 7-82
	DMA Access to System Bus 7-84
	Multiprocessing With Local Memory 7-85
	ADSP-21161 to Microprocessor Interface 7-85

	Multiprocessor (MP) Interface 7-87
	Multiprocessing System Architectures 7-90
	Data Flow Multiprocessing 7-90
	Cluster Multiprocessing 7-91

	Multiprocessor Bus Arbitration 7-93
	Bus Arbitration Protocol 7-95
	Bus Arbitration Priority (RPBA) 7-98
	Bus Mastership Timeout 7-101
	Priority Access 7-103

	Bus Synchronization After Reset 7-105
	Booting Another processor 7-108
	Multiprocessor Writes and Reads 7-109
	Instruction Transfers 7-110

	Bus Lock and Semaphores 7-110
	Multiprocessor Interface Status 7-112

	SDRAM INTERFACE
	SDRAM Pin Connections 8-7
	SDRAM Timing Specifications 8-8
	SDRAM Control Register (SDCTL) 8-9
	SDRAM Configuration for Runtime 8-10
	Setting the Refresh Counter Value (SDRDIV) 8-13
	Setting the SDRAM Clock Enables 8-14
	Setting the Number of SDRAM Banks (SDBN) 8-15
	Setting the External Memory Bank (SDEMx) 8-16
	Setting the SDRAM Buffering Option (SDBUF) 8-16
	Selecting the CAS Latency Value (SDCL) 8-17
	Selecting the SDRAM Page Size (SDPGS) 8-18
	Setting the SDRAM Power-Up Mode (SDPM) 8-19
	Starting the SDRAM Power-Up Sequence (SDPSS) 8-19
	Starting Self-Refresh Mode (SDSRF) 8-20
	Selecting the Active Command Delay (SDTRAS) 8-20
	Selecting the Precharge Delay (SDTRP) 8-21
	Selecting the RAS-to-CAS Delay (SDTRCD) 8-21

	SDRAM Controller Standard Operation 8-22
	Understanding DAG and DMA Operation 8-22
	Multiprocessing Operation 8-24
	Accessing SDRAM 8-25
	Address Mapping for SDRAM 8-27

	Understanding DQM Operation 8-29
	Executing a Parallel Refresh Command During Host Control 8-29
	Powering Up After Reset 8-30
	Entering and Exiting Self-Refresh Mode 8-31

	SDRAM Controller Commands 8-31
	Bank Activate (ACT) Command 8-32
	Mode Register Set (MRS) 8-32
	Precharge Command (PRE) 8-33
	Read/Write Command 8-34
	Read Commands 8-34
	Write Commands 8-36
	DMA Transfers 8-37

	Refresh (REF) Command 8-37
	Setting the Delay Between Refresh Commands 8-37
	Understanding Multiprocessing Operation 8-38

	Self Refresh Command (SREF) 8-39
	Programming Example 8-40

	Link Ports
	Link Port to Link Buffer Assignment 9-3
	Link Port DMA Channels 9-4
	Link Port Booting 9-5
	Setting Link Port Modes 9-5
	Link Port Control Register (LCTL) Bit Descriptions 9-7
	Link Data Path and Compatibility Modes 9-9

	Using Link Port Handshake Signals 9-10
	Using Link Buffers 9-12
	Core Processor Access To Link Buffers 9-13
	Host Processor Access To Link Buffers 9-14

	Using Link Port DMA 9-16
	Using Link Port Interrupts 9-17
	Link Port Interrupts With DMA Enabled 9-18
	Link Port Interrupts With DMA Disabled 9-19
	Link Port Service Request Interrupts (LSRQ) 9-19

	Detecting Errors on Link Transmissions 9-22
	Link Port Programming Examples 9-23

	Using Token Passing With Link Ports 9-27
	Designing Link Port Systems 9-30
	Terminations for Link Transmission Lines 9-30
	Peripheral I/O Using Link Ports 9-31
	Data Flow Multiprocessing With Link Ports 9-33

	Serial Ports
	Serial Port Pins 10-3
	SPORT Interrupts 10-7
	SPORT Reset 10-8
	SPORT Control Registers and Data Buffers 10-9
	Serial Port Control Registers (SPCTLx) 10-14
	Register Writes and Effect Latency 10-30

	Transmit and Receive Data Buffers 10-30
	Clock and Frame Sync Frequencies (DIV) 10-33

	Data Word Formats 10-35
	Word Length 10-36
	Endian Format 10-36
	Data Packing and Unpacking 10-37
	Data Type 10-37

	Companding 10-39

	Clock Signal Options 10-40
	Frame Sync Options 10-41
	Framed Versus Unframed 10-41
	Internal Versus External Frame Syncs 10-42
	Active Low Versus Active High Frame Syncs 10-43
	Sampling Edge for Data and Frame Syncs 10-43
	Early Versus Late Frame Syncs 10-44
	Data-Independent Transmit Frame Sync 10-45

	SPORT Loopback 10-46
	SPORT Operation Modes 10-47
	I2S Mode 10-48
	Setting Internal Serial Clock and Frame Sync Rates 10-49
	I2S Control Bits 10-49
	Setting Word Length (SLEN) 10-49
	Selecting Transmit Receive Channel Order (L_FIRST) 10-49
	Selecting the Frame Sync Options (FS_BOTH) 10-50
	Enabling SPORT Master Mode (MSTR) 10-50
	Enabling SPORT DMA (SDEN) 10-51

	Multichannel Operation 10-52
	Frame Syncs in Multichannel Mode 10-54
	Multichannel Control Bits in SPCTL 10-55
	Channel Selection Registers 10-57

	Transferring Data to Memory 10-58
	DMA Block Transfers 10-59
	Setting Up DMA on SPORT Channels 10-60

	SPORT DMA Parameter Registers 10-61
	SPORT DMA Chaining 10-65

	Single-Word Transfers 10-65

	SPORT Pin/Line Terminations 10-66
	SPORT Programming Examples 10-67

	Serial Peripheral Interface (SPI)
	Functional Description 11-2
	SPI Interface Signals 11-3
	SPICLK 11-3
	SPIDS 11-4
	FLAG 11-5
	MOSI 11-6
	MISO 11-6

	SPI Interrupts 11-8
	SPI IOP Registers 11-9
	SPI Control Register (SPICTL) 11-9
	Baud Rate Example 11-14
	Seamless Operation 11-15

	SPI Status Register (SPISTAT) 11-15
	SPI Transmit Data Buffer (SPITX) 11-20
	SPI Receive Data Buffer (SPIRX) 11-20
	SPI Shift Registers 11-21

	SPI Data Word Formats 11-21
	SPI Word Packing 11-24

	SPI Operation Modes 11-24
	Master Mode Operation 11-25
	Interrupt and DMA Driven Transfers 11-26
	Core Driven Transfers 11-26
	Automatic Slave Selection 11-26
	User Controlled Slave Selection 11-27

	Slave Mode Operation 11-28

	Error Signals and Flags 11-29
	Multi-Master Error (MME) 11-30
	Transmission Error (TXE) 11-30
	Reception Error (RBSY) 11-31

	SPI/Link Port DMA 11-32
	DMA Operation in SPI Master Mode 11-32
	DMA Operation in Slave Mode 11-33

	SPI Booting 11-34
	32-Bit SPI Host Boot 11-38
	16-Bit SPI Host Boot 11-39
	8-Bit SPI Host Boot 11-41
	Multiprocessor SPI Port Booting 11-42

	SPI Programming Example 11-44

	JTAG Test-Emulation Port
	JTAG Test Access Port 12-3
	Instruction Register 12-4
	EMUPMD Shift Register 12-5
	EMUPX Shift Register 12-6
	EMU64PX Shift Register 12-7
	EMUPC Shift Register 12-7
	EMUCTL Shift Register 12-8
	EMUSTAT Shift Register 12-11
	BRKSTAT Shift Register 12-12
	MEMTST Shift Register 12-13
	PSx, DMx, IOx, and EPx (Breakpoint) Registers 12-13
	EMUN Register 12-16
	EMUCLK and EMUCLK2 Registers 12-16
	EMUIDLE Instruction 12-17
	In Circuit Signal Analyzer (ICSA) Function 12-17

	Boundary Register 12-17
	Device Identification Register 12-28
	Built-In Self-Test Operation (BIST) 12-28
	Private Instructions 12-28
	References 12-29

	System Design
	Pin Descriptions 13-2
	Input Synchronization Delay 13-18
	Pin States At Reset 13-19
	Pull-Up and Pull-Down Resistors 13-22
	Clock Derivation 13-24
	Timing Specifications 13-25

	RESET and CLKIN 13-28
	Reset Generators 13-31
	Interrupt and Timer Pins 13-33
	Core-Based Flag Pins 13-34
	Flag Inputs 13-34
	Flag Outputs 13-34

	Programmable I/O Flags 13-35
	Example #1: Configuring FLGx as Output Flags 13-37
	Example #2: Configuring FLGx as Input Flags 13-38

	System Design Considerations for Flags 13-38
	Example #3: Programming 2:1 Clock Ratio 13-40
	Example #4: Programming 3:1 Clock Ratio 13-40
	Example #5: Programming 4:1 Clock Ratio 13-40

	JTAG Interface Pins 13-41

	Dual-Voltage Power-up Sequencing 13-41
	PLL Start-Up (Revisions 1.0/1.1) 13-44
	Power On Reset (POR) Circuit 13-44
	PLL CLKIN Enable Circuit 13-46

	PLL Start-Up (Revision 1.2) 13-48

	Designing For JTAG Emulation 13-49
	Target Board Connector 13-50

	Layout Requirements 13-54
	Power Sequence for Emulation 13-56
	Additional JTAG Emulator References 13-56
	Pod Specifications 13-56
	JTAG Pod Connector 13-57
	3.3 V Pod Logic 13-58
	2.5 V Pod Logic 13-59

	Conditioning Input Signals 13-60
	Link Port Input Filter Circuits 13-60
	RESET Input Hysteresis 13-61

	Designing For High Frequency Operation 13-62
	Clock Specifications and Jitter 13-63
	Clock Distribution 13-63
	Point-to-Point Connections 13-65
	Signal Integrity 13-67
	Other Recommendations and Suggestions 13-68
	Decoupling Capacitors and Ground Planes 13-69
	Oscilloscope Probes 13-70
	Recommended Reading 13-71

	Booting Single and Multiple Processors 13-71
	Multiprocessor Host Booting 13-73
	Multiprocessor EPROM Booting 13-73
	Booting From a Single EPROM 13-73
	Sequential Booting 13-74

	Multiprocessor Link Port Booting 13-75
	Multiprocessor Booting From External Memory 13-75

	Data Delays, Latencies, and Throughput 13-76
	Execution Stalls 13-77
	DAG Stalls 13-77
	Memory Stalls 13-77
	IOP Register Stalls 13-78
	DMA Stalls 13-78
	Link Port and Serial Port Stalls 13-78

	Registers
	Control and Status System Registers A-2
	Mode Control 1 Register (MODE1) A-3
	Mode Mask Register (MMASK) A-8
	Mode Control 2 Register (MODE2) A-10
	Arithmetic Status Registers (ASTATx and ASTATy) A-13
	Sticky Status Registers (STKYx and STKYy) A-18
	User-Defined Status Registers (USTATx) A-22

	Processing Element Registers A-23
	Data File Data Registers (Rx, Fx, Sx) A-23
	Multiplier Results Registers (MRFx, MRBx) A-24
	Program Memory Bus Exchange Register (PX) A-25

	Program Sequencer Registers A-25
	Interrupt Latch Register (IRPTL) A-27
	Interrupt Mask Register (IMASK) A-31
	Interrupt Mask Pointer Register (IMASKP) A-32
	Link Port Interrupt Register (LIRPTL) A-34
	Flag Value Register (FLAGS) A-37
	IOFLAG Value Register A-38
	Program Counter Register (PC) A-41
	Program Counter Stack Register (PCSTK) A-44
	Program Counter Stack Pointer Register (PCSTKP) A-44
	Fetch Address Register (FADDR) A-44
	Decode Address Register (DADDR) A-44
	Loop Address Stack Register (LADDR) A-45
	Current Loop Counter Register (CURLCNTR) A-45
	Loop Counter Register (LCNTR) A-45
	Timer Period Register (TPERIOD) A-46
	Timer Count Register (TCOUNT) A-46

	Data Address Generator Registers A-46
	Index Registers (Ix) A-47
	Modify Registers (Mx) A-47
	Length and Base Registers (Lx,Bx) A-47

	I/O Processor Registers A-47
	System Configuration Register (SYSCON) A-60
	Vector Interrupt Address Register (VIRPT) A-63
	External Memory Waitstate and Access Mode Register (WAIT) A-65
	System Status Register (SYSTAT) A-69
	SDRDIV Register (SDRDIV) A-72
	SDRAM Control Register (SDCTL) A-73
	External Port DMA Buffer Registers (EPBx) A-76
	Message Registers (MSGRx) A-77
	PC Shadow Register (PC_SHDW) A-77
	MODE2 Shadow Register (MODE2_SHDW) A-78
	Bus Time-Out Maximum Register (BMAX) A-79
	Bus (Time-Out) Counter Register (BCNT) A-79
	External Port DMA Control Registers (DMACx) A-80
	Internal Memory DMA Index Registers (IIx) A-87
	Internal Memory DMA Modifier Registers (IMx) A-87
	Internal Memory DMA Count Registers (Cx) A-87
	Chain Pointer For Next DMA TCB Registers (CPx) A-88
	General Purpose DMA Registers (GPx) A-89
	External Memory DMA Index Registers (EIEPx) A-89
	External Memory DMA Modifier Registers (EMEPx) A-89
	External Memory DMA Count Registers (ECEPx) A-90
	DMA Channel Status Register (DMASTAT) A-90
	Link Port Buffer Registers (LBUFx) A-92
	Link Port Buffer Control Register (LCTL) A-92
	Link Port Service Request & Mask Register (LSRQ) A-98
	Serial Port Registers A-100
	SPORT Serial Control Registers (SPCTLx) A-100
	SPORT Multichannel Control Registers (SPxyMCTL) A-109
	SPORT Transmit Buffer Registers (TXx) A-111
	SPORT Receive Buffer Registers (RXx) A-111
	SPORT Divisor Registers (DIVx) A-112
	SPORT Count Registers (CNTx) A-113
	SPORT Transmit Select Registers (MT2CSx and MT3CSx) A-113
	SPORT Transmit Compand Registers (MT2CCSx and MT3CCSx) A-113
	SPORT Receive Select Registers A-114
	SPORT Receive Compand Registers A-114

	Serial Peripheral Interface Registers A-114
	SPI Port Status Register A-115
	SPI Control Register (SPICTL) A-117
	SPI Receive Buffer Register (SPIRX) A-120
	SPI Transmit Buffer Register (SPITX) A-121

	Register and Bit #Defines (def21161.h) A-121

	Interrupt Vector Addresses
	Numeric Formats
	IEEE Single-Precision Floating-Point Data C-1
	Extended-Precision Floating-Point C-3
	Short Word Floating-Point Format C-4
	Packing for Floating-Point Data C-4
	Fixed-Point Formats C-6

	Glossary
	I Index

		2008-12-13T18:30:42-0800
	ch

